Yeh-Ching Chung
José E. Moreira (Eds.)

Advances in
Grid and
Pervasive Computing

First International Conference, GPC 2006
Taichung, Taiwan, May 2006
Proceedings

LNCS 3947

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3947

Yeh-Ching Chung José E. Moreira (Eds.)

Advances 1n
Grid and
Pervasive Computing

First International Conference, GPC 2006
Taichung, Taiwan, May 3-5, 2006
Proceedings

@ Springer

Volume Editors

Yeh-Ching Chung

National Tsing Hua University
Department of Computer Science
Hsin-Chu, Taiwan 300, ROC
E-mail: ychung @cs.nthu.edu.tw

José E. Moreira

IBM Systems & Technology Group
Blue Gene Software Systems
Rochester, MN 55901, USA
E-mail: jmoreira@us.ibm.com

Library of Congress Control Number: 2006924367

CR Subject Classification (1998): F.1,F2,D.1,D.2, D.4,C.2,C.4, H4,K.6
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33809-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33809-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11745693 06/3142 543210

Message from the General Chairs

It is our great pleasure to welcome you to the beautiful campus of Tunghai University,
Taiwan, and the first annual event of the International Conference on Grid and
Pervasive Computing (GPC). Grid computing addresses the needs for coordinating and
sharing large-scale heterogeneous resources for problem solving in dynamic,
multi-institutional virtual organizations. Extending the resource concept into our
physical surroundings and everyday objects, it is not hard to see the overlapping of grid
and pervasive computing. It is with this view that GPC 2006 was established to serve as
the premier forum covering the emerging research and development on blending and
extending grid and pervasive technologies.

An international conference of this scale requires the support of many people. First
of all, we would like to thank the Steering Committee Chair, Hai Jin, and the committee
members for nourishing the conference and guiding its course. We also like to express
our sincere appreciation to the Program Chairs, Yeh-Ching Chung and Jose Moreira,
who, together with the exceptional Program Committee members, put together a highly
selective and very exciting technical program. We are also indebted to the members of
the Organizing Committee. Particularly, we thank Chao-Tung Yang, Kuan-Ching Li,
Cho-Li Wang and Ching-Hsien Hsu for their devotions and efforts to make this
conference a real success. Our heartfelt gratitude also goes to the Honorary General
Chair, President of Tunghai University, Haydn H.D. Chen for his full support of this
conference. Finally, we would like to take this opportunity to thank all the authors,
reviewers and participants for their contributions to making GPC 2006 a grand success.

It has been an honor for us to serve as General Chairs for the first event of this great
conference and to work with a group of dedicated and capable people. We trust that you
will enjoy the proceedings of GPC 2006.

May 2006 Sajal K. Das and Chung-Ta King
General Co-chairs

Message from the Program Co-chairs

We are proud to present the proceedings of the First International Conference on Grid
and Pervasive Computing 2006, held at Tunghai University during May 3-5.

Grid and Pervasive Computing (GPC) is an annual international conference on the
emerging areas of merging grid computing and pervasive computing, aimed at
providing an exciting platform and paradigm for all the time, everywhere services.
This emergence is a natural outcome of the advances in cluster computing, high-
performance computing, utility computing, service-oriented computing, peer-to-peer
computing, mobile computing, sensor networks, and smart devices technologies. The
aim of GPC 2006 was to be the premier event on grid and pervasive computing,
focusing on all aspects of grid and pervasive computing and providing a high-profile,
leading edge forum for researchers and engineers alike to present their latest research.

In order to guarantee high-quality proceedings, we put extensive effort into
reviewing the scientific papers and processing the proceedings. We received 267
papers from 24 countries. All submissions were peer reviewed by three or four
program or technical committee members or external reviewers. It was extremely
difficult to select the presentations for the conference because there were so many
excellent and interesting ones. In order to include as many papers as possible and keep
the high quality of the conference, we finally decided to accept 64 papers for oral
presentations. We believe all of these papers and topics will not only provide novel
ideas, new results, work in progress and state-of-the-art techniques in this field, but will
also stimulate future research activities in the area of grid and pervasive computing
with applications.

This conference would not have been possible without the support of many people
and organizations that helped in various ways to make it a success. The exciting
program for this conference was the result of the hard and excellent work of many
people. We would like to express our sincere thanks to the invited speakers who
delivered such high-quality lectures at GPC 2006 and all authors for their valuable
contributions. We thank the Program Committee members for their excellent job of
reviewing the submissions and thus guaranteeing the quality of the conference and the
proceedings under a very tight schedule.

May 2006 Yeh-Ching Chung and Jose E. Moreira
Program Co-chairs

Organization

Conference Committees

Honorary General Chair

Haydn H.D. Chen, Tunghai University, Taiwan

Steering Committee Chair

Hai Jin, Huazhong University of Science and Technology, China

Steering Committee Members

Jean-Luc Gaudiot, University of California - Irvine, USA
Chung-Ta King, National Tsing Hua University, Taiwan
Jysoo Lee, KISTI, Korea

Kuan-Ching Li, Providence University, Taiwan

Satoshi Sekiguchi, AIST, Japan

Cho-Li Wang, The University of Hong Kong, China
Chao-Tung Yang, Tunghai University, Taiwan

Albert Y. Zomaya, The University of Sydney, Australia

General Co-chairs

Sajal K. Das, The University of Texas at Arlington, USA
Chung-Ta King, National Tsing Hua University, Taiwan

Program Committee Co-chairs

Jose E. Moreira, IBM Systems and Technology Group, USA
Yeh-Ching Chung, National Tsing Hua University, Taiwan

Publicity Co-chairs

Hao-Hua Chu, National Taiwan University, Taiwan
Kuan-Ching Li, Providence University, Taiwan

Publication Co-chairs

Cho-Li Wang, The University of Hong Kong, China
Ching-Hsien Hsu, Chung Hua University, Taiwan

X Organization

Finance Co-chairs

Chao-Tung Yang, Tunghai University, Taiwan
Wen-Chung Chiang, Hsiuping Institute of Technology, Taiwan

Registration Co-chairs

Liang-Teh Lee, Tatung University, Taiwan
Kun-Ming Yu, Chung Hua University, Taiwan

Local Arrangement Co-chairs

Chu-Hsing Lin, Tunghai University, Taiwan
Hsiao-Hsi Wang, Providence University, Taiwan

Best Paper Award Committee Chair

Jemal Abawajy, Deakin University, Australia

Best Paper Award Committee

Yong-Kee Jun, Gyeongsang National University, Korea
Wang-Chien Lee, Penn State University, USA
Ivan Stojmenovic, University of Ottawa, Canada

International Program Committee

Jemal Abawajy, Deakin University, Australia

Jose Nelson Amaral, University of Alberta, Canada
Hamid R. Arabnia, University of Georgia, USA

Mark Baker, University of Portsmouth, UK

Rajkumar Buyya, University of Melbourne, Australia
Jiannong Cao, Hong Kong Polytechnic University, China
Christophe Cerin, Universite de Paris XIII, France

Jerry Hsi-Ya Chang, NCHC, Taiwan

Ruay-Shiung Chang, National Dong Hwa University, Taiwan
Wenguang Chen, Tsinghua University, China

Hao-Hua Chu, National Taiwan University, Taiwan
Walfredo Cirne, UFCG, Brazil

Toni Cortes, Universitat Politecnica de Catalunya, Spain

Organization

Alvaro L.G.A. Coutinho, UFRJ, Brazil

Luiz DeRose, Cray Research, USA

Rudolf Eigenmann, Purdue University, USA

Dan Grigoras, University College Cork, Ireland

Minyi Guo, University of Aizu, Japan

Xiangjian He, University of Technology Sydney, Australia
Hung-Chang Hsiao, National Cheng Kung University, Taiwan
Ching-Hsien Hsu, Chung Hua University, Taiwan

Kuo-Chan Huang, Hsing Kuo University of Management, Taiwan
Stephen Jenks, University of California - Irvine, USA
Yong-Kee Jun, Gyeongsang National University, Korea
Daniel S. Katz, Jet Propulsion Laboratory, USA

Francis C.M. Lau, The University of Hong Kong, China
Wang-Chien Lee, Penn State University, USA

Jianzhong Li, Harbin Institute of Technology, China
Kuan-Ching Li, Providence University, Taiwan

Ming-Lu Li, Shanghai Jiaotong University, China

Damon Shing-Min Liu, National Chung Cheng University, Taiwan
Pangfeng Liu, National Taiwan University, Taiwan

Celso L. Mendes, University of Illinois at Urbana-Champaign, USA
Matt Mutka, Michigan State University, USA

Mohamed Ould-Khaoua, University of Glasgow, UK

Yi Pan, Georgia State University, USA

Ronald Perrott, Queen's University, UK

Cynthia A. Phillips, Sandia National Laboratories, USA

Ali Pinar, Lawrence Berkeley National Laboratory, USA
Cristina M. Pinotti, University of Perugia, Italy

Omer F. Rana, Cardiff University, UK

Sanjay Ranka, University of Florida, USA

Liria Matsumoto Sato, University of Sao Paulo, Brazil
Mitsuhisa Sato, Tsukuba University, Japan

Ce-Kuen Shieh, National Cheng Kung University, Taiwan
Seung-Jung Shin, Hansei University, Korea

Siang Wun Song, University of Sao Paulo, Brazil

Ivan Stojmenovic, University of Ottawa, Canada

John Pui-fai Sum, Chung Shan Medical University, Taiwan
Putchong Uthayopas, Kasetsart University, Thailand
Chien-Min Wang, Academia Sinica, Taiwan

XI

XII Organization

Cho-Li Wang, University of Hong Kong, China

Frank Zhigang Wang, Cranfield University, UK

Sheng-De Wang, National Taiwan University, Taiwan
Andrew Wendelborn, University of Adelaide, Australia

Weng Fai Wong, National University of Singapore, Singapore
Jingling Xue, University of New South Wales, Australia
Chao-Tung Yang, Tunghai University, Taiwan

Guangwen Yang, Tsinghua University, China

Laurence T. Yang, St. Francis Xavier University, Canada

Table of Contents

Session 1: Best Paper Awards

Optimizing Server Placement in Hierarchical Grid Environments
Chien-Min Wang, Chun-Chen Hsu, Pangfeng Liu, Hsi-Min Chen,
Jan-Jan Wu ...

Using OGRO and CertiVeR to Improve OCSP Validation for Grids
Jesus Luna, Manel Medina, Oscar Mansoc.cccvuuuno..

Efficient Target Detection for RNA Interference
Shibin Qiu, Cundong Yang, Terran Lane

Smart Instant Messenger in Pervasive Computing Environments
Chun-Fai Law, Xiaolei Zhang, Sung-Ming Chan,
Cho-Li Wang o e

Session 2: Grid Scheduling

Negotiation Strategies for Grid Scheduling
Jiadao Li, Ramin Yahyapour

An Enhanced Grid Scheduling with Job Priority and Equitable Interval
Job Distribution
HyoYoung Lee, DongWoo Lee, R.S. Ramakrishna

Average Schedule Length and Resource Selection Policies on
Computational Grids
Uei-Ren Chen, Chien-Hsun Wang, Woei Lin

A Performance-Based Approach to Dynamic Workload Distribution for

Master-Slave Applications on Grid Environments
Wen-Chung Shih, Chao-Tung Yang, Shian-Shyong Tseng

Session 3: Peer-to-Peer Computing

The Peering Problem in Tree-Based Master/Worker Overlays
Hung-Chang Hsiao, Hao Liao

X1V Table of Contents

MUREX: A Mutable Replica Control Scheme for Structured
Peer-to-Peer Storage Systems

Jehn-Ruey Jiang, Chung-Ta King, Chi-Hsiang Liao 93
The Subscription-Cover Based Routing Algorithm in Content-Based
Publish/Subscribe

HongLiang Yuan, ChangGuo Guo, Peng Zou 103

Alliatrust: A Trustable Reputation Management Scheme for
Unstructured P2P Systems
Jeffrey Gerard, Hailong Cai, Jun Wang....... 115

Session 4: Web/Grid Services

A Fault-Tolerant Distributed Scheme for Grid Information Services
Ming-Jeng Yang, Chin-Lin Kuo, Shih-Hsiang Lin,
Yao-Ming Yeho 126

A Market-Oriented Model for Grid Service Management
Huan Wang, Zhihui Du, Lei Wu, Suihui Zhu, Erfan Shang 137

Pricing Web Services
Kevin Ho, John Sum, Gilbert S. Young, 147

A Performance Improvement of Web Service System Based on the
Probability Distribution Characteristics
Il Seok Ko, Yun Ji Na i 157

Session 5: High Performance Computing

An Optimal Scheduling Algorithm for an Agent-Based Multicast
Strategy on Irregular Networks
Yi-Fang Lin, Zhe-Hao Kang, Pangfeng Liu, Jan-Jan Wu 165

Methods for Partitioning Data to Improve Parallel Execution Time for
Sorting on Heterogeneous Clusters
Christophe Cérin, Jean-Christophe Dubacq, Jean-Louis Roch 175

Detecting Unaffected Message Races in Parallel Programs
Mi-Young Park, Yong-Kee Jun 187

A Combined Technique of Non-uniform Loops
Sam Jin Jeong, Kun Hee Han, Young Chul Park................... 197

Table of Contents

Session 6: Ad Hoc Networks

Neighbor-Aided Multicast Protocol for Streaming Transmission on
MANETS
Min-Ping Lin, Chung-Ta King, Ming-Tsung Sun

An Entropy-Based Stability QoS Multicast Routing Protocol in Ad
Hoc Network
Baolin Sun, Layuan Li, Qiu Yang, Yang Xiang

On the Performance of a Hybrid Routing Protocol for Blueweb: A
Bluetooth-Based Multihop Ad Hoc Network
Chih-Min Yu, Chia-Chi Huangc.oouiiiiniineieenn .

An Adaptive and Scalable Resource Advertisement and Discovery
Strategy for Mobile Ad Hoc Networks
Donggeon Noh, Heonshik Shin i,

Session 7: Wireless Sensor Networks

Binding Multiple Applications on Wireless Sensor Networks
Ali Hammad Akbar, Ahmad Ali Igbal, Ki-Hyung Kim

Model-Aided Metadata Management for Wireless Sensor Networks
Chongqing Zhang, Haibing Guan, Minglu Li, Min-You Wu,
Wenzhe Zhang, Feilong Tang

Availability Considerations for Wireless Sensor Grids
Ali Hammad Akbar, Ki-Hyung Kim, Seung-Jin Bang,
Waleed Mansoor, Won-Sik Yoon,

An Energy-Aware Position-Based Routing Strategy
Linfeng Yuan, Zongkai Yang, Liang Ou, Wenging Cheng, Xu Du

Session 8: Grid Applications 1

Introduction of Grid Computing Application Projects at the NASA
Earth Science Technology Office
Kai-Dee Chu, Liping Di, Peter Thornton

Modeling Message-Passing Overhead on NCHC Formosa PC Cluster
Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang,
Shou-Cheng Tcheng e

XV

XVI Table of Contents

Evaluation of the Device Driver Availability in Dawning4000A

Yuanzia You, Dan Meng, Gang Xue, Jie Ma

HyMPI — A MPI Implementation for Heterogeneous High Performance
Systems
Franciso Isidro Massetto, Augusto Mendes Gomes Junior,

Liria Matsumoto Sato

Session 9: Data Grid

Performance Improvement by Data Management Layer in a Grid RPC
System
Yoshiaki Aida, Yoshihiro Nakajima, Mitsuhisa Sato, Tetsuya Sakurat,

Daisuke Takahashi, Taisuke Bokuc......

Effective Dynamic Replica Maintenance Algorithm for the Grid
Environment

Rashedur M. Rahman, Ken Barker, Reda Alhajj

A Lightweight Cyclic Reference Counting Algorithm

Chin-Yang Lin, Ting-Wei Hou

Distributed Garbage Collection for Mobile Actor Systems: The Pseudo
Root Approach

Wei-Jen Wang, Carlos A. Varela

Session 10: Pervasive Applications 1

A Grid-Based Node Split Algorithm for Managing Current Location
Data
Jae-Kwan Yun, Seung-Won Lee, Dong-Suk Hong, Dong-Oh Kim,

Ki-Joon Han e

Cicada: A Highly-Precise Easy-Embedded and Omni-Directional Indoor
Location Sensing System
Hongliang Gu, Yuanchun Shi, Yu Chen, Bibo Wang,

Wenfeng Jiang

Searchable Virtual File System: Toward an Intelligent Ubiquitous
Storage
YongJoo Song, YongJin Choi, HyunBin Lee, Donggook Kim,

Daeyeon Park

Table of Contents

A Collaborative Privacy-Enhanced Alibi Phone
Hsien-Ting Cheng, Ching-Lun Lin, Hao-hua Chuinst

Session 11: Semantic Web / Semantic Grid

The Semantic Grid: Requirements, Infrastructure and Methodology
Kashif Igbal, Stefan Decker, Mark Baker

MPLS Inter Domain Services Routing Architecture and Model Based
on P2P Semantic Grid
Chongying Cao, Jing Yang, Guoging Zhang

Semantic Metadata Models in References Sharing and Retrieval System
SemreX
Hao Wu, Hai Jin e e

Clustering Large Scale of XML Documents
Tong Wang, Da-Xin Liu, Xuan-Zuo Lin, Wei Sun,
Gufran Ahmad

Session 12: Grid Load Balancing

QoS-Driven Grid Resource Selection Based on Novel Neural Networks
Xianwen Hao, Yu Dai, Bin Zhang, Tingwei Chen, Lei Yang

Towards Decentralized Load Balancing in a Computational Grid
Environment
Kai Lu, Riky Subrata, Albert Y. Zomaya

A Resource-Autonomy Based Monitoring Architecture for Grids
Meizhi Hu, Guangwen Yang, Weimin Zheng.......................

Machine Learning-Based Adaptive Load Balancing Framework for
Distributed Object Computing
Tarek Helmy, S.A. Shahab i

Session 13: Wireless Ad Hoc/Sensor Networks

VWMAC: An Efficient MAC Protocol for Resolving Intra-flow
Contention in Wireless Ad Hoc Networks
Wanrong Yu, Jiannong Cao, Xingming Zhou, Xiaodong Wang,
Keith C.C. Chan, Alvin T.S. Chan, HV. Leong

XVII

XVIII Table of Contents

A Coloring Based Backbone Construction Algorithm in Wireless
Ad Hoc Network
Zhiwei Lin, Li Xu, Dajin Wang, Jianliang Gao 509

Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN
Won-Do Jung, Shafique Ahmad Chaudhry, Young-Ho Sohn,
Ki-Hyung Kim e e 517

Are Low PANs a PAN or an Internet of PANs?
Ki-Hyung Kim, Ali Haommad Akbar 527

Session 14: Grid Applications 2

Ensuring Secure and Robust Grid Applications — From a Formal
Method Point of View
Ke Xu, Yuexuan Wang, Cheng Wu 537

Supporting the OpenMP Programming Interface on Teamster-G
Tyng-Yeu Liang, Shih-Hsien Wang, Jyh-Biau Chang,
Ce-Kuen Shieh e 547

Key Techniques of Software Sharing for on Demand Service-Oriented
Computing

Xiaoshe Dong, Yinfeng Wang, Fang Zheng, Zhongsheng Qin,

Hua Guo, Guofu Fengt 557

Embedding a Middleware for Networked Hardware and Software Objects
David Villa, Felix Jesus Villanueva, Francisco Moya,
Fernando Rincon, Jesus Barba, Juan Carlos Lopez 567

Session 15: Mobile Computing

Mechanism of Authenticating a MAP in Hierarchical MIPv6
Jonghyoun Choi, Youngsong Mun 577

Reducing Binding Updates in High Speed Movement Environment
Based on HMIPv6
Dae Won Lee, Kwang Sik Jung, Sung-Ju Roh, KwangHee Choi,
Heon Chang Yu. ... e 587

Table of Contents XIX

A Low-Overhead Non-block Checkpointing Algorithm for Mobile
Computing Environment
Bidyut Gupta, Shahram Rahimi, Rishad A. Rias,
Guru. Bangalore 597

Applying Dynamic Handoff to Increase System Performance on
Wireless Cellular Networks
Chow-Sing Lin, Cheng-Chi Lu 609

Session 16: Pervasive Applications 2

A Paradigm of a Pervasive Multimodal Multimedia Computing System
for the Visually-Impaired Users
Ali Awde, Manolo Dulva Hina, Chakib Tadj, Amar Ramdane-Cherif,
Yacine Belliko 620

Context-Aware Adaptation for Media Delivery in Pervasive Computing
Environment

Wenzhe Zhang, Haibing Guan, Minglu Li, Min-You Wu,

Chongqing Zhang, Feilong Tang......... 634

CAMPS: A Middleware for Providing Context-Aware Services for
Smart Space

Weijun Qin, Yue Suo, Yuanchun Shi 644

A Novel Power Management Scheme for E-Textiles
Nenggan Zheng, Zhaohui Wu, Zhigang Gao, Yanfie Liu 654

Author Index e 665

Optimizing Server Placement in Hierarchical
Grid Environments

Chien-Min Wang!, Chun-Chen Hsu!, Pangfeng Liu?,
Hsi-Min Chen?, and Jan-Jan Wu'

! Institute of Information Science, Academia Sinica, Taipei, Taiwan
{cmwang, tk, wuj}@iis.sinica.edu.tw
2 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
pangfeng@csie.ntu.edu.tw
3 Department of Computer Science and Information Engineering,
National Central University, Taoyuan, Taiwan
seeme@selab.csie.ncu.edu.tw

Abstract. In this paper, we address some problems related to server
placement in Grid environments. Given a hierarchical network with re-
quests from clients and constraints on server capability, the minimum
server placement problem attempts to place the minimum number of
servers that satisfy clients requests. Instead of using a heuristic approach,
we propose an optimal algorithm based on dynamic programming to
solve the problem. We also consider the balanced server placement prob-
lem, which tries to place a given number of servers appropriately so that
their workloads are as balanced as possible. We prove that an optimal
server placement can be achieved by combining the above algorithm with
a binary search of workloads. We extend this approach to deal with con-
strains on network capability. The simulation results clearly show an
improvement in the number of servers and the maximum workload. Fur-
thermore, as the maximum workload is reduced, the waiting times are
reduced accordingly.

1 Introduction

Grid technologies, which enable scientific applications to utilize a wide vari-
ety of distributed computing and data resources, classified into two categories:
Computing Grids and Data Grids [1,2]. A Data Grid is a distributed storage in-
frastructure that integrates distributed, independently managed data resources.
It addresses the problems of storage and data management, data transfers and
data access optimization, while maintaining high reliability and availability of
the data. In recent years, a number of Data Grid projects have emerged in various
disciplines, for instance, EU Data Grid [3], PPDG [4], iVDGL [5], GriPhyN [6]
and BIRN [7].

One way of solving the data access optimization problems is to distribute
multiple copies of a file across different server sites in the grid system. It has

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 1-11, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 C.-M. Wang et al.

been shown that file replication can improve the performance of the applica-
tions [8,9,10,11]. The existing works focus on how to distribute the file repli-
cas in a data grid in order to optimize different criteria such as I/O operation
costs [11], response time and bandwidth consumption [9].

In this paper, we focus on some server placement problems in Data Grid
environments. Given a hierarchical network with requests from clients and con-
straints on server capability, the solution to minimum server placement problem
attempts to place the minimum number of servers that can satisfy clients re-
quests. Instead of using a heuristic approach, we propose an optimal algorithm
based on dynamic programming to solve this problem. We also consider the bal-
anced server placement problem, which tries to place a given number of servers
appropriately so that their workloads are as balanced as possible. We prove
that an optimal server placement can be achieved by combining the above algo-
rithm with a binary search on workloads. We extend this approach to deal with
constrains on network capability. The experiment results clearly show the im-
provement in the number of servers and the maximum workload. Furthermore,
as the maximum workload is reduced, waiting times are also reduced.

2 Background

In this paper, we use a hierarchical Grid model, one of the most common ar-
chitectures in current use [8,9,12,13,14]. Consider Fig.1 as an example. Leaf
nodes represent client sites that send out I/O requests. The root node is as-
sumed to be the I/O server that stores the master copies of all files. Without
loss of generality, we assume that root node is the site 0. Intermediate nodes
can be either routers for network communications or I/O servers that store file
replicas. Edges represent communication channels between nodes. We further
assume that, initially, only one copy (i.e., the master copy) of a file exists at the
root site, as in [9, 13].

Associated with each client site 4, there is a parameter r; that represents the
arrival rate of read requests for client site ¢. A data request travels upward from
a client site and passes through routers until it reach an I/O server on the path.

Fig. 1. The hierarchical Grid model

Optimizing Server Placement in Hierarchical Grid Environments 3

Upon receiving the request, the I/O server sends data back to the client site if it
owns a copy of the requested file. Otherwise, it forwards the request to its parent
server. This process continues up the hierarchy recursively until a node that has
the requested file is encountered or the root node is reached. The root server
might update the contents of the file. For each update, corresponding update
requests are sent to the other I/O servers to maintain file consistency. Let u be
the arrival rate of update requests from the root server.

Associated with each server site j, there is a parameter \; that represents
the arrival rate of I/O requests; A; can be written as: \; = Zz‘ecj r; + u, where
C; is the set of clients served by server site j. The first term represents the
read requests generated by clients in C;. The second term denotes the update
requests that will be sent to server site j. We can further generalize this model
so that each edge has its own connectivity bandwidth constraints.

In the absence of file replicas, all I/O requests must be served by the roots
node. However, the request arrival rate is usually much higher than the service
rate of the root node so that clients have to wait indefinitely for service. By
placing I/0 servers between client sites and the root node, some of 1/O requests
can be served by these I/O servers thereby alleviating the workload on the
root node. According to Queueing Theory, the workload of I/O servers is the
dominant factor in the waiting time of I/O requests. Therefore, to benefit from
file replicas, it is important to place I/O servers at appropriate locations in a
hierarchical Grid system.

3 The Minimum Server Placement Problem

I/0 requests generated by client sites and data transfer requests served by server
sites can be modeled as queueing systems. According to Queueing Theory, the
queue length and the waiting time of a queueing system will eventually reach
infinity if the arrival rate of data is greater than the service rate. Hence, there
is a hard constraint on the arrival rate of each I/O server in a Grid system. File
replicas present a natural solution to this problem. By placing the replicas with
more I/O servers, it is possible to share I/O requests along servers and balance
their workload. However, it is quite expensive to set up I/O servers in a Grid
system, as having more servers usually lead to lower utilization, which means a
waste of the systems resources and increased maintenance costs. Therefore, our
first problem is to place the minimum number of I/O servers that will balance
the workload of I/O requests.

Definition 1. Given the network topology, request arrival rates and I/O ser-
vice rates, the minimum server placement problem tries to place the minimum
number of I/O servers such that the arrival rate of requests that reach each I/O
server isless than its service rate.

To solve this problem, we intuitively employ a greedy method, similar to that
in [12], by placing I/O servers one by one until all the servers including the root
server meet their constraints. Although this algorithm is rather fast and easy to

4 C.-M. Wang et al.

implement, we found that it did not always generate the minimum number of
servers in our experiments. Therefore, instead of employing a heuristic approach,
we try to find an optimal algorithm based on the dynamic programming approach
as shown in the remainder of this section.

Definition 2. Let L(i,m) be the minimum arrival rate of leakage requests that
pass through node ¢ when at most m servers are placed in the sub-tree rooted
at node ¢, and the arrival rate of requests that reach each I/O server is less than
its service rate.

Leakage requests that pass through node i are requests generated by leaf nodes in
the sub-tree rooted at node ¢, but not served by the I/O servers in that sub-tree.
Such requests must be serviced by an I/O server above node ¢ in the hierarchy.
Hence, it is desirable to minimize the arrival rate of these leakage requests.
Depending on the server placement, the arrival rate of the leakage requests may
change. L(i, m) represents the minimum arrival rate of leakage requests among
all possible placements of at most m servers. Let n be the number of nodes in
the Grid system. Based on the following theorems, such a minimum arrival rate
can be computed in a recursive manner.

Theorem 1. L(i,m + 1) < L(i,m) for any node ¢ and m > 0.
Theorem 2. If node i is a leaf node, then L(i,m) = \; for 0 <m < n.

Proof. Since a leaf node cannot be an 1/0 server, all I/O requests generated
by a client site will travel up the tree to the leaf nodes parent. By Definition,
L(i,m)=X\; for 0 <m < n. a

Theorem 3. For an intermediate node ¢ with two child nodes j and k, we can
derive:

L(i,m) = 0 if mino<,<m1{LG.7) + L{kym =7 = 1)} <
L(i,m) = ming<r<m{L(j,7) + L(k,m —)}, otherwise

Proof. Case 1: A server is placed on node i. Consequently, at most, m — 1 servers
are placed on sub-trees rooted at node j and node k. This happen if and only
if mino<r<m—1{L(j,7) + L(k,m —r — 1)} < p;. The “if” part can be proved as
follows. Suppose that the minimum can be obtained when there are p servers on
the sub-tree rooted at node j and ¢ servers on the sub-tree rooted at node k as
shown in Fig.2(a). By Definition, the minimum arrival rate of leakage requests
that pass through node j and node k will be L(j,p) and L(k,q) respectively.
Since node ¢ has only two child nodes, j and k, the arrival rate of I/O requests
that reach node 7 must be the sum L(j,p) + L(k, q). Accordingly, we can derive:

L(j,p) + L(k,q) = mino<r<m—1{L(j,7) + L(k,m —7 — 1)} < p;

Hence, a server can be placed on node i. In this case, L(¢,m) = 0 and must be
optimal. The “only if” part can be proved similarly. Suppose that, in an optimal

Optimizing Server Placement in Hierarchical Grid Environments 5

v
.
Lii,m)=0 ,*

.
.

Site i M
l Silcjol l Site jy ‘ l Silcj2‘
L(j, p/ \L(k q)
s] e] ©
Site j Site k

L(i, m)=0if L,_,(i.m=1) < u;

L(i, m)=L;_,(i ,m), otherwise

(a) A server is placed on node

R

(b) No server is placed on node (d

Fig. 2. (a). (b) Illustrate two possible server placements on node i. (c¢). (d) Illustrate
the basic concept of Theorem 4.

server placement, there are p servers on the sub-tree rooted at node j and q
servers on the sub-tree rooted at node k. Obviously, we have the inequalities
0<pg<m-—1and p+q < m — 1. Since node ¢ has only two child nodes,
j and k, the arrival rate of I/O requests that reach node 7 must be the sum
L(j,p)+ L(k, q) and must meet the constraint L(j,p) + L(k,q) < p; . According
to Theorem 1, we can derive: u; > L(j,p)+ L(k,q) > L(j,p)+ L(k,m—1—p) >
mino<r<m—1{L(j,7) + L(k,m —r — 1)}. This completes the proof of case 1.
Case 2: No server is placed on node i. Consequently, at most m servers are
placed on sub-trees rooted at nodes, j and k. Suppose that, in an optimal server
placement, there are p servers on the sub-tree rooted at node j and ¢ servers
on the sub-tree rooted at node k, as shown in Fig.2(b). Obviously, we have
the inequalities 0 < p,q < m and p + ¢ < m. Since node ¢ has only two child
nodes, j and k, the arrival rate of 1/O requests that reach and pass through
node ¢ can be computed as: L(i,m) = L(j,p)+ L(k,q) > L(j,p) + L(k,m —p) >
mino<r<m{L(j,7)+ L(k,m —7)}. According to above the assumption, this is an
optimal server placement. Hence, all the equalities must hold. This completes
the proof of case 2. O

Theorem 4. For an intermediate node ¢ with k child nodes jo,j1,...,Jk—1,
the minimum arrival rate of leakage requests that pass through node ¢ can be
computed iteratively as follows:

6 C.-M. Wang et al.

Lo(i,m) = L(jo, m),

Ly(i,m) = mino<r<m{Lq-1(3,7) + L(jg,m — 1)}, 1 < g <k —1,
L(i,m)=01if Lg_1(i,m — 1) < p;; and

L(i,m) = Li_1(i,m), otherwise.

Proof. Fig.2(c), 2(d) illustrate the basic concept of this theorem. To find an
optimal server placement, we can view an intermediate node with k child nodes
in Fig. 2(c) as the sub-tree in Fig. 2(d). Then, the minimum arrival rate of leakage
requests, L(i, m), can be computed recursively along the sub-tree. As the detailed
proof of this theorem is similar to that of Theorem 3, it is omitted here. ad

Theorem 5. The minimum number of I/O servers that meet their constraints
can be obtained by finding the minimum m such that L(0,m) = 0.

Based on Theorems 2 to 4, we can compute the minimum arrival rate of leakage
requests that start from leaf nodes and work toward the root node. After the
minimum arrival rate of leakage requests that reach the root node has been
computed, the minimum number of I/O servers that meet their constraints can
be computed according to Theorem 5. The proposed algorithm is presented in
Fig. 3.

Algorithm Minimum_Leakage

Input: 1. the arrival rate \; for all leaf nodes.
2. the service rate p; for all intermediate nodes.
Output: the minimum arrival rate L(i, m) for 0 < ¢, m < n.
Procedure:
1. sort all nodes according to their distance to the root node in decreasing order.
2. for each node i do
3. if node i is a leaf node then
4. compute L(i,m) =X; for 0 <m <n
5. else
6. Let the child nodes of node ¢ be nodes jo,...,jk—1
7. compute Lo(i,m) = L(jo,m) for 0 <m < n
8. for ¢ from 1 to k — 1 do
9. compute Lg(i,m) = ming<r<m{Lq—1(i,7) + L(jq,m —7)} for 0 <m < n
10. endfor
11. for m from 0 to n do
12. if L—1(i,m — 1) < p; then L(i,m) = 0 else L(i, m) = Li_1(%, m) endif
13. endfor
14. endif
15. endfor

Fig. 3. An optimal algorithm for the minimum server placement problem

In the first line of the algorithm, we sort all nodes according to their distances
to the root node in decreasing order. This ensures that child nodes will be com-
puted before their parents so that Theorems 2 to 4 can be correctly applied. The
execution time of this step is O(nlogn). The loop in line 2 iterates over every
node in the system. For each leaf node, it takes O(n) execution time in line 4.
For an intermediate node that has k child nodes, it takes O(n?) execution time

Optimizing Server Placement in Hierarchical Grid Environments 7

in line 9, and iterates k — 1 times in line 8. This results in O(kn?) execution time
for lines 8 to 10. Lines 11 to 13 also take O(n) execution time. Consequently, the
complexity of lines 3 to 13 is O(kn?); and the complexity of the whole algorithm
is O(n?), where n is the number of nodes in the Grid system.

4 The Balanced Server Placement Problem

As mentioned in section 2 (the last paragraph), a major factor in the performance
of a queuing system is the workload of the servers. Since each server may have
a different capability, a servers workload is defined as the ratio of the arrival
rate over the service rate. The minimum server problem sets a lower bound on
the number of I/O servers. However, usually we would like to set up more 1/O
servers to reduce the workload. In this case, we are concerned with the maximum
workloads of the I/O servers. In other words, we try to place a given number
of servers appropriately so that the workload of the servers is as balanced as
possible. We call this the balanced server placement problem.

Definition 3. The workload of a server i, denoted by p;, is defined as the ratio
of its arrival rate over its service rate: p; = A\;/ ;-

Definition 4. The maximum workload of a system is defined as the maximum
workload among all servers in the system.

Definition 5. Given the network topology, request arrival rates and I/O service
rates, the balanced server placement problem is: How to place a given number of
I/0O servers such that the maximum workload of the grid system is minimized?

Let mg represent the lower bound on the number of I/O servers, assume there
are m > my servers to be placed. Our goal is to place at most m servers such
that the maximum workload is minimized. First, we present an algorithm to find
a server placement when the maximum workload is known. Instead of solving
this problem directly, we transform it into a minimum server placement problem
discussed in section 3.

Theorem 6. There exists a placement of at most m servers such that max{ ’\;}
< p if and only if the minimum number of servers needed for arrival rates A\; and
service rates p; = p - p; is less than or equal to m.

Proof. First, suppose that the minimum number of servers needed for arrival
rates \; and service rates p; = p - p; is less than or equal to m. By Definition,
there must exist a placement of at most m servers such that \; < p} = p- u; for
all server nodes i. Thus, A\;/u; < p for all server nodes i. Accordingly, we can
derive max{A;/u;} < p. This completes the proof of the “if” part.

Next, suppose there exists a placement of at most m servers such that
max{Ai/p;} < p. We can derive \;/p; < p; and A; < p - p; for all server
nodes ¢. Therefore, the minimum number of servers needed for arrival rates \;
and service rates u; = p- p; must be less than or equal to m. This completes the
proof of the only if part. O

8 C.-M. Wang et al.

Theorem 7. If there is no placement of at most m servers such that maxz{\;/p;}
< p and p’ < p, then there cannot be a placement of at most m servers such
that maz{\;/p:} < p'.

Proof. We prove this theorem by contradiction. Assume that there is no place-
ment of at most m servers such that maz{\;/p;} < pand p’ < p, there ex-
ists a placement of at most m servers such that maz{\;/u;} < p’. Accordingly,
we can derive that there must exist a placement of at most m servers such that
max{\i/p;} < p’ < p. However, this contradicts the assumption. Therefore, there
cannot be a placement of at most m servers such that maz{\;/u;} < p'. O

According to Theorem 6, we can determine if there exists a placement of at most
m servers such that maz{\;/p;} < p by using the algorithm for the minimum
server placement problem in section 3. The main difficulty with this approach
is that we do not know the optimal value of the maximum workload yet. For-
tunately, Theorem 7 provides a foundation for searching the optimal value of
the maximum workload. It implies that if there is no server placement for a
maximum workload p, then the optimal value must be greater than p. On the
other hand, if there is a server placement for a maximum workload p, then it
is possible to further minimize the value of the maximum workload. Combining
Theorem 6 and 7 allows us to find the optimal value through a binary search of
the maximum workload.

Before applying a binary search, however, we have to determine an upper
bound and a lower bound. It is rather easy to get an upper bound and a lower
bound on the maximum workload. So long as m > my, there always exists an
upper bound of 1 on the maximum workload. A lower bound can be computed
by assuming that the fastest m servers are chosen and I/O requests are dis-
tributed to these servers evenly. Next, we can combine a binary search of the
maximum workload and the algorithm for the minimum server placement prob-
lem to find the optimal value of the maximum workload. Because the upper
bound of the binary search is a constant and the lower bound is a function of
the input parameters, the workload-balance algorithm is strongly polynomial.

Our algorithm can be further generalized to consider network bandwidth.
Take Fig.2(a) and 2(b) as examples. The arrival rate of I/O requests that pass
through the communication channel between node j and node ¢ is denoted as
L(j,p). Let p;; be the service rate of this communication channel. To meet the
constraint of the communication channel, it is desirable that L(j,p) < pj; in the
minimum server placement problem and L(j,p) < p- pj; in the balanced server
placement problem.

5 Experimental Results

To evaluate the performance of the proposed algorithms, we conducted several
experiments in which 1000 test cases based on the proposed Grid model are
randomly generated. The number of nodes in each case is approximately 1000.
The arrival rates for the leaf nodes and the service rates for intermediate nodes

Optimizing Server Placement in Hierarchical Grid Environments 9

Number of test cases

0 1 2 34 5 6 7
Improvement on the number of servers

Fig. 4. Performance comparison for the minimum server problem

are generated from a negative exponential distribution. We also implemented a
heuristic-based greedy method similar to that proposed in [12] as a reference.

The experimental results for the minimum server placement problem, shown
in Fig. 4, compare the performance of the proposed optimal algorithm with the
heuristic-based greedy method. The performance metric is the difference in the
number of servers by the proposed optimal algorithm and the greedy method.
The vertical axis shows the number of test cases, while the horizontal axis shows
the difference in the number of servers used by the two methods.

According to the experimental results, the greedy method can only generate
an optimal solution for 22.1% of the test cases. The optimal solution generated
by our algorithm uses one less server than the greedy method in 38% of the test
cases and two or less servers than the greedy method in 39.9% of test cases.
Based on the results in Fig.4, we classified the 1000 test cases into seven sets
for use in the following experiments. Thus, test set S; contains those test cases
in which our algorithm uses ¢ less servers than the greedy method.

Fig.5(a) shows the workloads of the greedy method and the optimal algo-
rithm. For each test set, the optimal algorithm and the greedy method use the
same number of servers, and we take the average of maximum workloads of the
optimal algorithm and the greedy method as the performace metric in this ex-
periment. It is obvious that the the difference of the workloads becomes larger
when the difference of the minimum numbers of servers required by the two
algorithms increases. This means that, when using the same number of I1/0
servers, the optimal algorithm can actually reduce the maximum workload of

£
o

DP —— } DP ——
Greedy —— | Greedy ——
! £ 04
-5 095 .\h"‘—% Ed .\\/\‘/\\
! \1\\\ 503 ~
2 09 g
z S~ g
5
o I 5 \.\
o So S Sy S3 4 Ss Se 57 0 So S Sy S3 Sy Ss Se S
Test sets Test sets
(a) (b)

Fig.5. (a) The workloads of the optimal algorithm and the greedy method (b) The
average waiting times of different test sets

10 C.-M. Wang et al.

the I/O servers and therefore balance their workload better than the greedy
method.

Next, we compare the average waiting times of the two algorithms. The results
are shown in the Fig.5(b). This experiment demonstrates the major benefit of
our optimal algorithm. The results show that, using the same number of servers
as the greedy method, our algorithm reduces the average waiting time of the
grid system dramatically compared to the greedy method.

Fig. 6(a) shows the maximum workload of the optimal algorithm as the num-
ber of I/O servers increases, where my is the lower bound on the number of I/O
servers for test cases in Sy. It is clear that the maximum workload decreases as
the number of I/O servers increases. This data can help us determine an ap-
propriate number of servers in a grid system. Fig. 6(b) also shows the average
waiting time of the optimal algorithm as the number of I/O servers increases. It
can also help us to determine an appropriate number of servers in a grid system
when the average waiting time is the major concern.

;/

Average waiting time

035

03 \

£ 025
g 0

0.15 \\
f 0.1

005 *\-\

o
z

Workload of servers

Number of I/O servers Number of I/O servers

(a) (b)

Fig. 6. The workload and the average waiting time versus the number of 1/O servers

6 Conclusions

In this paper, we focus on some server placement problems in Data Grid environ-
ments. Given a hierarchical network with requests from clients and constraints
on server capability, the minimum server placement problem attempts to place
the minimum number of servers that can deal with clients requests. As our model
allows servers have different I/O capabilities, it is more general than similar work
in the literatures. Instead of using a heuristic approach, we propose an optimal
algorithm based on dynamic programming as a solution to this problem.

Next, we consider the balanced server placement problem, which tries to place
a given number of servers appropriately so that the workload of the servers is as
balanced as possible. We show that optimal server placement can be achieved by
combining the above algorithm with a binary search of workloads. Finally, we
extend the above approach so that constraints on network capability can also be
dealt with. The experiment results clearly show an improvement on the number
of servers and the maximum workload. As the maximum workload is reduced,
the waiting time is also reduced.

Optimizing Server Placement in Hierarchical Grid Environments 11

Acknowledgments

The authors would like to thank the anonymous referees for their helpful sugges-
tions. The authors also acknowledge the National Center for High-performance
Computing in providing resources under the national project, “Taiwan Knowl-
edge Innovation National Grid”. This research is supported in part by the Na-
tional Science Council, Republic of China, under Grant NSC 94-2213-E-001-023.

References

S G W

~

10.

11.

12.

13.

14.

. Foster, I.T., Kesselman, C., Tuecke, S.: The Anatomy of the Grid : Enabling Scal-

able Virtual Organizations. The International J. of High Performance Computing
15(3) (2001)

Johnston, W.E.: Computational and data Grids in large-scale science and engi-
neering. Future Generation Computer Systems. 18(8) (2002) 1085-1100

EU DataGrid. (http://www.edg.org)

PPDG: Particle Physics Data Grid. (http://www.ppdg.net)

iVDGL: International Virtual Data Grid Laboratory. (http://www.ivdgl.org)
Deelman, E., Kesselman, C., Mehta, G., Meshkat, L., Pearlman, L., Blackburn, K.,
Ehrens, P., Lazzarini, A., Williams, R., Koranda, S.: GriPhyN and LIGO, Building
a Virtual Data Grid for Gravitational Wave Scientists. In: HPDC 2002. (2002)
BIRN: The Biomedical Informatics Research Network. (http://www.nbirn.net)
Hoschek, W., Jaén-Martinez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data
Management in an International Data Grid Project. In: GRID 2000. (2000) 77-90
Ranganathan, K., Foster, I.T.: Identifying Dynamic Replication Strategies for a
High-Performance Data Grid. In: GRID 2001. (2001) 75-86

Chervenak, A., Foster, 1., Kesselman, C., Salisbury, C., Tuecke, S.: The Data
Grid: Towards an architecture for the distributed management and analysis of
large scientific datasets. Journal of Network and Computer Applications 23(3)
(2000) 187-200

Lamehamedi, H., Shentu, Z., Szymanski, B.K., Deelman, E.: Simulation of Dy-
namic Data Replication Strategies in Data Grids. In: IPDPS 2003. (2003) 100
Abawajy, J.H.: Placement of File Replicas in Data Grid Environments. In: Inter-
national Conference on Computational Science. (2004) 66-73

Bell, W.H., Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Stockinger, K.,
Zini, F.: Evaluation of an Economy-Based File Replication Strategy for a Data
Grid. In: International Workshop on Agent based Cluster and Grid Computing at
CCGrid 2003. (2003) 120-126

Grid Physics Network (GriphyN). (http://www.griphyn.org)

Using OGRO and CertiVeR to Improve OCSP
Validation for Grids

1 . 1 2
Jesus Luna', Manel Medina ', and Oscar Manso

! Polytechnic University of Catalonia, Computer Architecture Department,
Jordi Girona 1-3 08034 Barcelona, Spain
{jluna, medina}@ac.upc.edu
?CertiVeR, Technical Director,
Diputacion 238 08007 Barcelona, Spain
o.manso@certiver.com

Abstract. Authentication and authorization in many distributed systems rely on
the use of cryptographic credentials that in most of the cases have a defined
lifetime. This feature mandates the use of mechanisms able to determine
whether a particular credential can be trusted at a given moment. This process is
commonly named validation. Among available validation mechanisms, the
Online Certificate Status Protocol (OCSP) stands out due to its ability to carry
near real time certificate status information. Despite its importance for security,
OCSP faces considerable challenges in the computational Grid (i.e. Proxy Cer-
tificate’s validation) that are being studied at the Global Grid Forum’s CA
Operations Work Group (CAOPS-WG). As members of this group, we have
implemented an OCSP validation infrastructure for the Globus Toolkit 4, com-
posed of the CertiVeR Validation Service and our Open GRid Ocsp (OGRO)
client library, which introduced the Grid Validation Policy. This paper summa-
rizes our experiences on that work and the results obtained up to now. Further-
more we introduce the pre-validation concept, a mechanism analogous to the
Authorization Push-Model, capable of improving OCSP validation performance
in Grids. This paper also reports the results obtained with OGRO’s pre-
validation rules for Grid Services as a proof of concept.

1 Introduction

Many distributed environments (i.e. the computational Grid, Web services, etc.) base
their authentication and authorization mechanisms on the life cycle management of
cryptographic electronic credentials, with special focus on the issuing and revocation
processes. Let us take for example the X.509 digital certificates [1] which may open
the door to a distributed system for its owner only when he is authorized to process
the operation being requested. In order to do so, at a very basic security level the sys-
tem verifies the credential (i.e. issuer’s digital signature, validity period, etc.) together
with the purpose by which such credential was issued (i.e. roles and attributes). How-
ever, this mechanism is not enough to ensure complete security. If a higher level of
security has to be reached the system should also validate the credential. Through this
paper we will use the term “validation” as the process in charge of verifying that the

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 12—-21, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using OGRO and CertiVeR to Improve OCSP Validation for Grids 13

credential has not been reported by its owner as stolen, lost or compromised. In most
of the cases the entity issuing the credentials — in a PKI such entity is named Certifi-
cation Authority (CA) — is in charge of providing such validation information to any
relying party requesting it. On top of that, it is also necessary to iteratively validate
the issuer’s credentials until a trust anchor has been found; this process is often called
Certificate Path Validation. The validation process is traditionally done via the
placement of Certificate Revocation Lists (CRL') on a public directory accessible
through protocols like HTTP, LDAP and FTP. However this solution tends to be
cumbersome for both the CA and the application. In terms of the CA it is difficult to
manage because it involves providing revocation information efficiently (in some
scenarios near real time notification is a must). Also on the client side such a solution
penalizes efficiency, because it becomes forced to periodically download and parse
the whole list of revoked certificates — which can be extremely large —in order to per-
form the validation process. In consequence, more efficient mechanisms to allow for
the provision of real time certificate status information to relying parties have begun
to be adopted in some demanding environments, where highly efficient and secure so-
lutions are required.

Proposed in 1999 on RFC 2560 [2], the Online Certificate Status Protocol (OCSP)
is one such mechanisms. In this paper we will focus our analysis into one distributed
system, which due to its special features poses strong security and performance chal-
lenges on OCSP: the computational Grid. Take for example the Globus Toolkit 4
(GT4) [3], which uses Proxy Certificates (defined in RFC3820 [4]) as short-lived
cryptographic authentication credentials, acting on behalf of their issuer (typically the
user itself) and implementing mechanisms that provide a secure framework for Grid’s
relying parties. Integration of OCSP into GT4 requires not only the implementation of
special mechanisms not available in other distributed systems (i.e. Proxy Certificate
validation), but also tailored and efficient solutions for others particular issues (i.e.
OCSP Responder discovery, fault tolerance, high performance, etc.). This problem
has been considered so important that communities like the Global Grid Forum
(GGF) are actively studying the adoption of OCSP into the Grid very closely. Pre-
cisely, as members of the GGF’s CA Operations Workgroup (CAOPS-WG) and
co-authors of the document “OCSP Requirements for Grids” [5] we have designed -
based on the guidelines of such document- and developed the Open GRid Ocsp
(OGRO) Java API, which provides OCSP support for Grid relying parties through a
set of customizable validation rules, named the Grid Validation Policy.

Based in that work this paper proposes a completely functional OCSP validation
infrastructure for Grids that uses OGRO and the CertiVeR OCSP service [6]. Fur-
thermore, we also introduce a new mechanism called pre-validation, consisting of
OGRO-enabled Grid clients embedding the OCSP Response received from CertiVeR
into a non-critical extension from the Proxy certificate, in such a way that while
OCSP security level is kept, the overall validation performance is greatly improved.

This paper presents our proposal in the following manner: section 2 explains and
shows the results obtained with our first proposal on the use of CertiVeR and OGRO

! Files digitally signed by a CA, containing the serial numbers of those certificates which have
been revoked, cancelled or suspended in the PKI.

14 J. Luna, M. Medina, and O. Manso

to provide a validation infrastructure for the Grid. Next section 3 mentions and also
presents the results of a further OCSP validation improvement by introducing
OGRO'’s pre-validation mechanism. The related work can be seen in section 4 and fi-
nally section 5 contains our conclusions and planned future work with OGRO and
CertiVeR.

2 Using CertiVeR and OGRO to Provide an OCSP Infrastructure
for Grids

In this section we will introduce an OCSP infrastructure for the Grid, based on the
CertiVeR service for the Trusted Responder and the OGRO Java API integrated into
the GT4 client.

2.1 CertiVeR

CertiVeR is an EU funded project that offers a comprehensive validation service that,
on top of providing validation information of a X.509 certificate in real time through
the Online Certificate Status Protocol —OCSP- it also implements a CRL Updater
module, which is in charge of retrieving revocation information directly from the
CA’s CRL through protocols like LDAP and HTTP. This information is stored in a
local cache.

A DeltaCRL connector has been also developed, which is used by the CRL Up-
dater modules to remotely push any new revocation information from the remote CA
into the Cert Status DB. Support for proxy certificate validation has been also imple-
mented in such a way that the Grid client may decide to securely revoke such creden-
tial. Through a customizable set of extensions on the OCSP response CertiVeR can
report information at several levels, such as technological — e.g. the reliability of the
degree of trust in the issuing authority of the certificate- or commercial — e.g. infor-
mation provided by the Chambers of Commerce about a company-. Such type of in-
formation may dramatically increase security and e-Trust.

For each organization member of the Grid’s VO, CertiVeR OCSP responder can be
configured in trusted or authorized mode as defined in [2]. Finally fault tolerance
(through replication techniques, backup sites and load balancers) and high perform-
ance (using cryptographic hardware) are also provided for those organizations requir-
ing them.

2.2 The Open GRid OCSP (OGRO): An Open Source OCSP Library for GT4

In previous work [7] we introduced the basis of an OCSP client for GT4, able to use
CertiVeR for proxy certificate’s OCSP path validation and also to request authoriza-
tion information in OCSP extensions from such service. This client has evolved since
then and now it has been published as open source, with the name of OGRO -Open
GRid OCSP- [8]. OGRO implements the one-message proxy certificate validation, a
mechanism able to validate the whole Proxy Certificate Path with just one OCSP Re-
quest/Response pair. Furthermore by being Open Source and 100% Java, OGRO is
suitable for integration into Grid applications, also it is easily configurable through

Using OGRO and CertiVeR to Improve OCSP Validation for Grids 15

the so-called Grid Validation Policy which has been defined as a flexible set of XML
rules. The next section covers in detail this feature.

2.2.1 Customizing OGRO: The Grid Validation Policy

OGRO is configured through a set of rules -written in XML- called the Grid Valida-
tion Policy, which customizes relying parties’ validation behavior. Figure 1 shows the
DTD of such policy.

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <!ELEMENT ocsppolicy (issuerdn+) >

3 <!ELEMENT issuerdn (source?,unknownstatus-?,
errorhandler?, request?, proxycert?) >

4 <!ATTLIST issuerdn dn CDATA #REQUIRED>

5 <!ATTLIST issuerdn name CDATA #REQUIRED >

6 <!ATTLIST issuerdn hash CDATA #REQUIRED >

7 <!ELEMENT revsources (source+) >

8 <!ELEMENT source EMPTY >

9 <!ATTLIST source order CDATA #REQUIRED >

10 <!ATTLIST source signingcert CDATA #IMPLIED >

11 <!ATTLIST source location CDATA #REQUIRED >

12 <!ATTLIST source type (trusted|authorized) "trusted" >

13 <!ATTLIST source timeout CDATA #IMPLIED >

14 <!ELEMENT unknownstatus EMPTY >

15 <!ATTLIST unknownstatus action (good|revoked) "revoked">

16 <!ELEMENT errorhandler (action+) >

17 <!ELEMENT action EMPTY >

18 <!ATTLIST action order CDATA #REQUIRED >

19 <!ATTLIST action type

(tryLater|setFina1Resp)"setFinalResp">

20 <!ATTLIST action value (good|revoked) "revoked" >

21 <!ATTLIST action maxRetries CDATA #IMPLIED >

22 <!ELEMENT request (signreg?, usenonce?, prot?, ext*) >

23 <!ELEMENT signreq EMPTY >

24 <!ATTLIST signreq value (true|false) "false" >

25 <!ELEMENT usenonce EMPTY >

26 <!ATTLIST usenonce value (true|false) "true" >

27 <!ELEMENT prot EMPTY >

28 <!ATTLIST prot value (http|https) "http" >

29 <!ELEMENT ext EMPTY >

30 <!ATTLIST ext order CDATA #REQUIRED >

31 <!ATTLIST ext oid CDATA #REQUIRED >

32 <!ATTLIST ext value CDATA #REQUIRED >

33 <!ELEMENT proxycert (unknownstatus, prevalidation) >

34 <!ELEMENT prevalidation EMPTY>

35 <!ATTLIST prevalidation value (true|false) "false" >

36 <!ATTLIST prevalidation noprevalinfo (ocsp|ommit) "ocsp" >

Fig. 1. DTD of OGRO’s Grid Validation Policy

From previous figure we can observe at line 2 that the OGRO’s policy allows per
issuer validation rules customization or even the option to configure a default issuer,
that is, rules applying to any user whose issuer is not referenced anywhere else in the
policy.

16 J. Luna, M. Medina, and O. Manso

A set of revocation sources (lines 8-13) can be also defined, which means that the
relying party may be able to consult more than one OCSP Responder thus providing
fault tolerance and high availability. Moreover a customizable meaning of the “Un-
known” OCSP status —line 15- can be defined for any certificate on the path (Proxy or
non-Proxy). Also at lines 16-19, error handling mechanisms may be declared to take a
certain action if for example an OCSP Responder could not be contacted. The current
set of error handlers can be extended to fulfill special requirements of VOs.

Customization of OCSP Requests (i.e. use of signatures and nonces) is provided
also by OGRO -lines 22 to 32- .

Important to note are Proxy Certificate’s pre-validation rules (lines 34-36), which
will be explained in the next section.

More than being a set of configuration directives, OGRO’s Grid Validation Policy
represents a mechanism to tailor validation process’ security level. For example a VO
may decide to use only a defined set of internal OCSP Trusted Responders benefiting
performance (i.e. not using digital signatures, nonces nor HTTPS), while other VO
may use external OCSP Authorized Responders but compelling its clients to use
strong OCSP Requests (i.e. digitally signed, using a nonce and HTTPS).

The following section compares several Grid Validation Policies for an OCSP in-
frastructure based in CertiVeR and OGRO, with the purpose to help potential users in
deciding which policy best fits their security requirements.

2.3 Performance Results Obtained for the Globus Toolkit 4 with CertiVeR and
OGRO

In this section we show our results for a validation architecture based on the CertiVeR
Service and the OGRO client implemented into the Globus Toolkit 4. The setup used
for the tests is described next:

e CertiVeR Validation Service configured as Trusted Responder at http://ta-
car.certiver.com and http://globus-grid.certiver.com:

— Installed on a server with one Xeon processor @2.9 GHz, 1.5 Gb RAM and
Windows 2000. An Oracle database is being used by the Responder.

— No cryptographic hardware is being used in the Responder.

— One OCSP extension is being handled: the "CA_RATING_EXTENSION" (reg-
istered with the OID "1.3.6.1.4.1.4710.2.454.10.1.1").

— Proxy certificate revocation was not configured to simulate a typical OCSP ser-
vice. Also no precomputed OCSP Responses were used.

e OGRO client:

— Integrated into the ProxyPathValidator class of the Java CoG version 4
[9], so that it could be used with the ProxyInit class from the same package.
Remember that the same classes are used by the Globus Toolkit 4 (Java Core).

— Apache Ant’s script to run 50 Grid clients concurrently (each one under a dif-
ferent instance of the Java Virtual Machine) in a server with 4 Xeon processors
using RedHat Linux 7.2.

— OGRO always verifies the OCSP Response’s nonce and digital signature.

Using OGRO and CertiVeR to Improve OCSP Validation for Grids 17

Before the tests we were expecting to identify a policy with the best performance
(presumably the NoNonce-NoSign-HTTP which generates OCSP Requests without
nonce, not being signed and using HTTP) and also the most secure policy (in theory
the Nonce-Signed-HTTPS generating OCSP Requests with nonce, digitally signed and
using HTTPS). However from the results obtained we found that on the client-side
there is really no big difference among any of them (in fact only a 2%-6% of variation
was observed). It is also interesting to note that the use of HTTPS did not imply a
visible overhead neither in OGRO nor CertiVeR. A policy commonly used by relying
parties in environments like Web Services is the Nonce-NoSign-HTTP (which pro-
tects against replay attacks, does not identify the client to the OCSP Responder and
goes over clear-text HTTP), which resulted in a fair balance between security and per-
formance. Figure 2 shows obtained results over HTTP, even though the use of HTTPS
produced similar conclusions.

From a performance point of view, the use of nonces in the OCSP Request is al-
most irrelevant and it would be advisable only if CertiVeR was using precomputed
Responses. Otherwise, for security reasons, it should be enabled.

Similar to the above observation is the use of digital signatures on the OCSP Re-
quest (its use is only advisable if a special reason to justify it exists —i.e. service ac-
countability or access control purposes-).

On the OCSP service-side we observe that CertiVeR kept sustained response times
for all the clients. In other words, no bottlenecks were evident even though all OCSP
Requests were launched in parallel.

OGRO-CertiVeR-GT4 Results over HTTP

140000
120000 +
100000 7.
80000 -
60000
40000 -
20000 A

0

Time (ms)

Client

No OGRO — — NoNonce-NoSign-HTTP Nonce-NoSign-HTTP —x— Nonce-Sign-HTTP

Fig. 2. Proxy Cert initialization with CertiVeR and different OGRO Policies over HTTP

We have to notice that the use of OGRO is more time-expensive for Grid clients,
than when OCSP validation is not performed at all because obviously more process-
ing is required (i.e. Grid Validation Policy parsing, cryptographic operations for the
OCSP message, disk access and response validation just to name a few). Further re-
search in OCSP validation performance took us to find that important improvements
could be done through a mechanism named pre-validation, which is explained next.

18 J. Luna, M. Medina, and O. Manso

3 Improving OCSP Validation: Pre-validating with OGRO

3.1 The Problem

As mentioned in previous section, Grid Validation Policies created with different Re-
quest rules (in particular combining the digital signature, nonce and protocol parame-
ters) kept similar performances in OGRO and GT4. Although the OCSP validation
overhead on the server-side represents approximately 30% (i.e. when the Coun-
terService Grid Service is invoked) it becomes far more critical for overall
performance. Such conclusion raised the following question: are we able to sacrifice
client’s performance prior to invoking a Grid Service to benefit WSRF Container’s
overall performance? Our novel pre-validation mechanism in OGRO took this direc-
tion to provide a secure and high-performance OCSP validation solution for Grid
environments.

3.2 Introducing OCSP Pre-validation

When we faced the challenge of improving the performance of OCSP validation in
Grids without affecting its overall security, a concept from the authorization area [10]
came to our mind: the push model. Here we use the OCSP Response itself as a valida-
tion ticket to be exchanged between the user and the service. The rationale behind this
is very simple given the fact that such message is authenticated (digitally signed by
the OCSP Responder which is a trusted third party), tamper protected (again thanks to
the digital signature) and includes a validity period. In other words, the OCSP Re-
sponse can be presented by the user as a proof of pre-validation to any other Grid
relying party. The other challenge in designing the pre-validation mechanism was
deciding how to transport the OCSP Response along with the user identity. We solved
this by implementing a solution used by the CAS [11], VOMS [12] and PRIMA [13]
authorization systems, where the attributes assertions are embedded as Proxy Certifi-
cate’s extensions.

The results obtained with OGRO’s pre-validation mechanism, under the same con-
ditions described in section 2.3 are shown in Figure 3. Just as expected in the client
side, the time consumed by OGRO’s validation and pre-validation processes, was
almost 100% above the time that elapsed when such mechanisms were not used.
However it is interesting to note that embedding the OCSP Response into the Proxy
Certificate did not result in a visible overhead. On the other hand, the results obtained
with the Grid WSRF container —server side- (figure 4) showed that the pre-validation
process reduced in little more than 30% the time required to validate with OCSP a
Proxy Certificate. Even more important to note is that the pre-validation checking at
the server side did not introduce a visible overhead (in fact less than 1%). On the
other hand, even though a bottleneck at the WSRF Container itself was noticeable as
the number of concurrent invocations increased (around the 9" invocation in figure 4),
again it does not deny the fact that pre-validating improves OCSP performance and in
the best of the cases (if no bottleneck was generated at the WSRF Container) the gap
between the OCSP No Prevalidated and OCSP Prevalidated series
(figure 4) could be reduced, but would never be the same.

Using OGRO and CertiVeR to Improve OCSP Validation for Grids 19

Concurrent Proxy Initialization (Client-side)
120000
100000
’g 80000
E 60000
i 40000
20000 -
[0 o o e e L s e e s e L e s s s LA
NX AL D 0 R P P A R 0
Concurrent Proxy Instance
No OGRO —o— OCSP No Prevalidated — — OCSP Prevalidated
Fig. 3. Results obtained with the Grid client when creating the Proxy Certificate
Concurrent Counterservice Invocation (WSRF Server-side)
25000
20000 A
2 15000
Y
E 10000 -
=
5000 -
o+ T T

NP e AR 0Ol R PR R R D P DR R

Concurrent Invocation

Fig. 4. Results obtained with the WSRF Container when validating the Proxy Certificate

No OGRO —o— OCSP No Prevalidated — — OCSP Prevalidated ‘

4 Related Work

Even though there are several standalone OCSP clients currently available (maybe
one of the most commonly used is the OpenSSL [14], which also includes a set of C
libraries), as far as we know OGRO is the first one adapted for the Globus Toolkit
(and very likely for any other Grid software) and thus the only client providing a pre-
validation mechanism as presented in this paper. However, there are a couple of solu-
tions that, even if they do not provide OCSP validation, make use of fresh CRLs to
validate certificates: the first one is MyProxy [15] which implements a remote service
that stores user certificates automatically populated from a CA. The second imple-
mentation is the Data Grid’s edg-fetch-cr1 [16] script which can be scheduled to
periodically download remote CRLs. Regarding pre-validation we have to mention
that the idea of embedding information into Proxy Certificate’s extensions is not new,
and in fact it has been used by solutions implemented in the Authorization field like

20 J. Luna, M. Medina, and O. Manso

CAS [11], VOMS [12] and PRIMA [13]. In the OCSP service-side it is worth to men-
tion Sytrust’s OpenValidation [17] which implements several of the functionalities
also presented in CertiVeR. However, it does not support the Authorized Responder
mode with the same cryptographic key-pair nor the Proxy Certificate’s revocation
service.

5 Future Work and Conclusions

This paper has introduced the Open GRid Ocsp —OGRO- client API which imple-
ments the requirements of OCSP infrastructures in order to be suitable for Grid envi-
ronments, just as proposed by the GGF’s CA Operations Workgroup (CAOPS-WG).
OGRO'’s functionality can be easily customized by a set of XML rules in the form of
a Grid Validation Policy. To provide some insight into the security and performance
effects of different Grid Validation Policies, an OCSP infrastructure based in the Cer-
tiVeR Validation Service, OGRO and the Globus Toolkit 4 was setup. We observed
that the overall response time of the policies was pretty much the same, therefore
from the client’s performance point of view there is no big difference if nonces, digi-
tal signatures or secure channels are used when connecting to a service like the one
we have tested (which does not preprocess OCSP responses). Our tests have also
show that the architecture OGRO-CertiVeR greatly improves Grid security, but over-
loads such environments with the delay generated by the OCSP validation mecha-
nism. For this reason was introduced the concept of pre-validation as a mechanism
capable of improving OCSP validation performance in Grid environments. This has
been done by embedding the OCSP Request in a Proxy Certificate extension in such a
way that the overhead introduced by traditional OCSP has been moved from the
server to the client. In doing so the overall system security is not affected, because the
Grid server is enforced to perform a series of security verifications over the pre-
validated data contained in the Proxy Certificate to ensure its correctness (verification
of Responder’s digital signature, OCSP Response’s validity period, etc.). As a proof
concept we have modified the Open GRid Ocsp —OGRO- client to support pre-
validation through a new rule introduced in the client’s Grid Validation Policy being
defined. This API was then tested with the Globus Toolkit 4 in such a way that pre-
validation is performed by the Grid user when creating a Proxy Certificate, and then
enforced at the WSRF Container when a Grid Service was being invoked through the
secure messaging mechanism. Results showed that important improvements could be
obtained at the Grid server without any extra overhead introduced at the client’s
OCSP validation process. Even though obtained results were affected by external fac-
tors (the throughput of the OCSP validation service being accessed, the WSRF Con-
tainer, and OGRO itself —policy parsing-) we believe that general conclusions about
the overall advantages of the pre-validation mechanism were not influenced by them
and moreover future work will be aimed to enhance performance by using new algo-
rithms (i.e. use of precomputed OCSP Responses in CertiVeR and inclusion of an
OCSP cache in OGRO) and cryptographic hardware.

We expect that the use of OCSP in Grids will be very common in the near future.
In consequence, the practical experience that the Grid community will acquire with
software like OGRO and services like CertiVeR may prove very useful in building
OCSP architectures fully optimized for such environments. Current research on Grid
OCSP in general and the CertiVeR-OGRO-GT4 architecture in particular, will

Using OGRO and CertiVeR to Improve OCSP Validation for Grids 21

continue over topics like future uses of OCSP extensions as we have also begun a new
research line using the concepts of pre-validation and the OGRO API to build the
Unified AAI introduced in [7], by conveying not only the OCSP Response but also
Authorization information into the Proxy Certificate’s extensions.

Finally it is worth highlighting that OGRO is in the process of being integrated into

the next release of the Globus Toolkit, which may bring further improvements as a re-
sult of the Grid community’s testing and comments.

References

1.

10.
11.

12.

14.

15.

16.
17.

“RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile”. Housley R, et. al., April 2002.

“RFC 2560: X.509 Internet Public Key Infrastructure, Online Certificate Status Protocol —
OCSP”. Myers M, et. al. June 1999.

“The Globus Toolkit 4”. http://www.globus.org

“RFC 3820: Internet X.509 Public Key Infrastructure (PKI), Proxy Certificate Profile”.
Tuecke S, et. al. June 2004.

. “OCSP Requirements for Grids”. Global Grid Forum, CA Operations Work Group. Work-

ing Document. May 2005. https://forge.gridforum.org/projects/caops-wg

“CertiVeR: Certificate Revocation and Validation Service”. http://www.certiver.com
“Towards a Unified Authentication and Authorization Infrastructure for Grid Services:
Implementing an enhanced OCSP Service Provider into GT4”. Luna J., Manso O., Medina
M., 2nd EuroPKI 2005 Workshop. To be published in the Proceedings by Springer in Lec-
ture Notes in Computer Science series. July 2005. http://sec.cs.kent.ac.uk/europki2005/
“OGRO - The Open GRid Ocsp client API”. http://grid-globus.certiver.com/info/ogro

“A Java Commodity Grid Kit” Gregor von Laszewski, lan Foster, Jarek Gawor, and Peter
Lane, Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9, pp. 643-
662, 2001, http:/www.cogkit.org/

“RFC 2904: AAA Authorization Framework”. Vollbrecht J, et. al. August 2000.

“A Community Authorization Service for Group Collaboration”. L. Pearlman, et.al. IEEE
3rd International Workshop on Policies for Distributed Systems and Networks, 2002.
“VOMS, an Authorization System for Virtual Organizations”. R. Alfieri,. et. al. Presented
at the 1st European Across Grids Conference, Santiago de Compostela, Spain. February
2003. http://infnforge.cnaf.infn.it/voms/VOMS-Santiago.pdf

. “The PRIMA Grid Authorization System”. M. Lorch and Dennis Kafura. Journal of Grid

Computing, 2004, Vol. 2, Pages 279-298

“The OpenSSL software”. http://www.openssl.org

“An online credential repository for the Grid: MyProxy”. V. Welch, et. al. In 10" IEEE In-
ternational Symposium on High Performance Distributed Computing. San Francisco, CA.
IEEE Computer Society Press, Los Alamitos, CA, 2001.

“Data Grid: Security for the RLS”. http://edg-wp2.web.cern.ch

“The Openvalidation service”. http://www.openvalidation.org

Efficient Target Detection for RNA Interference

Shibin Qiu', Cundong Yang?, and Terran Lane'

! Dept. Computer Science, University of New Mexico, Albuquerque, NM, 87131
{sqiu, terran}@cs.unm.edu
2 Dept. Electrical and Computer Eng., University of New Mexico, USA
cundongyang@ece.unm.edu

Abstract. RNA interference (RNAI) is a posttranscriptional gene si-
lencing mechanism used to study gene functions, inhibit viral activi-
ties, and treat diseases. Due to the nonspecific effects of RNAI, target
validation through target detection is crucial for the success of RNAi ex-
periments. Since target detection involves large amounts of transcriptome-
wide searches, computational efficiency is critical. To efficiently detect
targets for RNAi design, we develop both sequential and parallel search
algorithms using RNA string kernels, which model mismatches, G-U wob-
bles, and bulges between siRNAs and target mRNAs. Based on tests in
S. pombe, C. elegans, and human, our algorithms achieved speedups of 6
orders of magnitude over a baseline implementation. Our design strategy
also leads to a framework for efficient, flexible, and portable string search
algorithms.

1 Introduction

RNAI is an intracellular mechanism for posttranscriptional gene silencing used
to study gene functions, inhibit viral activities, and treat diseases therapeuti-
cally [1,2,3,4]. RNAI is initiated by short interfering RNA (siRNA) of about 21
nucleotides (nt) long, either generated from a dsRNA by the enzyme Dicer, or
directly transfected. Associating with a silencing complex (RISC), siRNA targets
complimentary mRNA molecules for destruction, preventing expression of the
associated proteins. RNAi has been regarded as a highly effective means of gene
repression[2, 5]. However, its effectiveness can be compromised by nonspecific,
or off-target knockdown, which is the unintentional silencing of a gene other
than the target. In this paper, we develop efficient algorithms searching whole
transcriptomes to detect targets of sSiIRNA and dsRNA for target validation.

Although RNAI is predominantly considered highly specific [5], significant
nonspecific gene knockdowns have been reported [6, 7, 8]. Experiments in human
cells found silencing of nontarget genes containing only 11 nt identity to the
siRNA [6]. A computational study reported that using dsRNA of length 200 nt,
there existed a 30% chance of silencing incorrect genes in human by permitting
exact matches only [8]. If mismatches of 3 nt were allowed, more than 50% chance
of false positive knockdown existed. This level of off-target error rate suggested
that silencing one gene would silence at least one nontarget gene. Because RNAi
specificity is critical [3,4], it is important to detect and verify the targets of a
dsRNA or siRNA before it is used in a biological experiment.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 22-31, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Efficient Target Detection for RNA Interference 23

The recommended procedure for target validation is BLAST [9, 10]. However,
BLAST misses targets in some cases, and is not suitable for accurate sequence
matching, such as RNAi [11]. The sequence binding between an siRNA and its
target allows for mismatches, G-U wobbles, and bulges[7]. Though BLAST al-
lows for deletion, insertion and substitution, it cannot control the exact patterns
of imperfect matches encountered in RNAi. Due to their quadratic complex-
ity, algorithms based on dynamic programming are not feasible for large scale
searching. Alignment algorithms align the input sequences into whatever pat-
tern needed to get an optimal score based on a cost model and do not guarantee
generating the desired patterns[12, 13]. To simulate siRNA-target binding, we de-
velop search algorithms based on string kernels that accurately control matching
patterns by adjusting the length and position of the patterns. To search for im-
perfectly matched targets, we develop algorithms using search trees constructed
with reverse strings and shuffled strings. Furthermore, we exploit parallelism in
our algorithms for parallel target detection. Our algorithms have demonstrated
superior quality in target detection and achieved substantial speedups.

Related to RNAI, computational methods exist to predict microRNA genes
and targets[14], and putative RNAi[15]. An algorithm for string searches with
single letter mismatch was developed[16]. However, single-length mismatch is
not enough for RNAi. A multiple instruction stream-single data stream (MISD)
architecture was developed for fast sequence matching[17]. But this hardware
solution is not flexible and its proprietary architecture is expensive. String ker-
nels provide flexibilities for evaluating the similarity between the sequences
based on input patterns[18,19]. But these string kernels were not specifically
designed for RNA biology and their computational performances were unsatis-
factory. Previously, we have developed the RNA string kernels and used them
for RNAi off-target studies focusing on computational models and biological
implications[8, 20]. In this work, we use the RNA string kernels to allow flex-
ible imperfect matches, focusing on high performance sequential and parallel
implementations. We develop a series algorithms of increasing sophistication for
computing the kernels to efficiently detect targets of a dsRNA or siRNA for
RNA interference.

2 Target Detection by RNA String Kernels

We formulate a computational representation for RNAi using the RNA string
kernels including mismatches, bulges, and G-U wobbles[8, 20]. The destruction of
an mRNA is caused by hybridization between the binding strand of the siRNA
and the target, which can be modelled by sequence matching between the sense
stand and the target [5]. Thus, a sequence matching signifies a gene knockdown.

2.1 Target Search by Exact Match String Kernel

We describe each gene by its contiguous subsequences of length n (~ 21 nt),
called n-mers, or n-grams, representing siRNAs. A gene, g,, represented in the

24 S. Qiu, C. Yang, and T. Lane

input space X, consisting of sequences drawn from the alphabet A={A, C, G, U},
is mapped into an n-gram feature space R*" by the feature map of exact match

@ew(gw) = (¢a(gm))a€A”7 (]-)

where ¢4(g,) is the number of times n-gram a occurs in g¢,[8]. Therefore, the
image of g, is the coordinates in the feature space indexed by the number of
occurrences of its constituent n-mers.

A dsRNA d matches g, if the following condition is met,

K(d, gz) = (27 (d), 2" (92)) = T, (2)

for a threshold T, where (.,.) is the standard inner product. The similarity
measure K (d, gy) in (2) defines a kernel as used for a support vector machine
classifier [21]. Instead of classifying, we use this kernel to match a dsRNA and
its target. Since any match between an siRNA from a dsRNA and an mRNA
will silence the gene, we choose T = 1.

2.2 String Kernels of Mismatches, Bulges, and Wobbles

An siRNA is able to silence its target despite the presence of a limited number
of mismatches, bulges, and wobbles[6,7]. To detect the targets when imperfect
matches exist, we use string kernels defined through the notion of similarity
neighborhoods. Since these imperfect matches frequently exist in RNA biology,
these kernels are called RNA string kernels. The RNA kernels first define con-
tiguous imperfect match patterns and parameterize their positions, then permute
the positions, so that imperfect matches occur everywhere[20].

For an n-mer a from an alphabet A, we define its mismatch neighborhood,
NJ%is(a), as the set of n-mers y from A that differ from a by at most m contiguous
mismatches starting at position p in a. And we define the mismatch feature map
of a as)" (a) = (¢+(a))yean, where ¢, (a) = 1if v € NJ"5(a), and ¢, (a) =0,
otherwise. The feature map of a gene g, is defined as the sum of the feature
maps of its n-mers, ‘

P50(92) = Xacg, Prmpla)- 3)

The bulge neighborhood N;’Zlge(a) for n-mer a is defined as all (n + b)-mers
~ from the target that match a exactly everywhere except by a bulge of b nt
long starting at position g on 7. And the bulge feature map of a is defined as

bulge . bulge
2,7 (a) = (¢(a))ycants, where ¢,(a) = 1 if v € N ¥“(a), and ¢,(a) = 0,
otherwise. The feature map of g, is defined as the sum of the feature maps of

its n-mers,
bulge bulge
¢b7u;]g() (gw) = Zaegm @b:gg (a) (4)

The wobble feature map ®152"¢(.) is defined similarly to @775 (.) in (3), except
only G-U wobbles exist in its neighborhood. By defining the similarity neigh-
borhood for the combination of mismatches, bulges, and wobbles as the union
of the separate neighborhoods, we can define the feature map of simultaneous

mismatches, bulges and wobbles @ﬁ’;ﬁh gw.r(+) accordingly. Thus to evaluate the

Efficient Target Detection for RNA Interference 25

RNA string kernel between a dsRNA d and a gene g,, we calculate the inner
product using the above feature maps,

K(d, gz) = (@0 (), Dty gwr (92))- (5)

m,p,b,q,w,r m,p,b,q,w,r

To allow imperfect matches to exist at all possible positions, we sum up over
all positions within the strings, as done for the mismatch feature map below.

Kon(d, g5) = Y= H@ms (d), s (g,)). (6)

3 Efficient Implementations for RNA String Kernels

The RNA string kernels defined above characterize imperfect match patterns
in RNAi. However, since these kernels need substantial processing and target
validation requires large scale scan, we develop their efficient implementations.

3.1 Computing the Exact Match String Kernel

Calculating the similarity of (2) directly in a vector space requires O(DF4™)
time, where F' is the number of n-grams in the genome (40 x 10° for C. elegans
and 60x 108 for human) and D = |d|—n-+1 is the number of n-mers in the dsSRNA
of length |d|. For whole genome searches, this computing time is prohibitive and
can be improved by taking advantage of the sparsity of the feature space. We
use an tnverted file where the n-mers serve as identifiers and their gene names
serve as attributes. In the inverted file, the records for g, contains the pairs
(a1, 92), (a2, 92)s-(Ak, , 9z), where a;, 1 < j < kg, is the jth n-gram of g, and
ks = |gz| — n+ 1 is the number of n-mers in g,. The inverted file for a genome
is the collection of the pairs of its genes. To speed up computation, we sort the
inverted file on the n-mer field using a binary search tree (BST).

The exact match similarity K(d, g,) in (2) can be computed using the SSO
algorithm in Algorithm 1. After the BST T3 is built, the matched genes are
collected in C' at Step 2. K(d,g,) is the number of occurrences of g, among
the matched genes. Each search in the BST takes O(log F) time, resulting in an
O(Dlog F) time for computing K(d, g,). An alignment algorithm would need
O(n?DF) time. SSO gains a speedup of O(n?F/log F).

Algorithm 1 Algorithm 2
Search by Exact Match, SSO(d) Single Tree Search, SS1(d, m)

Input: dsRNA d, length of mismatch m, BST T
built for the inverted file using n-mers.
QOutput: Target genes matched by d.

Input: dsRNA d, BST T built
for the inverted file using n-

OUtmlc;rts:. Tareet 1: for each n-mer s; in d do
rrr)lat(.:he(?rl;ge d 8E1ES 2 for each p € [I,n—m +1] do
1: for each n}imér sjind do 3: R — p — 1 leading range of s; from T'
2: O — C | matched nodes 4: cc;i‘;_m"ignu nodes in R satisfying ending
3: enlg g:)r 5: end for
) 6: end for
4: Return C

7: Return C'

26 S. Qiu, C. Yang, and T. Lane

3.2 Target Search Using Reverse Strings

Since mismatches dominate off-target chances among the imperfect matches and
the wobble and bulge kernels can similarly be implemented, we focus on imple-
menting mismatch kernels[20]. First, we need some notation.

For a BST populated with strings from a set S = {s1, $2...sy} of strings of
length k drawn from an alphabet A, we define a u (u < k) leading range of a
string s € S searched in the BST as the set of nodes returned by a search that
only matches the first u letters of s. The u leading range of a string sy can be
searched from a BST by first finding sg, followed by retrieving the nodes among
the neighbors of sy (equivalently along the sorted array) as long as the first u
letters are matched. If sy is not found, the closest location returned by a binary
search is used as the center point of the neighborhood.

The SS1 algorithm in Algorithm 2 performs target detection with mismatches.
In the loop starting at Step 2, targets are searched allowing mismatches at
all positions. At Step 4, the ending criterion collects those genes in C' whose
n-mers in R are matched with s; at the last n —m — p 4 1 positions. However,
the search in SS1 is not always efficient. At Step 3, the size of the neighborhood
subtree for the leading range is O(4"~™~P*1) if the tree is fully populated. It
is small if the mismatch is at the end of the sequence, and gets exponentially
larger as the mismatch moves to the beginning of the string. Its worst case size is
O(4"~™). Therefore, SS1 uses O(pD4™ ™ log F') time. However, if we can keep
the mismatches at the end of the strings, then our searches are always fast.

Suppose string s; = aj...a; has reverse string s; = ay...a;. We define a mir-
rored tree of a BST populated with strings from S as the BST populated with

Algorithm 3 Algorithm 4
Search by Reverse String, SS2(d, m)|Search by Shuffled String, SS3(d, m)

Input: dsRNA d, length of
mismatch m, BST 77 and
mirrored BST T3 for the in-
verted files using n-mers.

Output: Target matched by d.

1: for each p € [1,n—m+1]

Input: dsRNA d, length of mismatch m, BST Tr
built with s, T, with 5, and Ths with sp; using
n-mers.

Output: Target matched by d.

1: for each p € [1,n—m+1] do

. do . 2: for each n-mer s; in d do
2: for each n-mer s; in d 3. if p > 2|n/3) then
3. doif > [n/2] then 4: R — p — 1 leading range of s; from Tr
1 %j_ ~ 1 Jeadin 5: else if p < [n/3] then
’ P & 6: R — n—m —p+1 leading range of 5;
range of s; from Ty from T
5: else 7. else L
6: R—n—-m-p+1 : .
leading range of 55 8: SO; [Tn/iﬂ + p — 1 leading range of sas
from T2 9. endif
7 end i : . - .
8 C — C | nodes in R 10: ccrit?riciu nodes in R satisfying ending
satisfying ending crite- 11: end for
rion :
9: end for 12: end for
10: end for 13: Return C'

11: Return C

Efficient Target Detection for RNA Interference 27

reverse strings si,...,sx. The SS2 algorithm in Algorithm 3 first builds BST T}
and a mirrored BST T5. If the mismatch is in the ending half of the string,
Ty is queried in Step 4 to obtain the leading range. If it is in the beginning
half, T5 is searched using its reverse string in Step 6. Since the sizes of the sub-
trees used to retrieve the leading ranges are bounded by O(4™/2~™), SS2 takes
O(pD4™/?~™ log F) time. The speedup of SS2 over SS1 (baseline) is O(4"/2).

3.3 Target Search Using Shuffled Strings

We can further improve search performance by dividing the string into three
segments and shuffling the mismatches to the end of the sequences. SS3 in Al-
gorithm 4 shows this implementation by building three trees. Let s=s14s2+s3,
where s1, s2, and s3 are the left, middle and right substrings. Each of them has
a length of about one third of s. The tree Tk is inserted with s, and facilitates
searches with mismatches at the end. Tree T}, is inserted with the inverse se-
quences s for searches with mismatches at the beginning. T is inserted with the
shuffled sequence sp;=s3+s1+s2 for searches with mismatches in the middle.

In Algorithm 4, if a mismatch is at the right end, p > 2|n/3], then R collects
the leading range of s; searched in T». If the mismatch is on the left, then R
collects the leading range of s; searched in T7. Otherwise, the mismatch is in
the middle and R stores the leading range of sj; searched in T);. Since the
sizes of the subtrees used to retrieve the leading ranges (Steps 4, 6, and 8) are
bounded by O(4™/3~™), SS3 takes O(pD4™/?~™ log F) time. SS3’s speedup over
SS2 is O(4™/%). Tts speedup over SS1 is O(4%"/3). However, SS2 and SS3 use
more memory space than SS1.

Although we only implemented up to SS3, it is not difficult to construct p =
n/m trees, so that each search is exactly at the end of the string. This extension
yields a time complexity of O(pDlog F') and a speedup of O(4™~"™) over SS1,
achieving speedups of more than 8 orders of magnitude for human genome.
Thus our design strategy provides a framework for fast searching algorithms
with easy extensions. This extended design will benefit special purpose software
and hardware architectures that pursue extremely fast target detection.

3.4 Parallel Target Detection

Due to the popularity and cost decline of parallel computers, improving compu-
tational performance through parallelism becomes practical. In this section, we
parallelize our algorithms to further enhance the speed of target detection and
prepare them for large throughput searches required by a server.

To parallelize SS3 using an input partition scheme on a shared memory ma-
chine, we first build the trees T, Tr, and Ty for a organism. We then share
these trees among the processors during the search stage. Assuming there are
P processors, we partition the dsRNA into P parts and assign one part to each
processor for searching. The output targets are the union of the targets returned
by each processor. We can also partition the transcriptome into P parts and
assign one part to each processor, which in turn builds three trees. In the search
stage, each processor searches its own shuffled trees for the entire input sequence.

28 S. Qiu, C. Yang, and T. Lane

4 Experiments

We test our algorithms for dsRNA target detection in S. pombe, C. elegans, and
H. sapiens.

4.1 Performance of Target Detection

We searched targets for dsRNAs of 500 nt long from genes SPAC664.06,
F52C9.8b, and Kua-UEV (gi|40806189) in S. pombe, C. elegans, and H. sapiens,
respectively. Fig. 1 (a) shows that the number of targets increased dramatically
with mismatches. In the case of human, when only exact match was allowed, the
dsRNA targeted 3 variants of the ubiquitin-conjugating enzymes (gi|40806189,
£i|40806191, and gi|40806192). When one mismatch existed at every position
in the siRNAs (21 nt), it matched 6 genes, additional targets being FLJ20512,
AZI1, and KTAA1984. Fig. 1 (a) also suggests that larger genomes (human and
C. elegans) yielded more targets than smaller ones (S. pombe).

00 i o Table 1. Search times

g1 i P D(nt) SS1 SS2 SS3
s K 500" 7,718.7 0.092 0.062
2000 39,146 0.443 0.313
s Lo 4000 * 0933 0.647
. 30 % 8000 * 1916 1.305

» jg 10000 * 2432 1.654

0) Sp 1.0 88,285 125,107

=

1 2 3
nismatch length

(a)

001 2 3 4 5 6§ 7 8
input size (1000 nt)

()

Fig. 1. Performance comparison. (a) Number of targets increases with m in S. pombe,
C. elegans, and H. sapiens (D = 500 nt, m =0 —4 nt). (b) Speedups of SS3 over SS2
for D =500 — 10000 nt, m =1 —8, n =21 nt in C. elegans. (c) Comparison of search
times (in seconds) in C. elegans. D=500-10000 nt, m = 2, n = 21 nt, * unavailable
(too long). Speedup Sp is relative to SS1, for D=2000 nt.

To handle high throughput required by a server, we tested SS1, SS2, and SS3
for dsRNAs of 10,000 nt long, although < 1000 nt dsRNAs are commonly used
in biological experiments. We used a computer with a 1.6GHZ CPU and an 8GB
RAM. Table 1 in panel (c) of Fig. 1 shows that SS2 and SS3 gained speedups of
88,285 and more than 10° folds over SS1 respectively, for the case of D = 2000
nt, m = 2, and n = 21, in C. elegans. As the table shows, for dsRNAs of 500—
10000 nt long, SS3 found the targets in 0.06—1.7 seconds. For the same input sets,
BLAST took 21-121 seconds. SS1 took hours to finish, but faster than alignment
searching (time not shown). Fig. 1 (b) shows that SS3 gained a speedup of about
80 fold over SS2 and this speedup increased with m. The speedup’s increase with
m is because that the number of possible mismatch positions is n — m + 1 and
larger m yields fewer positions to search and less overhead for the partition and

Efficient Target Detection for RNA Interference 29

combining. The figure also indicates that the speedups did not change much with
the input size (D), suggesting that the algorithms are scalable.

We noticed that the speedup of SS3 over SS2 was lower than its theoretical
estimation O(4™/). This is because real genomes are much smaller than 4™. Tt
was also related to the overhead in SS3 incurred by dividing the strings and
combining the results. In addition, more trees caused more memory segmenta-
tion, which slowed down memory accesses. While our algorithms used BSTs and
were written in C++ language, they can also be implemented using B-Trees in
database tables. Our web tool for target detection, using the search strategy
of SS2 and two MySQL database tables, works with reasonably fast response
(http://rnai.cs.unm.edu/projects/).

4.2 Parallel Speedups

Our parallel experiments were conducted on a Sun E4500 shared-memory ma-
chine with 14 Ultra SPARC IT 400MHz CPUs, each having 16KB L1 cache and
4MB L2 cache. Programs were written in C++ using p—threads. Fig. 2 displays
SS3’s speedups using input-partition, indicating that more than 8 fold speedups
were achieved. However, the speedups were less than linear and even decreased
with more processors in some cases. This decrease of speedup is attributed to
the drawbacks of the computer architecture. Since our BSTs were shared by
all processors, bus contention and deep cache hierarchy deteriorate performance
greatly with the increase of processors. The figures also show that more speedups
were achieved for longer mismatches. This is because longer mismatches yielded
fewer possible mismatch positions in the siRNAs and fewer searches, which re-
duced the chances of bus contentions and undesirable cache behaviors. Although
the speedups dropped with more processors for short mismatches, this drop was
not serious in human as shown in Fig. 2 (c), suggesting that our parallel im-
plementations were more efficient for larger genomes. Parallelizing SS3 with
genome-partition gained only 3 fold speedups, due to large amount of cache
misses and bus contentions incurred when more trees were accessed.
Combining the parallel speedup and that gained by SS3 (> 10°), a total
speedup of 6 orders of magnitude over SS1 was achieved. If the strings are shuffled
into more segments using more trees SS3, higher speedups can be achieved.

Dot{)ljm)k)f(«\»

HLASELLL
Dod)ljm)k}f(«\»

HLASELLL
Dod)ljm)k}f(«\»
b

TRl
LN BRI
HEE3338:8
TR STl
o
HEE3338:8
TR TNl

HEE3338:

speedup
T

.
S oW e ;oo a9 ® w©

o
N
IS
o
@

10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
of processors # of processors # of processors

(a) (b) (c)

Fig. 2. Parallel speedups. (a) S. pombe, D = 10000 nt. (b) C. elegans, D = 5000 nt.
(¢) H. sapiens, D = 5000 nt. n =21, m =1 — 8 nt.

30 S. Qiu, C. Yang, and T. Lane

5 Conclusions

Target detection in RNAi must meet the requirements of the similarity model
and computational efficiency. To ensure the quality of target detection and cap-
ture the matching patterns in RNAi, we used RNA string kernels character-
izing sequence similarity, allowing for mismatches, G-U wobbles, and bulges.
We developed algorithms of increasing sophistication for performance improve-
ment. First, we used searches based on sorted inverted files as a baseline im-
plementation. We then introduced searches using reverse strings and mirrored
trees, which improved search times dramatically, especially when mismatches are
present. Furthermore, we developed searching algorithms using shuffled strings
that yielded better performance. Finally, we used parallel processing and made
target detection even faster.

We have analyzed, compared, and tested the algorithms extensively for differ-
ent scenarios. Experiments in the genomes of S. pombe, C. elegans, and human
demonstrated that our algorithms achieved speedups of 6 orders of magnitude over
the baseline implementation. They were faster than BLAST and detected targets
that were otherwise missed by BLAST. They are flexible and can be implemented
using database tables. The parallel implementations are portable and practical
for commonly used multiprocessor systems. Moreover, our design strategy pro-
vides a framework of fast searching algorithms, which makes it easy to extend the
algorithm beyond what we have tested (SS3) for even better performance.

We need to point out that the multiprocessor system we used to test our
parallel implementations was made many years ago. On today’s multiprocessor
systems using high-speed switches, parallel performance can be improved sub-
stantially. On commonly used, low cost, small multiprocessor computers (<8
processors), we expect the parallel speedups will be close to linear. Although the
genome-partition scheme did not achieve the expected speedup on this system,
it might work well on a cluster of workstations, where memory accesses are inde-
pendent on each node. In the future, we will combine the two partition schemes
for better efficiency on a cluster and investigate load balancing issues.

Acknowledgement

This work is supported by NIH grant P20RR18754 from the Institutional De-
velopment Award Program of the National Center for Research Resource. The
authors thank David A. Bader for giving accesses to the shared-memory machine,
and Coenraad M. Adema for helpful suggestions.

References

1. Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S., Mello, C.: Potent and
specific genetic interference by double-stranded RNA in C. elegans. Nature 391
(1998) 806-811

2. Elbashir, S.M., Harborth, J., Weber, K., Tuschl, T.: Analysis of gene function in
somatic mammalian cells using small interfering RN As. Methods 26 (2002) 199-213

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

Efficient Target Detection for RNA Interference 31

. Check, E.: Hopes rise for RNA therapy as mouse study hits target. Nature 432

(2004) 136

. Dillin, A.: The specifics of small interfering RNA specificity. Proc. Natl. Acad.

Sci. USA 100 (2003) 6289-6291

. Tuschl, T., Zamore, P.D., Lehmann, R., Bartel, D.P., Sharp, P.A.: Targeted mRNA

degradation by double-stranded RNA in vitro. Genes Dev. 13 (1999) 3191-3197

. Jackson, A., Bartz, S., Schelter, J., Kobayashi, S., Burchard, J., Mao, M., Li, B.,

Cavet, G., Linsley, P.: Expression profiling reveals off-target gene regulation by
RNAi. Nature Biotechnology 21 (2003) 635-637

. Saxena, S., Jonsson, Z.0., Dutta, A.: Small RNAs with imperfect match to endoge-

nous mRNA repress translation. J. Bio. Chemistry 278(45) (2003) 44312-44319

. Qiu, S., Adema, C., Lane, T.: A computational study of off-target effects of RNA

interference. Nucleic Acids Research 33 (2005) 18341847

. Altschul, S.F., Gish, W., Miller, W., Myers, E.-W., Lipman, D.J.: Basic local

alignment search tool. J. Mol. Biol. 215 (1990) 403-410

Khvorova, A., Reynolds, A., Jayasena, S.: Functional siRNAs and miRNAs exhibit
strand bias. Cell 115 (2003) 209

Ola Sngve, J., Holen, T.: Many commonly used siRNA risks off-target activity.
Biochemical and Biophysical Research Communications 319 (2004) 256-263
Needleman, S.B., Wunsch, C.D. J. Mol. Biol. 48 (1970) 443-453

Smith, T.F., Waterman, M.S. Journal Molecular Biology 147(1) (1981) 195-197
Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B., Bartel, D.P.: Vertebrate
microRNA genes. Science 299 (2003) 1540

Horesh, Y., Amir, A., Michaeli, S., Unger, R.: A rapid method for detection of
putative RNAI target genes in genomic data. Bioinformatics 19 (2003) 1i73-ii80
Suppl. 2.

Amir, A.) Landau, G., Keselman, D., Lewenstein, M., Lewenstein, N., Rodeh, M.:
Text indexing and dictionary matching with one error. J. Algorithms 37 (2000)
309-325

Halaas, A., Svingen, B., Nedland, M., S.zetrom, P., O. Sngve, J., Birkeland, O.: A
recursive MISD architecture for pattern matching. IEEE Trans. Very Large Scale
Integr. Syst. 12(7) (2004) 727-734

Leslie, C., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels
for discriminative protein classification. Bioinformatics 1(1) (2003) 1-10

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classi-
fication using string kernels. Journal of machine learning research 2 (2002) 419-444
Qiu, S., Lane, T.: String kernels of imperfect matches for off-target detection in
RNA interferance. In Sunderam, V., et al., eds.: Proc. 5th Int’l Conf. Computa-
tional Sci., Atlanta, GA, USA, LNCS 3515, Springer-Verlag (2005) 894-902
Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)

Smart Instant Messenger in Pervasive
Computing Environments*

Chun-Fai Law, Xiaolei Zhang, Sung-Ming Chan, and Cho-Li Wang

Department of Computer Science,
The University of Hong Kong,
Pokfulam Road, Hong Kong

Abstract. In this paper, we explore the potential of extrapolating the
instant messaging paradigm into pervasive computing environments. Un-
der this vision, an instant messenger is regarded as a unified interface for
all communications among human, software services and various devices.
To meet the demands, we introduce a novel instant messenger system
i.e., Smart Instant Messenger, with original features of context-aware
presence management, dynamic grouping, and resource buddy services.
This system is built atop a context-aware supporting middleware, which
adopts an ontology-based context model and handles the chore of re-
trieving and managing context information. Jabber protocol is exploited
as the underlying message exchange format for extensibility. The system
prototype is implemented and evaluated with respect to the responsive-
ness of queries and memory usage of the middleware.

1 Introduction

Instant messaging (IM) has been booming since its birth and gradually becoming
the most popular communication tool [15]. IM is charasteristic of instantaneous
message delivery and presence awareness. In particular, presence awareness dif-
ferentiates IM from other communication paradigms. We believe such features
fit natually into pervasive computing environments, where communication and
awareness are essential. Under this vision, “chat” would no longer be the priv-
ilege of human; rather, interactions between human-software, software-device
and device-device could freely take place. We envision the potential of extrapo-
lating IM paradigm as a unified interface for all communications. Aiming this,
we have identified several new design concepts including context-aware presence
management, resource buddy services and dynamic grouping.

Presence information shows a user’s responsive status, i.e., availability to be
involved in a conversation. Current IM products predefine a set of options such
as online, busy, and away. This coarse-grained categorization of user status,
however, is incompetent under the pervasive vision. We propose a context-aware
presence management approach and introduce improvements from three aspects:
(1) Context should be used as presence information. Apparently, when a user is

* This research is supported in part by a CERG grant (HKU 7146/04E) from the
Hong Kong Government.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 32-41, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Smart Instant Messenger in Pervasive Computing Environments 33

aware of the other’s situation such as her location, activity, security level and
mood, they could communicate more appropriately. An imperative case is the
mobile IM system, where showing “online” is meaningless if the user just keeps
the connected device in pocket. (2) Presence information should be disseminated
in a context-aware manner. Current IM products show the same status of a user
to all her buddies. In reality, however, a user’s availability is affected not only by
her own situation, but also by the relationship with the corresponding buddy.
For example, we ought to be “online” among the discussion members, yet appear
“busy” to the outliers. (3) Presence information should be set automatically by
the system. Nowadays an IM user needs to manually change her status, which
tends to be burdensome and fallible. For a mobile user, things would be even
more intractable, as her status might change frequently and in an arbitrary way.
It is therefore appropriate for the system to handle this task, provided that the
presence information can be automatically induced.

In pervasive computing environments, all smart artifacts can “talk” with you.
Should they each adopt their own “dialects”, a human user would be obliged to
master a multitude and burdened in shifting the “language” to and fro. Also,
it would involve a great deal of human attention to monitor, control and uti-
lize various resources. Reflecting on the success of IM, we borrow the idea of
“buddy” and view human, software and all sorts of devices uniformly as parties
of communication. We also propose to use IM as the unified interface. Via IM, a
user may include all usable resources in her contact list and “talk” with them in
a personalized way. Another advantage of this approach is that, the user and the
resource buddies could mutually stay aware of each other’s status. The user can
quickly tell which resource is near and ready for use, and select a “best” buddy
to serve her purpose. Vice versa, the resource buddies could observe the user’s
situation and decide on the most appropriate way to interact with the user. For
example, a notification service could choose to call the user’s office phone if she
is there, or email a reminder if she is temporarily away.

Grouping mechanism is commonly adopted in IM products to organize the
buddy list for the user. In current situation, strategies for grouping are typically
framed by the producer and remain unchanged after distribution. Groups are
set by the user once for all. In real life senarios, however, human relationships
might be temporary, impromptu and varying. We devise a novel dynamic group-
ing mechanism so that: (1) Grouping should be adaptive i.e., able to change
automatically according to the real situation; (2) Grouping should pertain to
the user’s requirement. For example, grouping the buddies by their locations
can help a user “bump into” an acquaintance in a crowded hall, and grouping
the relevant members of the same task can speed up the collaboration efficiency.

In this paper, we present our Smart Instant Messenger (SIM) system which
fulfills the new concepts listed above. Section 2 overviews the SIM system design,
elaborates on how the new features are realized and then introduces the context-
aware supporting middleware, which underlies the SIM framework. Details of
system implementation and experimental results are given in Section 3, followed

34 C.-F. Law et al.

by a comparison with related work in Section 4. The paper is concluded with a
discussion and outlook on future work.

2 System Design

2.1 System Overview

We have designed and prototyped the Smart Instant Messenger (SIM) system to
extrapolate the IM paradigm into pervasive computing environments. This is ap-
proached from two layers. The IM Framework layer extends the existing Jabber
[8] Instant Messaging platform and prepares for incorporating the new features.
The context-aware supporting middleware (CASM) underlies the IM framework
and handles the chore of context provision, including retrieving context infor-
mation from various context providers, interpreting and reasoning over context,
and monitoring the context changes on behalf of applications. The main compo-
nents of SIM system and their interactions are shown in Figure 1. Inside the SIM
client, the Instant Message module provides the basic message exchange func-
tions. The roster module is extended to include the presence, dynamic grouping
and resource buddy features. The context interface module interacts with the
context-aware supporting middleware either by direct query or by subscription
to interested events. It also monitors the user’s conversational behavior, collects

SIM Client SIM Server

T
w5
— = 3=
Pt
- g provider - Message =
S 5 handler Pl
o a
E o <&
s - 53
£ £ | receiver o B
=
§ - Roster =
X ‘ = |7 handler
f—'] o
! 2
grouping |- p
2
5B H | Presence
‘é presence o handler
| resource
| Resource
manager
Ry
Change
-
x handler -
£ Y
o
W

provider H application specific |
h H [User preference handler]

WL / _ | ;
¥ L] |

LContext updater }—b‘ Reasoning |—>[Change listener]

!

Context-aware supporting middleware

Other context providers

Fig. 1. Interactions between the SIM components

Smart Instant Messenger in Pervasive Computing Environments 35

the IM context (i.e., context inferred from chatting and typing) and supplies this
information to CASM.

The Jabber message protocols are extended. Three types of messages are
defined including chat message, presence update message and context message.
The SIM server adds three message handlers to handle them respectively, i.e., the
instant message handler module, the presence handler module and the context
handler module. A resource manager module is also included for resource buddy
registration.

2.2 Realizing the Features

SIM supports two types of presence information. The first follows conventional
status options i.e., “online, away, busy”. However, the status is distributed adap-
tively. A user’s availability displayed to a specific buddy is inferred from both
her situation and their relationship. Different buddies might, therefore, observe
different status of the same user. This inherently considers the user’s preferences
and enables fine control over how a user’s availability is distributed. Figure 2
shows the adaptive presence notification process. Upon initialization, the SIM
client first registers user preference rules to the CASM describing the condition
under which the presence should be updated. It also prescribes the different sta-
tus that should be displayed to different groups of buddies. When the relevant
events happen, the change handler in SIM client is notified and dispatches the
updated presence to the SIM server, which in turn broadcasts the presence to
the buddies.

The second type of presence information embodies the subset of a user’s
context which she is willing to disclose, including for example her current activity,
location and the people nearby. This is enabled by CASM, which actively collects

| SIM Client 1 | | SIM Client 2

| SIM Server

| CASM | | Context |

Provider

getRoster()

roster()

_subscribe() & update()
associateRules() & reg sterListener(presenceL [

User 2 updates
presence
automatically

update() when context
-t
-~ 3 changes.
D
updatePresg¢nce(status) 8
-t -t S
-t -« s .
Q User 2 informs
changePresence()‘ User 1 through
changePresence{buddyID, status) o IM Server.

A

getPrgsence(buddyID_1, buddylD_2)

\d

User 1 replies
her presence to
User 2.

bujuoseas

<]

<t
&

changePresence() o

I

Fig. 2. Sequence diagram showing adaptive presence notification process

36 C.-F. Law et al.

user context on behalf of applications. When a user’s context is inquired by a
buddy as presence information, her context is encapsulated in an XML-formatted
message, routed to the buddy’s client, parsed and displayed on the roster.

In SIM, human users and resource buddies are conceptually identical. One
slight difference is that, upon initialization, the resource client uses its resource
module to register to the local SIM server, while the user client performs service
discovery on whenever necessary. There are two ways to communicate with the
resource buddy. One is to use the original chat window and type the user-defined
commands; the other is to download a Ul from the resource, which is described
in an XML DataForm format. According to devices’ configurations and users’
preferences, the Ul may be rendered in different customized ways.

The SIM system provides an extensible set of grouping mechanisms, including
location, activity, hobby and relationship. In the current stage, we specifically
investigate the location-based grouping and activity-based grouping. Location-
based grouping retrieves from CASM the most updated user locations and groups
the buddies of the same location. This is especially useful to help a mobile user,
when entering a place, to “bump into” an acquaintance and to initiate a serendip-
itous interaction. It will also keep the user informed of the surrounding resources.
Activity-based grouping reflects on the ”distraction-free” tenet, aiming at facil-
itating the user’s activity (or task) by grouping the relevant people, materials
and resources together. For example, suppose a user is involved in preparing a
project presentation, SIM will dynamically group the project memebers, docu-
ments, applications, printer and projector in her buddy list, forming a virtual
collaboration environment, so that she could easily reach what she needs to
contact or utilize. Current implementation assumes the user’s activity can be
inferred and the relevant information are stored in the context knowledge base.
Upon request, CASM will retrieve the information of all possible buddies (hu-
man as well as resources) and return the result to the roster module in the SIM
client, which in turn updates the grouping.

2.3 The Context-Aware Supporting Middleware

The SIM system explicitly separates the context processing routines from appli-
cation logic. A generic context-aware supporting middleware (CASM) handles
the chore of processing, interpreting and reasoning over context information re-
trieved from various context providers. This separation principle not only relieves
the burden of context-aware application programmers, but also fosters the reuse
of context and context reasoning processes.

CASM centers an ontology-based context model for a formal context represen-
tation, which facilitates knowledge sharing in the open, heterogeneous pervasive
environments, and enables various logic-based context reasoning mechanisms.
Contexts are classified into five categories: Device, Person, Location, Time, and
Activity. There are also relationship properties among these main classes. For ex-
ample, an instance of class “Person” can have a relationship called “hasLocation”
which links to an instance in the “Location” class. All classes and relationships
can be added or removed as needed.

Smart Instant Messenger in Pervasive Computing Environments 37

Change CASM
Handler Interface

CASM
Stub

CASM
Skeleton

Change CASM
Monitor Interface
Rule File
” Context Updater ” Context
knowledge
I base

Context Interpreter

Context Provider

Context Reasoner

Fig. 3. Detailed design of context-aware middleware

Figure 3 shows the detailed design of CASM. The Context Interpreter trans-
lates the context from heterogeneous sources to form an OWL instance data,
which stores all the dynamic context information (e.g. location, time, current
activity) in OWL files. The Context Updater directly manipulates the context
model. When the context model is first created, the schema file will be parsed
and data type of the domain and range for each property are specified. The
Context Updater validates the data type for that particular context statement
each time an add/remove request is received. Upon a context query, it inquires
the context model and formulates the answer in a regular format that can be
used by the client side easily. The Context Reasoner provides two kinds of rea-
soning over the context ontology, i.e. the transitive reasoning and the rule-based
reasoning. The former is used to store and traverse class and property lattices.
The latter supports user-defined rule set. Depends on the schema and domain
of the ontology bound to the context model, rules can be written to derive the
existence of some implicit information or map information to a standard format
for applications.

CASM also provides a set of standard methods for application developers
to update, query and register context event listeners to the middleware. An
application registers interested context events to CASM, and relies on the latter
to monitor the environment on its behalf. Notifications will be fired when the
events happen, and the Change handler module in the application will invoke
the corresponding event handling methods.

3 Implementation and Experiments

We have implemented SIM server and two versions (PC and PDA) of SIM clients.
The SIM server uses and extends the Jabber open source server. We extends

38 C.-F. Law et al.

Jabber’s Extensible Messaging and Presence Protocol (XMPP), which is cur-
rently an Internet Engineering TAsk Force draft, to report the state of buddies
and to handle the interaction among human, software and devices through XML
messages. SIM clients modify the open source Jabber client program “JBother”
[9] to introduce context-aware presence management, resouce buddy and dy-
namic grouping. Figure 4 shows the client-side GUIs running on the PDA (HP
iPAQ H5500). Figure 4 (a) shows the message dialog, Figure 4 (b) illustrates the
SIM’s roster, which groups the buddies relating to the SIM project, including 6
members and a printer. Figure 4 (c) shows the location-based grouping, where
the buddies are organized under the groups of canteen, lab and office.

[Tima: Fri May 02 10:03:59 CST

-SiM
Or. Wang <offine=
HWS18 Pinter <oniine; Avalable>
Jackey Mg <offine
Michzal Chan =<offiine=
Mada Tharg <away: Lway (Idiel
Tao =offines

- Cantesn
Jackey N <oriine: Avalsbies
Tao coning: Avalable>
-5Lab
Michzel Chan <orfine: Avalabie>
Terry Law «<chd: Dont Touch Mels
- 0414
Dr, Wang <dnd: In Mestng=

rawhie says: Hello T want to
discuss the project with you.
diz + Ok, which part shall we

Tetry Law <offines Nada thang <dnd: In Mestings

Wylocston: [Mylocatins [|
o o 1002 Hpetertionn B &F 4 1028
. o "MQ“ P Fhiml‘c -
(a) Message Dialog (b) Group by activity (c) Group by location

Fig. 4. Client-side GUI

We built up several ontologies for pervasive computing environments. Figure 5
shows one ontology used for modeling the basic concepts of campus life. The
Web Ontology Language (OWL) has been selected as the ontology language for
its expressivity and standardization. Reasoning and inference over the context
models are based on the Jena [10] framework. A set of rules has been developed
to infer high-level context from low-level facts.

We notice the major time-consuming part of the system (wireless delay ex-
cluded) is related to operations on CASM middleware. As more context instances
are added into the context knowledge base, the overhead of the middleware grows
accordingly. To test the performance, we evaluate the responsiveness and mem-
ory consumption with the increase of the number of instances. The experiment
proceeds as follows. A PC (Intel Pentium4 2.26GHz, 512MB memory, Linux FC
3.0) which runs Jena version 2.2. A typical sequence of operations is compiled
as a sample test, including 2 add (adding instance data into the ontology), 1
remove (removal of instance data), 1 class query and 1 instance query. We in-
crease the instance at the number of 300, 700, 1000 and 1800. At each stage,
the sampling sequence is performed and the total processing time and memory

Smart Instant Messenger in Pervasive Computing Environments 39

— isSubClassof

.............. » relationship

CurrentActivity
Speaker
MediaPlayer
Computer

has@ctivityLocation
HisActivityLocationOf

ComputerLab
Meeting Room
. LectureRoom

@ hasLocation i oot s
hasTimelnterval, CurrentTime
Timelnterval

Fig. 5. Diagrammatic view of the campus ontology model

Lecturer
Student

hasBuddy-. .

usage are measured. The result reports an approximately linear growth of mem-
ory usage varying from 17MB to 22MB and an average processing time of 3.4s
with variations within 0.2s. The performance of the system is tolerable for non-
crisis scenarios and the increase of instance will not cause much degradation.

4 Related Work

The idea of combining awareness with communication originates in computer
supported cooperative work (CSCW) and human-computer interaction (HCI).
Researchers in media space research [1][18] and awareness systems [3][6] have
identified the importance of shared context to facilitate conversation. For ex-
ample, social awareness has been explored in [7] and [14]. However, this stream
of research mainly targets an efficient group collaboration among human users.
Our work, on the other hand, considers all types of interactions including human,
software and hardware resources.

The distinctive features of IM have been gaining more attention in recent years.
Nardi[12] suggested that, beyond information exchange, IM could implicitly be used
to negotiate availability, maintaining the sense of social connection and switching
media. There’ve also been several research projects on extending IM with context-
aware features. They could be broadly categorized into two groups. The first exploits
context for conditional message delivery. For example, CybreMinder [2] allows users
to associate the contextual information with to-do items and delivers them upon
pre-defined condition. This can be viewed as a special type of context-aware one-way
message delivery. Similarly, a handheld IM system descibed in [11] also empowers
users to specify a set of situations that must be met before the system delivers
the message. The second group explicitly uses context information to broaden the
communication spectrum. ConChat [16], for example, supports two conversational
parties to exchange or query each other’s context. The AwareNex [17] system from
Sun Laboratories displays location and activity information of the users on the
contact list. Similar to SIM, these projects emphasize more on the “outeraction” [12]
functionality of IM. However, the issues of contextual presence and context-aware

40 C.-F. Law et al.

presence distribution are not sufficiently explored. Meanwhile, there tends to be
little discussion on grouping mechanism, which we believe is also a tool of potential
yet has been underused.

5 Discussion and Future Work

In this research, we have explored the vision of extrapolating instant messaging
paradigm into the pervasive computing environments. We have designed and
implemented the Smart Instant Messenger system, which transcends current
IM products with new features including context-aware presence management,
resource buddy services and dynamic grouping support. The system is built
on top of a context-aware supporting middleware, which centers an ontology-
based context modeling approach. Though at the prototype stage, it has already
demonstrated the advantages for being used in pervasive computing environ-
ments. Experiments on performance evaluation also suggest its feasibility.

Our design fulfilled the following principles: Separation of context provision
from context consumption. The chore of retrieving and managing context should
not be directly integrated in an application; rather, a separate middleware layer
or the systems infrastructure should be responsible for providing context infor-
mation. SIM adopts a context-aware supporting middleware approach. It not
only relieves the burdens of programmers and the small devices; the generic
middleware could potentially support more applications.

Design for extensibility. Extensibility is essential in pervasive environments
as users, applications, devices and sensors might all come and go dynamically.
Also, the users’ requirements might change over time. SIM chooses the Jabber
protocol for its extensibility consideration, adopts a distributed architecture, and
exploits an ontology-based context modeling solution to facilitate the re-use and
integration of knowledge.

Prototype for real life usage. Pervasive computing is still in the germinal stage.
We believe live applications will stimulate and inspire the research. Therefore
this version of SIM is designed for using on campus, with resources, users and
use cases rich enough for a real system.

We believe such an attempt is of great potential, both in practical usage
and in research. Future work includes supporting user-level mobility of instant
messenger among different devices, improving the performance of context-aware
supporting middleware and exploring the SIM usage in hospital scenarios.

References

1. S. Bly, S. Harrison and S. Irwin. Media spaces: Bring people together in a video, au-
dio and computing environment. Communications of the ACM, 36 (1), 28-46, 1993.
2. A. K. Dey and G. D. Abowd. CybreMinder: a context-aware system for supporting
reminders. In 2nd International Symposium on Handheld and Ubiquitous Comput-
ing, volume 1927 of Lecture Notes in Computer Science, 172-186. Springer, 2000.

11.

12.

13.

14.

15.

16.

17.

18.

Smart Instant Messenger in Pervasive Computing Environments 41

P. Dourish, S. Bly. Portholes: supporting awareness in a distributed work group.
Proceedings of CHI’93 Human Factors in Computing Systems, 541-547, New
York: ACM Press.

. J. Fogarty, J. Lai and J. Christensen. Presence versus availability: the design

and evaluation of a context-aware communication client. International Journal of
Human-Computer Studies (IJHCS), Vol. 61, No. 3, September 2004, pp. 299-317.

. D. Greene and D. O’Mahony. Instant messaging and presence management in

mobile ad-hoc networks. Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops. March 14-17, Orlando,
Florida, pp. 55-59, 2004.

. C. Gutwin, S. Greenberg. Design for individuals, design for groups: Trade-offs

betwwn power and workspace awareness. In Proceedings of CSCW96 Conference
on Computer Supported Cooperative Work, 207-216, New York: ACM Press.

. S. E. Hudson and I. Smith. Techniques for addressing fundamental privacy

and disruption tradeoffs in awareness support systems. Proc. Comp. Supported
Cooperative Work, 1996, pp. 248C57.

. Jabber Instant Messaging. Online resource. http://www.jabber.org/
. JBother Homepage. Online resource. http://www.jbother.org/
. Jena: a semantic Web framework for Java. Online resource. http://jena.sourceforge.

net/

Miguel A. Munoz, Marcela Rodriguez, Jesus Favela, Ana I. Martinez-Garcia,
Victor M. Gonzalez. Context-aware mobile communication in hospitals. IEEE
Computer, vol. 36, no. 9, pp. 38-46, Sept., 2003.

B. Nardi, S. Whittaker, E. Bradner. Interaction and outeraction: instant messag-
ing in action. In Proceedings of ACM 2000 Conference on Computer Supported
Cooperative Work, 2000.

A.J.H. Peddemors, M.M. Lankhorst, J. de Heer. Presence, location and instant
messaging in a context-aware application framework. 4th International Conference
on Mobile Data Management (MDM2003), Melbourne, Australia, Jan 2003.

E. R. Pedersen and T. Sokoler. AROMA: abstract representation of presence
supporting mutual awareness. Proc. SIGCHI Conf. Human Factors in Comp. Sys.
, Atlanta, GA, Mar. 22C27, 1997, pp. 51C58.

Pew Internet & American Life Project. How americans use instant messaging,
Sept 2004. Online resource.

http://www.pewinternet.org/pdfs/PIP Instantmessage Report.pdf
A.Ranganathan, Roy H. Campbell, A. Ravi, and A. Mahajan. ConChat: a context-
aware chat program. Pervasive Computing, 1(3):51-57, July-September 2002.
J.Tang, N. Yankelovich et al. ConNexus to AwareNex: extending awareness to
mobile users. Proc. SIGCHI Conf. Human Factors in Comp. Sys., Apr. 1998, pp.
566-73.

S. Whittaker, G. Swanson, J. Kucan and C. Sidner. Telenotes: managing
lightweight interactions in the desktop. Transactions on Computer Human
Interaction, 4(2):137-168, 1997.

Negotiation Strategies for Grid Scheduling

Jiadao Li and Ramin Yahyapour*

Institute for Robotics Research - Information Technologies,
University Dortmund, 44221 Dortmund, Germany
{j iadao.li, ramin. yahyapour}@udo .edu

Abstract. Grid computing is considered the next step of distributed computing
architectures. For such Service Oriented Architectures (SOAs) resource manage-
ment is an important component that has to cope with the challenges of
heterogeneous, decentralized and autonomous resources. The use of agreements
is expected to become a key technology for the reliable interaction between
resource providers and consumers. Negotiation is the process of creating agree-
ments in which the different and typically conflicting objectives of the negotia-
tion parties are taken into account. For the broad proliferation of Grids and the
efficient use of Grids, this negotiation process must be automated and should
only require minimal interaction from the actual providers and users. To this end,
strategic negotiation models are required that can be used to perform this task.
In this paper, a strategic negotiation model is proposed for Grid computing. Dis-
crete event based simulation is used to evaluate this model. The simulation results
demonstrate that it is suitable and effective for Grid environments.

1 Introduction

Grid computing [1,2] is considered a cornerstone of next generation distributed com-
puting, as it tackles many issues to dynamically interact between autonomous and de-
centralized resources from different providers. It is the infrastructure model which is
typically envisioned as a Service Oriented Architecture (SOA [3, 4]), in which resources
are virtualized into services. In this scenario, a resource user typically expects a certain
service quality given by a service provider. As in Grids usually autonomous and inde-
pendent parties interact, the a priori information of quality of service (QoS) prior to
using the resource is becoming a crucial requirement for Grid resource management;
here, agreement based resource management [5] is generally considered as a suitable
means to the problem. Prior to service usage the parties have to negotiate towards ser-
vice level agreements (SLA) that define what kind of services will be provided and what
the obligations of the user will be.

Of course, the resource providers and the resource consumers have typically con-
flicting objectives which need to be considered during the negotiation. The whole task
of negotiation is challenging as the resources are heterogeneous and the service pro-
visioning is not a standardized good but depends on the individual requirements and
preferences of the user for a particular task. During the negotiation process, the con-
flicts of the different objectives and policies between the resource users and resource

* Member of CoreGRID.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 42-52, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Negotiation Strategies for Grid Scheduling 43

providers must be reconciled. However, this process must be automated as it cannot be
expected that the actual service/resource consumer and the corresponding provider per-
sonally perform this task. For efficient Grid computing, this task must be frequently be
performed. Here, suitable negotiation models are required that take the different policies
and objectives into account and produce suitable service level agreements in reasonable
time with minimized or even no user and provider interference. In this paper, such nego-
tiation models and strategies for agreement negotiation are considered. Currently, there
are no mature and accepted negotiation models nor infrastructures available for the Grid
computing scenario.

However, there are efforts for a general Grid architecture like the Open Grid Ser-
vices Architecture (OGSA) by the Global Grid Forum [6]. There are also first steps
towards core protocols that can be used for agreement management, like the “WS-
Agreement” [7] draft proposed by the GRAAP working group in the GGF. This pro-
tocol can be used as a simple negotiation protocol. But in the current WS-Agreement
proposal, the negotiation process is a one-shot approach in which negotiation parties
can only accept or reject opponent’s proposals. This one-shot negotiation process can be
quite unsatisfying for actual implementations as the negotiating parties have not means
to steer a negotiation towards an agreement if the first proposal is unacceptable [8].
In order to make negotiation efficiently, the process should be multi-rounded. (Some
discussion on creating negotiation frameworks have been given by Dash et.al.[9].)

In this paper, we focus only on the negotiation process in which a user agent ne-
gotiates with a set of resource providers. This is considered the one fo many negotia-
tion type. Usually, this negotiation type can be treated as reversed auctioning. However,
there are some drawbacks of using auction mechanisms, for instance, there is no flexible
way of exercising different strategies with different negotiation opponents. Moreover,
auctions do not support bidirectional offers with counter offers between the parties. We
propose a strategic negotiation model which includes utility functions /preferences for
the negotiation parties. Moreover, we propose and evaluate first negotiation strategies
for Grids. This paper is organized as follows: In Section 2, the related work in the area of
resource management in Grid computing is reviewed. In Section 3, the strategic negoti-
ation model which includes the bilateral negotiation model and the concurrent bilateral
model in the Grid computing environment is explained. The simulation configuration
and the simulation results are presented and analyzed in Section 4. Conclusions and
information on future works are given in Section 5.

2 Strategic Negotiation Model

There are many approaches proposed for the Grid resource management problems, for
example, economic method and matchmaking approach. Economic methods for com-
putational tasks in Grids have been subject of research for some time. An overview of
such models is, for example, given by Buyya et.al. in [10] or Ernemann et.al. in [11],
or Wolski et.al. in [12]. Matchmaking approach is adopted in the Condor project [13].
The matchmaker performs scheduling in a Condor pool, resource requests and offers
are described in the Condor classified language and the matchmaker is responsible for
finding suitable resources to satisfy the needs of the job users. To this end, a lot of

44 J. Li and R. Yahyapour

efforts have been made on the Grid resource management considering the Service level
agreement (SLA), e.g. in paper [14], a Grid resource usage SLA broker called GRU-
BER is presented and evaluated in a real grid, GRID3; in paper [15], an architecture for
specifying, monitoring and validating Service Level Agreements (SLA) for use in Grid
environments is presented.

However, strategies for conducting the negotiation between the participating parties
are not yet well understood. There have been several efforts in discipline of economics
which are not yet well analyzed to the Grid scenario. Here, additional work in regards
of the influences of the strategies is required. In our work we selected the bilateral
negotiation model as a suitable the building block for concurrent negotiation model.
Therefore we will briefly introduce these in the following.

2.1 Bilateral Negotiation Model

There are three parts in the bilateral negotiation model that have to be considered, [16]:
1) the negotiation protocol, 2) the used utility/preference functions for the negotiating
parties, and 3) the negotiation strategy that is applied during the negotiation process. In
our approach, we adopted and modified Rubinstein’s sequential alternating offer proto-
col for Grids, see [17].

In Rubinstein’s alternating offers bilateral negotiation protocol, the bargaining pro-
cedure is as follows: The players can take actions only at certain times in the (infinite)
set T = {1,2,3,...t}. In each period ¢ € T, one of the players, say i, proposes an
agreement, and the other player j either accepts the offer or rejects it. If the offer is
accepted, then the bargaining ends, and the agreement is implemented. If the offer is
rejected, then the process passes to period ¢ 4 1; in this period player j proposes an
agreement, which player ¢ may accept or reject. The negotiation process will go on in
this way.

In the Grid resource management scenario, time plays an important role as every
negotiation party has only limited negotiation time available. Therefore, the number
of the negotiation rounds is limited. In our scenario, the above time set 7' is finite. In
the negotiation process, when either one negotiation side times out or an agreement is
created, the negotiation process will end. An offer is assumed to be valid until a counter
offer is received. Therefore the consistent state problem between the negotiation parities
can be avoided.

As mentioned before, we support utility functions to express the objectives of the
users; preferences relationships are used to indicate the preferences of resource providers.
Usually, the objectives of the user request minimizing the job waiting time or to get
cheaper resources; on the other side, the resource providers expect to gain higher profit
and higher utilization. However, the real weighting of the utility factors depend on the
individual user or resource provider. In real Grid systems, there can be many different
negotiation objectives, that are interdependent and should be dealt simultaneously which
yields to a multi-criteria optimization problem [18]. Depending on the specific applica-
tion domain, cost for service/resource usage can be supported.

In the following we consider as first examples the expected waiting time of the jobs
and the expected cost per cpu time as the negotiation issues. However, the model can be
applied and extended to other criteria as well. In this model, Uprice(Pct) (E.q.1) is the

Negotiation Strategies for Grid Scheduling 45

job’s utility function of the price and Utime(Tct) (E.q.2) is job’s utility function of the
waiting time.
pmaz _ Pt
Uprice(Pct) = N N (1)

- mazr _ Pmin
Pc Pc

T
Utzme(Tc) - Téﬂam _ T(mln (2)
The variables are explained as follows: Wp,.;c. is the weight of the price utility.
Wiime 18 the weight of the time utility. P*%* (Pcmi") is the maximum (minimum)
acceptable price of the user offered by the negotiation opponent at the time ¢. 7"
(T} is the maximum (minimum) acceptable waiting time of the user.
This leads to the following aggregate utility function of the job user:

Ujob = Wprice * Uprice + Wtime * Utime (3)

Because the negotiation time in this scenario is usually short, the utilities in this scenario
are not discounted as negotiation time goes on. The weights of different negotiation
issues are normalized, so we assume that Z?:I w; = 1 if the number of the negotiation
issues is n. In the negotiation process, an agent can change its preference for an issue by
changing the weight associated to that issue. Different agents can have quite different
preferences over different issues.

For the resource providers, there are also two corresponding negotiation issues which
are: the expected waiting time of the job 7' (.Job), and the expected price P!(Job). The

expected waiting time for the newly incoming job can be obtained from the current
resource status and the future schedule plan considering the created agreements which
have to be fulfilled. The expected price will be obtained via the negotiation process.

The zone of possible agreement denotes the overlap in the negotiation issues between
the participating parties [19]. If there is no zone of possible agreement, an agreement
can not be achieved. For the negotiation issue j, the acceptable value range of the job is
[C? s Chaz], the acceptable value range of the resource provider is [S? . . Shaz]. If

maz > S, and C7 . < S}.qc, then the agreement zone exists.

In the negotiation process, our negotiating parties act rationally. Disagreement is
treated as the worst outcome, therefore the negotiation party always avoids opting out
of the negotiation process. One of the principles of good-faith bargaining is that once
a concession is made, it is usually not easily reversed [19]. On the basis of the initial
values, successive offers by sellers are monotonically decreasing while successive offers
by the buyers are monotonically increasing. It is important that the negotiating parties
provide suitable initial values for the negotiation issues.

In the negotiation model, the negotiation parties must not know the opponents’ pri-
vate reservation information and their preferences/utility functions. Without this restric-
tion, the parties could exploit the condition of the corresponding negotiating partners.
That means, a negotiation scenario with incomplete information is considered. In the ne-
gotiation process, the negotiation parties should make reasonable reservation values of
different negotiation issues in order to make sure that it is possible to create agreements.

46 J. Li and R. Yahyapour

2.2 Negotiation Strategies

In the strategic negotiation model there are no rules that bind the negotiation parties to
any specific strategy. The essence of the negotiation strategy for the negotiation party
is to create suitable offers in its acceptable value range of specific negotiation issue
in order to create the agreement and make its utility as much as possible at the same
time. There already exist several general negotiation strategies, for example [8], argu-
mentation based approach, game theoretic models, heuristics approaches in the agent
community. These different strategies have advantages and disadvantages and they can
be applied in several scenarios. As shown before, the negotiation parties do not know
the reservation values and the utility functions/preferences of the opponents in our sce-
nario. Therefore, heuristic based negotiation strategies are adopted for this paper. The
negotiation process in the Grid computing domain is time-limited, the strategies of the
negotiation parties are considered to change dynamically based on the remaining avail-
able negotiation time. Typically, a user will not negotiate and wait for the negotiation
result for a long time, if he/she has a very urgent job needed to be executed. To this end,
we limit our scope on time dependent negotiation strategies [20]. However, note that
there are also other negotiation strategies available which are based on other assump-
tions, for example, if there are many resources available for a job, then the job user may
become very tough during the negotiation process.

We assume that V} is the utility function of the negotiation party which associates
with the negotiation issue j and the z!__, [t] is the offer provided by one party (denoted
by a) to another negotiation party (denoted by b).

If V; is decreasing:

zpp[t] = min§ + o (t)(max§ — min), 4)

if V; is increasing:

t
a—b

To_p[t] = ming + (1 — af(t))(maz] — minj), 3)
Equations (4) and (5) represents the job user’s strategy and the resource provider’s
strategy respectively.

There are many ways of defining the function for af(¢). For the initial bargaining
value k;’ is used, for which the following relation holds 0 < k]“ <1

We use the following function for o (#):

a a a t
O‘j(t) :kj +(1_kj)(ta)1/[3» (6)

max

where t2 . is the deadline of the negotiation party a for the completion of negotiation, ¢
denotes the current time instant in the negotiation time set, the parameter 3 is the degree
of convexity that determines the type of the negotiation party in the time dependent
strategy. Different § values yield different negotiation strategies.

There are three typical strategies for different negotiation parties [20]. When 0 <
([< 1, the negotiator will be tough (Boulware), which means that he will maintain
the offered value longer until the time is almost exhausted. Close to the deadline he

will concede up to the reservation value. In contrast, for 5 > 1 the negotiator will

Negotiation Strategies for Grid Scheduling 47

be the type of Conceder and will concede to its reservation value very quickly at the
beginning of the negotiation, while its concession rate become flattened as the time
limits approached. For § = 1, the negotiator will linearly concede to its reservation
value.

2.3 Concurrent Bilateral Negotiation Model

To this end, in the Grid environment, it is assumed that after a resource discovery phase
there are a number of available resources which are capable of fulfilling the constraints
of the job. These constraints include, e.g., the required number of CPU nodes, the
needed memory capacity, etc. The user or a corresponding scheduling component will
contact different resource providers and initiate the negotiation process for the actual
resource allocation.

We just assume that the negotiation process is started by the user, more precisely
by the job agent, who contacts different resource providers and begins the negotiation
process. In the concurrent negotiation threads in which the same user is involved, the
reservation values of the negotiation issues and preferences of the user are the same.
However, the user may adopt different strategies with respect to different negotiation
opponents. Furthermore, they might change the negotiation strategies during the nego-
tiation process according to the types of opponents and their behavior. Because these
negotiation threads are progressed concurrently, it is very difficult to predict whether
the user might achieve a better offer from another negotiation thread if there is already
a suitable offer found that could be committed to an agreement. For now we assume
that once there is an agreement available, the agreement is made. This limitation will
be reviewed in future work.

3 Evaluation

For a first analysis of the approach we use discrete event simulation. Currently, there
is no real data from the Grid computing environments that include suitable informa-
tion for negotiation models. Therefore, we use high performance computing workload
traces from actual machine installations. However, negotiation information are not in-
cluded in this data as none of the real system supported negotiation models. To this end,
the missing information can only be modeled based on first assumptions. Note, that
the presented results may vary for practical implementations with different workloads.
The impact of the workload and the verification of modeling assumption will be part
of the future work. In the following the simulation configuration is described and the
simulation results are analyzed.

3.1 Simulation Configuration

We use the exploratory studies method introduced in the book [21]. In the simulation,
we investigated different negotiation parameters which possibly has some kind of in-
fluence in the negotiation result. In the beginning of the negotiation, the negotiation
parties will always make the offers which are most favorable to themselves, at the first

48 J. Li and R. Yahyapour

assumption, we assume that the initial values of k; of all the negotiation parties are 0.
We assume that the negotiation interval between every negotiation round is 1s. In the
following we describe the modeling of the user and the resource providers.

User Model. In our simulation we consider parallel batch jobs in an online scenario.
We assume types of user behavior are quite different. For our simulation, we just as-
sume that there are two different kinds of user objectives: time-optimization and cost-
optimization. Other user preference will be subject of future research. Below are the
parameters of the user modeling which have been applied for the simulation.

Negotiation span is uniformly distributed in [0, 30]s.

Maximum price of the different job user is uniformly distributed in [4.0, 9.0].
Acceptable waiting time for the job users are uniformly distributed in [0, 36000]s.
For the tough negotiator, 3 value is uniformly distributed in [0.02, 0.2].

For the conceder negotiator, /3 value is uniformly distributed in [20, 40].

Weights of waiting time and price for the time-optimization are 0.8 and 0.2, while
the weights of the time and price for the cost-optimization are 0.2 and 0.8.

Resource Provider Model. Currently there are many local resource management sys-
tems available. Here, we use the common FCFS scheduling strategy with backfill-
ing [22]. There is no preemption allowed. In this evaluation we do not yet consider
the co-allocation and combination of different agreements from different providers. For
the moment, the resources are considered to be homogeneous only differing in the num-
ber of available CPU nodes at each site. We assume that the job users will contact with
the resource providers in a Round Robin fashion. The simulated Grid configurations
for the resource providers are consistent with the actual configurations of the systems
from which the real traces originated. In this paper, we used traces from the Cornell
Theory Center [23] which had 512 CPU nodes. In our simulation we assumed a Grid
scenario with 6 different machines and therefore 6 resource providers. However, to stay
consistent with the available workload from the CTC traces, the number of nodes for all
simulated machines is again 512 nodes. The number of nodes on each machine is given
below. The following list also includes the negotiation parameters for each resource
provider in this scenario.

The numbers of the CPU nodes are {384, 64, 16, 16, 16, 16}.

Their different maximum prices per CPU time are {8.2, 8.0, 7.5, 7.6,
7.4, 7.5}

Their different minimum prices per CPU time are {2.4, 2.3, 2.0, 1.95,
1.90, 1.80}.

Negotiation deadlines of different resource providers are all 30s, which means that
usually the resource provider will not opt out of the negotiation once the negotiation
thread is created.

For the tough negotiator, 3 valueis {32, 35, 34, 38, 40, 40}

For the conceding negotiator, 3 value is {0.03, 0.05, 0.04, 0.10,
0.05, 0.06}

Negotiation Strategies for Grid Scheduling 49

3.2 Evaluation Remarks

Without a reference benchmark for negotiation-based Grid scenarios, it is difficult to
compare and analyze the quantitative and qualitative output of such a scheduling model.
In the following we provide some first simulation results which give some information
about the performance of the model. The actual quality will have to be verified with
better workload models and in real implementations.

We use the following criteria for evaluation:

— Comparison between the negotiation result and the reference point [19], which is
the middle of the agreement zone of user and resource provider: [C7"**, S7**"]. The
reference point is computed by the following function:

Uref _ C;’VL(I’I) + S;’VL'L'I’L

;))

— The rate of successfully created agreement for all jobs.

— The negotiation overhead to create the agreement measured by the time taken to
create the agreement. In our case, we use the final negotiation rounds which rep-
resents the required number of messages exchanged. The actual network overhead
will depend on the actual network speed for this message exchange.

— In the Grid computing environment, the users will concern about the job response
time and the waiting time; while for the resource providers the utilization and the
profit will probably be the main objectives. We also compare these criteria to get
some feedback about the feasibility of the negotiation model.

3.3 Simulation Results

We used 5000 jobs from the CTC workload traces [23] to do our simulation. As men-
tioned before, the negotiation parties use different negotiation strategies and they have
different reservation values and utility functions/preferences. In the result figures we
use the following abbreviations: T, L, C denote the tough, linear, and conceding strate-
gies respectively. T-T means both parties act tough, T-C means that the job users are
tough, while the resource providers are conceding. We compared four different scenar-
ios for our simulations: L-L, C-C, T-C, T-T. Every simulation scenario is represented
by every group bar as shown in every result figure. Note, that, in every group bar of
the result figure except the first figure, there are six bars which represent the result
of resource one to resource six separately. We compare the on average required number
of negotiation rounds for successfully creating the agreements. In addition, we consider
the rate of successfully created the agreement in comparison to the total number of job
requests. Other criteria are the average weighted response time (AWRT), the average
weighted wait time (AWWT), the average price difference between the agreement price
and the reference price. For the weight in AWRT and AWWT we used the job resource
consumption [24].

In Figure 1, we can see that the C-C scenario provides the highest number of success-
fully created agreements, as well as the highest resource utilization. However, also the
AWWT and AWRT are high. This indicates that the conceding partners usually reach

50 J. Li and R. Yahyapour

The comparison of creation rate of the agreements The comparation of the utilization of the resources

50

£ @

30

20

10

0
[2 o 3 9 45 2 o 3 o 4 e
L S = o S " a

Gomparion of the AWRT The comparison of AWWT

Creation rate(%)

x10°

4
000}
as
5000
3
25 4000
2 3000
15
2000
1
1000
s
2o 3 2o) s
) S = =

1o) 4R [
3 s “ 3

AWRT(s)

AWWT(s)

The comparison of negotiation rounds in different configurations

T I

-05) “ “ ‘|
R
-15
-2
2 o) i
S s o

Fig. 1. Comparison between different negotiation scenarios including the results for the individual
SiX resources were appropriate

Average difference between the agreement price and reference price

Negotiation rounds
o ﬁ

an agreement for this strategy, while the service quality for the user is relatively low as
jobs are delayed. In the T-C scenario, the succeeding rate of the created agreement is
not so high, but the job users get on average cheaper offers from the resource providers.
In the L-L case, negotiation results are in the middle compared to the other cases. In the
T-T case, there are a very few number of successfully created agreements and the job
users still have to pay higher cost and incurred much communication cost, as shown in
the picture, the agreement can only be created at end of the user’s negotiation span.

In the time dependent negotiation strategies, the negotiation span can also influence
the result of negotiation strategies. For example, in the C-C case, if we change the time
span for negotiation for the resource providers to 20, the number of the successfully
created agreements are the same while the agreement prices are lower as the provider
concedes faster to his reservation value. Similarly, the resulting price is higher if the

Negotiation Strategies for Grid Scheduling 51

user has less time for negotiation. More simulations have been conducted, however due
to limited available space we present only these excerpts of the results which show the
feasibility of the model. From these simulations, we see that just insistent on using a
single strategy for the whole negotiation, may not necessarily provide a higher utility. In
order to get the most out of the negotiation, the negotiation parties will have to change
their strategies dynamically during the process which will be part of our future work.

4 Conclusions and Future Work

In this paper, we discussed the use of strategic negotiation model which includes util-
ity functions, preference relationships and time dependent negotiation strategies. This
model is reviewed for practical use in automatic job scheduling. The current research
in Grid computing shows that there is a trend for future resource management systems
to include automatic management features for quality of service and cost consideration.
As we can see from our experiments, the user can obtain quality of service and reliable
agreement for the Grid jobs by applying the presented negotiation strategies. In our sce-
nario, the expected waiting time is guaranteed by the resource provider. The simulation
results shows that the model can be used in the Grid scheduling environment. The pre-
sented results can be seen as first steps in analyzing the features and requirements for
automatic negotiation strategies. They indicate that the negotiation overhead in terms of
exchanged messages is manageable for practical application. The obtained agreement
results can also be considered to be good enough for real world scenarios. Future work
will include further investigation in different negotiation strategies and a broader basis
for evaluation results. Also the extension to more sophisticated negotiation features like
co-allocation are foreseen.

References

1. Foster, 1., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science 2150 (2001)

2. Foster, 1., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann (2003)

3. The w3c web services architecture working wroup public draft (2004) http://www.w3.org/
TR/ws-arch/.

4. Czajkowski, K., Foster, 1., Kesselman, C.: Resource and service management. In Foster,
I., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann (2003)

5. Czajkowski, K., I.LFoster, C.Kesselman: Agreement-based resource management. Proceed-
ings of the IEEE 93(3) (2005) 631-643

6. The open grid services architecture, version 1.0 (2005) https://forge.gridforum.org/projects/
ogsa-wg.

7. Web services agreement specification (2005) https://forge.gridforum.org/projects/graap-wg.

8. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Auto-
mated negotiation: Prospects, methods and challenges. Int. J. of Group Decision and Nego-
tiation 10 (2) 199-215. 2(10) (2001) 199-215

9. R.K.Dash, N.R.Jennings, D.C.Parkes: Computational mechanism design: A call to arms.
IEEE Intelligent Systems 18(6) (2003) 4047

52

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

J. Li and R. Yahyapour

Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid
Computing. PhD thesis, Monash University, Melbourne, Australia (2002)

Ernemann, C., Yahyapour, R.: ”Applying Economic Scheduling Methods to Grid Environ-
ments”. In: ”Grid Resource Management - State of the Art and Future Trends”. Kluwer
Academic Publishers (2003) 491-506

Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource allocation
strategies for the computational grid. International Journal of High Performance Computing
Applications 15(3) (2001) 258-281

Raman, R.: Matchmaking Frameworks for Distributed Resource Management. PhD thesis,
University of Wisconsin-Madison (2000)

Dumitrescu, C., Foster, I.T.: Gruber: A grid resource usage sla broker. In: Euro-Par. (2005)
465474

Padgett, J., Djemame, K., Dew, PM.: Grid-based sla management. In: EGC. (2005) 1076—
1085

Kraus., S.: Strategic Negotiation in Multi-Agent Environments. MIT Press, Cambridge,
USA, (2001)

Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50 (1982) 97-110
Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: ”Multicriteria Aspects of Grid Re-
source Management”. In: ”Grid Resource Management - State of the Art and Future Trends”.
Kluwer Academic Publishers (2003) 271-295

Raiffa, H.: The Art and Science of Negotiation. Harvard Universtiy Press (1982)

Faratin, P.: Automated Service Negotiation Between Autonomous Computational Agents.
PhD thesis, Department of Electronic Engineering, Queen Mary College, University of Lon-
don, UK (2000)

Cohen, PR.: Empirical Methods for Artificial Intelligence. MIT Press (1995) Cambridge,
Massachusetts.

Litka, D.: The ANL/IBM SP scheduling system. In Feitelson, D.G., Rudolph, L., eds.: Job
Scheduling Strategies for Parallel Processing. Springer-Verlag (1995) 295-303 Lect. Notes
Comput. Sci. vol. 949.

Standard workload format (2005) http://www.cs.huji.ac.il/labs/parallel/workload/index.html.
Schwiegelshohn, U., Yahyapour, R.: Analysis of first-come-first- serve parallel job schedul-
ing. In: Proceedings of the 9th SIAM Symposium on Discrete Algorithms. (1998) 629-638

An Enhanced Grid Scheduling with Job Priority
and Equitable Interval Job Distribution

HyoYoung Lee, DongWoo Lee, and R.S. Ramakrishna

Department of Information and Communications,
Gwangju Institute of Science and Technology,
1 Oryong-dong Buk-gu, Gwangju 500-712, Republic of Korea
{hyylee, leepro, rsr}@gist.ac.kr

Abstract. The scheduling service is an important component of large
scale computing environments. In this paper, we take a local and grid-
wise look at the scheduling problem. First an advance backfilling algo-
rithm based on the job square with a wide job priority is presented.
Experimental results show that the priority scheduler reduces the mean
waiting time to an extent that depends on the proportion of narrow jobs
within a workload. Subsequently, we consider a load sharing technique
that selects the site in the Grid that is executing the least number of jobs
of similar size as that of the current job. The adaptive sharing scheme
offers significant benefits in terms of the average weighted waiting time.

1 Introduction

Grid computing - a new paradigm involving distributed computing environments
- is a technology that allows the users and application programs to access a
large scale IT domain. Grid scheduling is a general middleware service and it
determines the order in which the jobs assigned to the distributed system are
processed. Job scheduling strategies that rely on load sharing have been proposed
as the core technique for grid services.

Job scheduling aims to optimize the performance of the computing environ-
ment. The performance is measured by the response time and the number of
processed jobs. We focus on a couple of scheduling issues in this paper. First,
we present a variant of the backfilling scheme, a well known general mechanism
for scheduling parallel supercomputers, considering the job set amenable to ex-
ecution at once. The product of the number of (needed) nodes and the user’s
estimated runtime is used in this regard. In addition, a wide job is given a priority
with a view to avoid long waiting time. Second, we propose a new load shar-
ing technique to be executed by the global dispatcher in the grid environment.
Our motivation is based on the fact that the entire system performance can be
strongly influenced by the distribution of the prevailing job size. Under this ar-
rangement, the global dispatcher collects the system information and derives a
stable distribution of jobs on the basis of size-level interval of the processor ca-
pacity. These two schemes improve scheduling performance in comparison with
the traditional approaches.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 53-62, 2006.
© Springer-Verlag Berlin Heidelberg 2006

54 H. Lee, D. Lee, and R.S. Ramakrishna

The remainder of this paper is organized as follows. Section 2 describes re-
lated work about job scheduling schemes in large-scale multiprocessors. Section 3
addresses the model and configurations of the simulations. In Section 4, we eval-
uate the results in the light of the proposed methodology. Section 5 contains
conclusions.

2 Related Work

2.1 Enhanced Backfilling Algorithms as a Job Scheduling

The backfilling algorithm was introduced by Lifka [7]. It adopted non-FCFEFS
strategy to increase system utilization for parallel job scheduling. The algorithm
has received widespread attention in the research community. These studies ad-
dressed differential policies that allow certain job priority and reservation under
an established backfilling rule. There are two common variations to backfilling -
conservative and FASY. The results showed that the performance depends on
the workload and the selected metric [9, 13]. There is considerable work on time
priority. Sorting the waiting jobs by estimated execution times [18]; assignment
of the requested jobs to a multiple job queue based on projected execution time
[6] may be mentioned here. Speculative approaches based on execution-time
have also been considered [10]. The results of average slowdown and response
time show an improved scheduling performance. Other approaches to backfilling
scheduling can be included in the job feature. A scheduler which assigns differ-
ential priorities to jobs based on the characteristic of each job has been proposed
n [14]. A high priority job can bypass a low priority job thereby improving the
system efficiency [12].

2.2 Enriched Approaches to the Grid Scheduling

Dynamic load sharing has already been considered in distributed systems. Tan et
al. [15] propose a load distribution that is proportional to the processing capacity
of servers. The mean waiting time is reduced by penalizing the large task. In grid
computing, the main focus is on scheduling with a global backfilling scheduler.
The proposals presented in [1,17] emphasize the importance of job sharing in
the grid environment and provide a global scheduler that uses a snapshot that
carries the scheduling information of every cluster. In addition, the impact of the
global resources encompassing different time zones has also been investigated [2].
These proposals indicated that the overall system performance can be enhanced
with a judicious job sharing strategy.

3 The Backfilling Scheme with Wide Job Priority

In this section, we present the workload characteristics and the simulation model.
The simulation was performed under the open systems environment with real
workload traces for modeling an actual parallel and distributed system.

An Enhanced Grid Scheduling with Job Priority 55

3.1 Workload Model

Feitelson [5] showed that the characteristics of the workload influence the evalua-
tion of system performance. Therefore, to understand the effect of the proposed
algorithm with regard to the workload, we performed experiments using four
distinct workload traces which were collected over a year from real workloads
in large scale computer systems [19]. The arrival time, the requested number
of nodes, the runtime, and the estimated runtime demanded by each user are
represented in the workload trace. The workloads used in the simulation are
summarized in Table 1.

Table 1. Description of Workload Traces

Workload Max Nodes Number of Period
Name Jobs Start Time End Time
CTC 512 79267 Jul. 1996 May 1997
KTH 100 26456 Oct. 1996 Jul. 1997
SDSC-SP2 128 37178 May 1998 Apr. 1999
SDSC-BLUE 1152 90492 Jan. 2001 Dec. 2001

3.2 Proposed Scheduling Scheme

EASY backfilling allows a short job to execute ahead as long as it does not
delay the job (reserved) at the head of the queue. Most scheduling models have
employed job partition in accordance with the required number of processors
and the estimated runtime and the jobs have been divided into narrow and wide
jobs based on processor size [13]. However, there are mainly two limitations to
the backfilling algorithm:

(1) The relatively long delay before a wide job makes a reservation.

(2) The unreliability of the user’s estimated runtime [9)].

We intend to address the above issues. We have to take into account two factors
affecting the backfilling scheduling. The first refers to the ability to backfill with
narrow jobs which is the main reason for improved performance. The other is
concerned with shortening the waiting time of wide jobs.
The main characteristics of the proposed algorithm are described below.
e The creation of the job-set
We consider the square of a job to decide its order (of execution) for effi-
cient scheduling. Besides, to improve the system performance, the genetic
algorithm is employed to discover an optimal job-set that leaves as small
a number of idle nodes as possible at schedule time. Here the job set is
composed of jobs capable of backfill at schedule time.
o Differential priorities to wide jobs
The backfilling algorithm favors narrow jobs. Wide jobs wait for a relatively
longer time than do narrow jobs. For this reason, we distinguish the wide
job from among current jobs for prioritization. When creating a job-set, we

56 H. Lee, D. Lee, and R.S. Ramakrishna

evaluate the maximum waiting time of the first wide job in the queue. There-
after, if there are enough idle nodes capable of handling that job whose waiting
time exceeds the specified maximum waiting time, it can be executed right-
away. More specifically, we define the availability condition by the equation

j € Wy and T, > (EstimatedT'ime; 4+ (EstimatedTime; x R))

where W; is a wide job , Ty, is the waiting time of job j and R is the priority
proportion for maximum waiting time. The parameters are described below.

- Criterion of a wide job. This depends on the system characteristics such
as system capacity and the general use of power-of-two nodes [3]. A wide
job satisfies the inequality

Wj > 2“0922NJ
where N is the system capacity.

- Setting up mazimum waiting time. In queueing theory, jobs arrive at an
average rate of \ at a single processor CPU where they are served. It
has been shown [8] that the workload profile at a given site tends to
be fairly stable over time. So, we calculate the maximum waiting time
using the priority proportion, R, based on the historical information
and assign adaptive time to various jobs in each workload. When the
number of arriving jobs is large enough, the effect of a wide job priority
has to be reduced by increasing R. In contrast, if the proportion of wide
jobs is large (with the same \), the value of R has to be reduced in
order to prevent long delay for a wide job. For example, suppose two
workloads have 20% wide jobs. Let the first and the second workload
have 20 wide jobs out of 100 jobs and 200 wide jobs out of 1000 jobs
respectively. Here the priority for a wide job of the second workload has
to be reduced because it has relatively many narrow jobs. In the end,
the priority ratio R is directly proportional to A of a given site and is
inversely proportional to the ratio of wide jobs. That is, the equation is
formulated as follows.

A

= x 100
proportion of wide jobs

4 Extensions to the Grid

There have been many attempts to extend the major features of parallel and
distributed systems to grid computing. The computational grid tries to enhance
the computing speed by capitalizing on the resources available all over the world.

4.1 Model Description

We carried out simulations with independent jobs to look for effective distribu-
tion in regard to job requests of diverse users. The grid architecture model used
here is shown in Figure 1. The synthetic workload was created by combining the
workloads mentioned above with due regard to job’s submission time.

An Enhanced Grid Scheduling with Job Priority 57

J l SITE NO. 2

SITE NO. 1
(100) (128)
—_—
Synthetic iOa
Workload % DISPATCHER

SITE NO. 4 SITE NO. 3
(1152) (512)

Fig. 1. A Simple Architecture for Grid Simulation

4.2 Impact of Load Sharing Based on the Job Size-Level Interval

The workload characteristic at an arbitrary site is quite involved. To illustrate,
Figure 2(a) shows an irregular job distribution of the above workloads in a
real system. Note that CTC and SDSC SP2 workloads represent extreme cases.

(a) Job distribution in the real traces

SDSC-BLUE | |= 1no©1~100%)
. 19(81~90%)
Y 18(71~80%)
T2 17(61~70%)
16(51~ 60%)
15(41~50%)
14(31~ 40%)
13(21~ 30%)
] Y 12(11~20%)
Al &z 1100 -~10%)

SDSC-SP2

KTH

Workloads

CTC

T A
0% 60% 70% 80% 90% 100%
The Ratio of Job Size

(b) Job distribution in the SLI scheme

E= 110(91~100%)
B 19(81~90%)
18(71~80%)
17(61~ 70%)
B 16(51~60%)
D 15(41~50%)
E= 14(31~40%)
el

80% 100%
The Ratio of Job Size

13(21~30%)
Y 12(11~20%)
W22 11(0 ~10%)

Fig. 2. Comparison of job distributions under real and SLI scheme

58 H. Lee, D. Lee, and R.S. Ramakrishna

More than 95% of jobs in the CTC workload requested only 0 to 51 nodes
(within 10% of system capacity) while merely 70% of jobs in the SDSC SP2
workload requested 0 to 13 nodes(the same percentage as before). That is, the
job distributions of the two workloads are quite different with respect to size-level
interval. Thus, it is clear that the job has to be assigned to the proper system
by taking into consideration the system capacity. It is uniformly distributed
to the same size-level interval of each site. In this proposed model, the global
dispatcher finds a target site that has the least proportion of busy nodes among
all the available sites for a given size-level interval and submits the requested job
to the local queue of that site. The load sharing algorithm is given in Algorithml.

Algorithm 1. The Load Sharing Based on the Size-Level Interval
Require: S «— NumberofSites

1: while Global Dispatcher is up do

2 r; < Number of Nodes the Job Requests

3 cs «— Site Capacity

4: ms — Minimum Site Capacity Among Sites That r; can be Ezecuted

5: i« Interval of Involving r; When ms Capacity is Divided into 10 Ranges
6: Rs < Ratio of the Interval i of Site s

7 Cut, Cop «— 00

8

9: while termination condition not met do

10: if r; < c¢s and idle nodes > r; then

11: underloadedSite = s having the least ratio satisfied (Rs < Clui)
12: Cul = Rs

13: else if r; < ¢, and idle nodes < r; then

14: overloadedSite = s having the least ratio satisfied (Rs < Co)
15: Coi = Rs

16: end if

17 end while

18:

19: if underloadedSite is found then

20: targetSite = underloadedSite

21: else

22: targetSite = overloadedSite

23: end if

24: end while

5 Performance Analysis

5.1 Evaluation Metrics

The metrics for performance evaluation depend on the type of simulation. The
implemented simulation is the open online system and the scheduling system

An Enhanced Grid Scheduling with Job Priority 59

alms to ensure user satisfaction by reducing the waiting time. Hence, the user-
centric metrics - the waiting time and bounded slowdown [4] - have been used
in order to measure system performance. The metrics are defined as follows:

WaitingTime; = StartTime; — SubmitTime;

WaitingT'ime; + RunTime;

Bounded Slowdown; = Maz(RunTime ;, 10)
¥

In the same way, the metric used for estimating performance in the grid en-
vironment is the average weighted waiting time(AWWT) [11]. The amount of
resources consumed is indicated by the product of the number of nodes assigned
to the job and the execution time of the job:

Resource Consumption; = (number of nodes; x execution time;)
The AWWT is defined by,

AWWT = ZjeJobs(ResouTce Consumption; x Waiting Time;)
- Zje]obs (Resource Consumption;)

The weighted waiting time is proportional to the resource consumption and this
formula gives an identical waiting time for the needed resources.

5.2 Backfilling Based on Wide Job Priority

Figure 3 depicts the overall waiting time and bounded slowdown of expanded
backfilling with a wide job priority in relation to four workloads. The system
load in the simulation environment is dealt with by multiplying the submit time
by a certain factor [9]. The simulation results indicate not only that the proposed
algorithm has better performance than that of traditional backfilling, but also
that the extent of performance improvement varies with the workload.

To understand the sensitivity of performance to workload characteristics, we
have to note that the workload presents anomalous distribution in job size, as
shown in Figure 2(a). Indeed, the performance with regard to the four workloads
improves on an average as follows:

CTC(19%) > SDSC BLUE(12%) > KTH (8%) > SDSC SP2(1%)

It is seen that the performance is closely connected with the proportion of nar-
row jobs. This is due to two main reasons. Firstly, an unexpected slow down of
narrow jobs brought about by wide jobs is largely reduced owing to the job-set
that is ready for execution. Secondly, even when we consider wide job priority,
the scheduling scheme based on the square can penalize wide jobs in the work-
load. Therefore, the workload having a larger proportion of narrow jobs shows
a greater improvement.

60 H. Lee, D. Lee, and R.S. Ramakrishna

12000 {

—M— EASY ‘ o o] [WEASY »
o 100001 @ EASY-W] g —@— EASY-WJP
g / £ w0
£ /-‘ g /
g P Y
z ~ -
5 > 5} o~
2 = € 20
5 o g, L
= — E .7‘4,;/,7.77”"
2
055 060 065 070 075 080 0.85 0.90 o 055 060 065 070 0.75 0.80 085 0.90
System Load (a) CTC System Load
30000 | —M— EASY . ’g 3s0]| —— EASY
El —@— EASY-WJP € a00]l—@— EASY-WIP|
£] 7
7, A 2
k& gz 2 Z
5 e 8 e
g — < -—
g
055 060 065 070 075 080 085 0.90 = 055 060 065 070 075 080 085 0.90
System Load (b) KTH System Load
oo [
50000 = Y / 3 EASY /
= T|-@— EASY- £ 10001{ —@— EASY-WJP|
3 H
T 8
£ i E
£ H //
£ k]
H _/'/. g /
= & _
= - § —
055 060 065 070 075 0.80 0.85 0.90 055 060 065 070 075 080 085 090
System Load (c) SDSC_SP2 System Load
too00} | M-EASY | 5 70} |- EASY
7 100l | @ EASY-WIP r £ sl l—@— EAsv.w]p\
E E
= r 3 -
? ; -
= . S —
= " H =
H —
2 " = 1 _(1{;/
— 5 —
2
0.55 0.60 065 070 0.75 0.80 0.85 0.90 055 060 065 070 075 0.80 0.85 0.90
System Load (d) SDSC-BLUE System Load

Fig. 3. Performance comparison of backfilling scheme for four workloads : EASY vs.
EASY with wide job priority

5.3 Load Sharing Performance Under a Job Size-Level Interval

This subsection compares the load sharing technique for choosing the target site
that will process a job in the grid. The simulation tests were conducted without
regard to migration or costs of communication. The results of simulation of the
proposed load sharing algorithm are presented in Figure 4. A comparison with
the LLF [16] approach, which assigns requested jobs to the server with the least
amount of work remaining(LWR), and SLI(Size-Level Interval) is depicted in
the figure. The SLI determines the target site with the least proportion of jobs
in the same interval. An improvement by about 65% is effected by the simple
SLI scheme over the LLF approach. Furthermore, the SLI based on the new
backfilling scheme with the local scheduler shows a slight improvement by 6%
over traditional backfilling. The reason why the performance is enhanced can
be understood from Figure 2(b). As shown in this figure, we find that jobs are
distributed nearly with the same proportion in each SLI of the participant sites.
To conclude, a regular distribution of jobs on the system has a major impact on
the performance.

An Enhanced Grid Scheduling with Job Priority 61

500
LLF-LWR | |
400 S SLI-EASY
7 BEX SLI-WIP
g 300+ 7
2
S 200- Z
= 4
<
1001 N <
0 T T T T T T T T T T T
0.75 0.80 0.85 0.90 0.95 1.00

Arrival Reduction Factor

Fig. 4. Comparison of AWWT based on the load sharing scheme

6 Conclusions

The scheduling service plays a very important role in computing systems. Indeed
it decides the number of jobs the system eventually processes. In our work, we fo-
cused on two schemes with a view to improve the scheduling performance. First,
we devised a new variant of backfilling by considering the job square based on
backfilling scheduling principle at a local system scheduler. We grant priority to
wide jobs because they can significantly affect the overall waiting time. By sim-
ulation studies, we found that the performance is better than that of traditional
EASY backfilling. The extent of improvement depends on the characteristics of
the workload, especially the proportion of narrow jobs. Second, we presented
the results on the impact of job sharing, wherein the global dispatcher assigns
the requested jobs to the proper site by comparing the proportion of jobs at the
same size-level interval at the participant sites. By doing so, we showed that a
fairly uniform distribution of jobs at the sites is possible and it has a considerable
impact on the performance.

References

1. C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “On
Advantages of Grid Computing for Parallel Job Scheduling,” Proc. of 2nd ITEEE
Int’l Symposium on Cluster Computing and the Grid (CC-GRID 2002), Berlin,
Germany, IEEE ComputerSociety Press, pp. 39-46, 2002.

2. C. Ernemann, V. Hamscher, and R. Yahyapour., “Benefits of global grid computing
for job scheduling,” Proc. of 5th IEEE/ACM Int’]l Workshop on Grid Computing,
in Conjunction with SuperComputing 2004, GRID 2004, IEEE Computer Society,
pp. 374-379, November 2004.

3. D.G. Feitelson, “Packing Schemes for Gang Scheduling,” In Proceedings of JSSPP,
pp. 89-110, 1996.

4. D.G. Feitelson, L. Rudolph, U. Schweigelshohn, K.C. Sevcik and P. Wong, “Theory
and Practice in Parallel Job Scheduling,” In Proceedings of JSSPP, pp.1-34, 1997.

62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

H. Lee, D. Lee, and R.S. Ramakrishna

D.G. Feitelson, “Metric and Workload Effects on Computer Systems Evaluation,”
IEEE Computer, vol. 36, no.9, pp. 18-25, 2003.

. B.G. Lawson and E. Smirni, “Multiple-Queue Backfilling Scheduling with Priorities

and Reservations for Parallel Systems,” In Proceedings of JSSPP, pp.72-87, 2002.

. D. Lifka, “The ANL/IBM SP Scheduling System,” In Proceedings of JSSPP, pp.

295-303, 1995.

. V. Lo, J. Mache, and K.Windisch, “A Comparative Study of Real Workload Traces

and Synthetic Workload Models for Parallel Job Scheduling,” In Proceedings of
JSSPP, pp. 309-314, 1998.

. AW. Mu’alem and D.G. Feitelson, “Utilization, Predictability, Workloads, and

User Runtime Estimates in Scheduling the IBM SP2 with Backfilling,” IEEE Trans.
Parallel & Distributed Systems, vol. 12, no. 6, pp. 529-543, 2001.

D. Perkovic and P.J. Keleher, “Randomization, Speculation, and Adaptation in
Batch Schedulers,” In Proceedings of Supercomputing 2000, November 2000.

U. Schwiegelshohn and R. Yahyapour, “Analysis of First-Come-First-Serve Parallel
Job Scheduling,” Proc. of 9th STAM Symposium on Discrete Algorithms, pp. 629-
638, 1998.

Q.O. Snell, M.J. Clement and D.B. Jackson, “Preemption Based Backfill,” In Pro-
ceedings of JSSPP, pp. 24-37, 2002.

S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan, “Characterization
of Backfilling Strategies for Parallel Job Scheduling,” In Proceedings of 2002 Intl.
Workshops on Parallel Processing, 2002.

D. Talby and D.G. Feitelson, “Supporting Priorities and Improving Utilization of
the IBM SP Scheduler Using Slack-Based Backfilling,” Proc. of 13th Int’l Parallel
Processing Symp., pp. 513-517, 1999.

L. Tan and Z. Tari, “Dynamic Task Assignment in Server Farm : Better Perfor-
mance by Task Grouping,” In Proc. of IEEE Computers and Communication, pp.
175-180, 2002.

Z.Tari, J. Broberg, A.Y. Zomaya, and R. Baldoni, “A least flow-time first load
sharing approach for distributed server farm,” Journal of Parallel and Distributed
Computing, vol. 65, no. 7, pp. 832-842, 2005.

J. Yue, “Global Backfilling Scheduling in Multiclusters,” In Asian Applied Com-
puting Conference (AACC 2004), pp. 232-239, 2004.

D. Zotkin and P.J. Keleher, “Job-Length Estimation and Performance in Backfill-
ing Schedulers,” Proc. of 8th Int’l Symp. High-Performance Distributed Computin,
IEEE CS Press, pp. 39-46, 1999.

Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload /.

Average Schedule Length and Resource Selection
Policies on Computational Grids

Uei-Ren Chen'+?, Chien-Hsun Wangl, and Woei Lin'

! Department of Computer Science, National Chung Hsing University,
250, Kuo Kuang Road, Taiwan, R.O.C.
{s9356033, wlin}@cs.nchu.edu.tw
2 Department of Electrical Engineering, Hsiuping Institute of Technology,
11, Gungye Rd., Dali City, Taiwan, R.O.C.
urchen@mail.hit.edu.tw

Abstract. The computational grid provides many resources with powerful
computational ability; however, we need to select appropriate resources for re-
solving the problem. In this paper, several simple and fast resource selection
policies are presented. Under varying types of resource topologies and prob-
lems, the efficiency of these resource selection policies is compared. The
contribution of this research is following. To solve the undetermined resource
problem in the grid computing, the bottom level equation is modified in the list
scheduling algorithm. Average Schedule Length (ASL) is presented to ap-
proximate the schedule length of the improved list scheduling method, and
simulation result shows the accuracy of this approximation. The bounded num-
ber of the resources is found by performing the FindAlpha algorithm. Simula-
tion result shows that selection policies can achieve minimal schedule length
efficiently by choosing the limited number of the resources.

1 Introduction

The resources in the computational grid [1] are different in types and administrated by
their owners. A grid network topology is typically large in scale, and the communica-
tion is varied in speed. Resource selection (or node selection) policy is a mechanism
to select a number of suitable computing nodes from multiple available candidates.
Task scheduling is an assignment of a set of tasks to a certain number of resources,
and its goal is to minimize the schedule length. Task scheduling problem has been
proved to be NP-hard [2]. A resource selection policy should be able to reduce the
complexity of task scheduling. The traditional list scheduling algorithm is adopted in
the parallel processing system [3]. However, it can not be used directly in the grid
environment. The improved bottom level method in the list scheduling is proposed to
resolve this problem.

Some related resource selection schemes are summarized as follows. (1) Usage
Pattern Based: The node selection mechanism based on the usage pattern of computa-
tional nodes on Campus Grid is proposed [4]. The node usage pattern is represented
by a history of CPU load. The length of the usage pattern is a critical problem in
this scheme. (2) Communication Pattern Based: The method selects resources by

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 6372, 2006.
© Springer-Verlag Berlin Heidelberg 2006

64 U.-R. Chen, C.-H. Wang, and W. Lin

analyzing network status and communication pattern used by the application [5]. The
drawback is that the method depends on the accuracy of network status information is
measured and future performance is predicted. (3) Mapping Strategy Based: The
Resource Selector Service (RSS) [6] selects a resource set that satisfies the require-
ments by adopting a mapping strategy. The problem is that an efficient general map-
ping algorithm suitable for all applications is difficult to find. (4) Random Based:
Resources are selected by a random policy. It is simple but hard to analyze. (5) Ge-
netic Algorithm (GA): A resource selection agent uses a genetic algorithm is devel-
oped [7]. The generating time of a genetic algorithm is an issue for resource selection.
(6) Multi-site Resource Selection: A clustering-based grid resource selection algo-
rithm is proposed by adopting multiple sites [8]. There is a critical issue that accuracy
of predicted execution time will determine the correctness of the algorithm. (7) Pull-
Based: A resource broker called Surfer [9] is implemented for resource selection and
ranking resources to meet constraints.

This paper is organized as follows. In Section 2, the system model is defined. Sec-
tion 3 discusses the performance criteria used in this research. Section 4 evaluates the
performance of these resource selection policies in different types of resource topolo-
gies. Our paper ends with a brief conclusion and future work in Section 5.

2 System Model

The system consists of five components. The grid resource model is represented by a
resource topology with resource information. The problem model is represented by a
directed acyclic graph (DAG) of tasks. Selected computational nodes are the re-
sources selected by means of resource selection policy from resource topology. The
routing model can provide the information about routing path to the scheduling
model. Scheduling model performs task assignment in the problem model to the se-
lected computational nodes.

2.1 Grid Resource Model

The computational grid includes a set of resources R = { Ty T ‘ Foy TR € R} and network

links = {ll_ i l = L} used to connect these resources. The computational grid can

be modeled as an undirected connected graph G = (R, L) with two elements, the re-

source set R and the link set L.
Resource: There are three types of resource nodes in the grid resource model, com-
putational node, switching node and original node.

® Computational node: It is the border term logically that may be a supercomputer, a
cluster of workstations or other computing devices practically. The computational
node r.(i)e R, is specified by a triple, r(i)= <PC, P, PT>, where P, is the com-
putational ability, P, is the memory size, and P, is the data transfer ability, re-

spectively. In this research, the memory size is assumed to be sufficient.
® Routing node: It is a routing device for its computational node. r, € R.

Average Schedule Length and Resource Selection Policies on Computational Grids 65

® Original node: 1t is s special computing node that issues sub-problems to other
computational nodes after performing problem decomposition, and the original
node is denoted as r, e R .

Network Link: The link] ;eL is full duplex and used to connect two switching
nodes of computational node r,.(i) and r.(j). The link is defined as I, = < P,, PL>,

where the parameter P, is the link capacity (or bandwidth) and P, is the length of
link.

2.2 Problem Model

In this research, we assume that a problem can be divided into sub-problems called
tasks. A task is a basic job that is executed in a computational node.
A problem p is represented as a directed acyclic graph (DAG), D, :(T, E),

where T is a finite set of tasks teT, and E is a finite set of directed edges. Each

directed edge e, ;€ E expresses the execution order of adjoint tasks f, and £ and

>

task ¢, must be finished before task t- The task ¢, e T, can be defined as¢, = <VC (ti)

i

v, (ti)> ,where V. (t,.) is the computational volume of task ¢, and V, (z,) is the mes-

sage volume of task r, .

2.3 Resource Selection Policy

Several simple selection policies are proposed as follows:

1. Fast Node First (FNF) Policy: The top n fast computing nodes are selected form
m available nodes in the topology, and m is greater than n. A computing node A
that has higher value of computational ability than a computational node B is as-
sumed to be faster than B in computing speed.

2. Near Node First (NNF) Policy: The top n near computational nodes are selected
from m available nodes in a resource model, where m is greater than n. A com-
puting node A is nearer than B, if the communicational cost of A is lower than B.

3. Fast Among Near (FAN) Policy: We select r nodes using NNF policy, Then we
select top n fast nodes from r nodes, where r is greater than n.

4. Near Among Fast (NAF) Policy: We select r nodes using FNF policy. Then we
select top n near nodes from r nodes, where r is greater than n.

5. Random Selection Policy: Select randomly n computing nodes from m available
nodes in the topology, where m is greater than n.

2.4 Routing Model

The routing model is used to determine the path form the source computational node
to the destination. We use the well-defined routing methods by Floyd-Warshall [10]
in the routing model. The method determines a path with the minimal communication
cost.

66 U.-R. Chen, C.-H. Wang, and W. Lin

A critical link, denoted as 0, is the link with the minimal bandwidth in a routing
path. The critical link can be defined as follows. RP, , is the routing path from the

source computational node r.(s) to the destination r.(d).

PB(Es,d)=min{PB(li,j)’ vzi,jeg{Ps,d} (D

2.5 Scheduling Model

The list scheduling algorithm can achieve reasonable worst-case performance bound
in grid environments with large applications and the schedule length does not im-
pacted significantly by the heterogeneous communication [11]. The schedule length
SL of the list scheduling algorithm is the maximal execution time that is needed for
all selected computational nodes to finish their assigned tasks [12]. It can be defined
as follows:

SL = max{SL[rC (z)] Vr, (i)e R } 2)

The bottom level is used in the list scheduling algorithm to set the priority of the
tasks in the DAG. However, there is a problem that computational cost and communi-
cational cost are undetermined until each task is assigned to the computational nodes
in the computational grid environment. Our solution is to define these two parameters
before task scheduling is performed.

Computational Cost. After performing the node selection, there are N, computa-

tional nodes selected from the grid resource model. The computational cost for each
task 7, is defined as follows.

Ccomp ([i):VC (tl/(]\:} ZPC [VC (])]] 3

s Vre(jERs

Communicational Cost. After N s nodes are selected, the communicational cost for

each directed edge ¢, , from task 7_to the task 7, in a DAG is defined as:

1
Ccomm (es, d) = VM (ts)X doul (ts %(2 X z PB (f i,J)] (4)
NS Vrc(i)> ’C(.f)ERs
d,, (ts) is the outgoing degree of the task ¢ ,and it is equal to the number of its
successors. P, (fi j) is the bandwidth of the critical link in the path RP, i The path
RP, , is from the selected computational node r, (i) to the selected node r.(j). The

communicational cost at the same computational node is neglected.
The bottom level BL(z, Jof task 7 can be obtained by substituting Coomp (r,) and

Coopm (es d) into the bottom level equation recursively, where the task ¢ J is the suc-

cessor of the task 1

Average Schedule Length and Resource Selection Policies on Computational Grids 67

BL(t.;) =Comp (t.;) + max {Ccomm (es, d)+ BL(td)JL

&)

We found that the number of resources needed to resolve a problem is bound by
the number of the independent tasks in a DAG. The maximal number of tasks could
be executed at the same time in the DAG is defined as the factor o referred to as
assignable factor, and 1< o < N, . The algorithm of finding the factor ¢ for a DAG

is given below.
FindAlpha Algorithm
Begin
Input: A directed acyclic graph (DAG) with N, tasks;
Output: Assignable factor «a;
Generate all combinations of r tasks form N, tasks in
the DAG (1<r<N,);
For (each combination of task Cb,)
For (any two tasks and t and t; in the Cbi , and ti;ﬁtj)
If not exist a path between tasks t and t; then

Add this Cb, into the DisjGroup DG ;

End If
End For
End For
For (each combination Cb, in the DG)

Count the number of tasks N(Ch,) for this Cb,;
End For
Factor a is assigned the largest for all N(Cbl_);

Return ¢« ;
End

The complexity of FindAlpha algorithm increases exponentially with number of
tasks because it is required to generate all tasks combinations in the DAG. Our re-
search effort attempts to reduce the complexity of FindAlpha algorithm in the future.

The proposed Average Schedule Length (ASL) is a theoretical model used to ap-
proximate the schedule length of the improved list scheduling algorithm. The ASL is
derived by discussing the following two cases. Let N, be the number of edges in the

DAG. Assume that tasks ¢, and 1 are assigned to the computational node rC(s), and
is r,(d) respectively after performing task scheduling. Let /¢, denote the link that
has the minimal bandwidth in the routing path RP, , from the source computational
node r.(s) to the destination r.(4). The outgoing degree d (z,) of the task ¢ is

s

equal to the number of its outgoing edges.

Case I: If 1< N sSa, then ASL is derived by calculating the sum of three terms,
average computational cost c,,,» average communication cost C,~ and average

idle cost C

> and the equations are given as follows.

68 U.-R. Chen, C.-H. Wang, and W. Lin

1 1 .
Cmmp = (]vrx Zv,,ETVC (tl)J/(ZVSX ZV;‘C(/')ERS PC [rC (])]) (6)

Ccumm = Ni X ZV:‘,ET, Ve, ;€E [(VM (tl)X dout (tz))/f s, d] (7)

Cidle = ﬂ X (Ccamp + Cwmm) (8)

The idle factor g of task 7, is the ratio of number of dependent edges from the task

t, to the N —1 edges of other tasks in the DAG. Pregg . 1s edge probability.
u= (N, ~1)xPrs, /(N ~1)=Prj,)
In this case, the ASL is represented as:
ASL = (Nt /NS)X (Ccomp + Ccomm + Cidle) (10)

Case2:If N s>, then the ASL is expressed as follows:

ASL= (Nt /a)>< (Ccomp + Cmmm + Cidle) (1 1)

In Case 2, the schedule length becomes convergent while N, is near to ¢ and the

additional selected computational nodes does not help reduce the schedule length,
because of the limit of independent tasks in the DAG is reached.

3 Performance Criteria

There are four types of resource topologies defined as follows, where the average

computational volume of the problem V,_ =1/N, x Zv Ve (t,) and the average mes-
te t

sage volume of the problemy, =1 /N, x Zv Vi (t,-)

1. Low Computation and Low Communication: If the average computational ability of
the resource topology is smaller than the average computational volume of the
problem P. <V, and the average link capacity of the resource topology is smaller

than the average message volume of the problem p, <V, .
2. High Computation and Low Communication: If P.>V_and P, <V,, .
>V,
4. High Computation and High Communication: If P. >V, and P, >V,, .

3. Low Computation and High Communication: If P. <V, P,

In this paper, the type of a problem can be defined as follows:

1. Computation-oriented Problem: The total computational volume for a problem is

great than the total message volume. V. >V, ., where V.= > velt)
e !

V, = et Vi, (t[.), and T is the set of tasks in the problem.

Average Schedule Length and Resource Selection Policies on Computational Grids 69

2. Message-oriented Problem: The total computational volume in a problem is less
than the total message volume, VC < VM .

3. Equivalent Problem: The total computational volume in a problem is equal to the
total message volume, V. =V, .

4 Experimental Performance Evaluation

To reduce the system complexity, we make a number of simplifying assumptions as
follows: (1) resource selection mechanism can get the information needed form all
computing nodes, (2) no congestion in the network, (3) no conflict on the resources,
(4) communication is reliable and no data will be lost, (5) all elements are fault-free,
(6) resources are sufficient to tasks, and (7) no switching or routing delay.

Our simulator is coded in Java. The resource topology is generated by GT-ITM
[13]. The resource topology is modified by adding proposed resource parameters.
Problem models are generated by the DAG generator [14] with required task parame-
ters. The combination algorithm is quoted from [15].

Efficiency Analysis of Resource Selection Policies. In Fig. 1, the schedule length is
convergent while the number of selected resources for selection policies increases.
The schedule length decreases more than 90% in the resource number range from 0O to
o . This means that more selected resources do not help reduce the schedule length.
The average assignable factor of all DAGs is 5.2 in this simulation. In Fig. 1, the
FNF policy is most outstanding; and the Random and NNF policy is worse than oth-
ers in this case.

—*— FastNodeFirst-SL —#— NearNodeFirst-SL 4 FastAmongNear-SL
x— NearAmongFast-SL —*— Random-SL

Schedule Length (SL)

Num. of Resources

Fig. 1. Schedule Length for Resource Selection Policies

Accuracy Analysis of ASL. In Fig. 2, because the schedule length decreases rapidly,
the average difference of ASL and SL is greater than 40% while the number of re-
sources is 2. These two measurements differ by less than 10% while the resource

70 U.-R. Chen, C.-H. Wang, and W. Lin

number is equal to ¢, less than 14% while resource number is from ¢ to 10, and less
than 10% in the resource number range from 10 to 30.

Comparison of Selection Policies. Form Tables 1 to 4, five resource selection policies
are performed in four types of resource topologies, and problems with different com-
putation-message ratio (1og(\7c / \7M): x, —3 < x < 3)are studied. The schedule lengths
of these selection policies are compared. From Table 1 to 4, the FNF policy produces
smallest schedule length, if the problem is computation-oriented. Table 2 indicates
that if the problem is highly message-oriented (1og(\7c /\7M)<_2), and the type of

Difference of ASL and SL (%)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Num. of Resources

Fig. 2. Average Difference of ASL and SL

Table 1. Low Comp. and Comm. (10 < P, < 10%,and 10 < P < 10%)

10g(V./V,,) ENF NNF FAN NAF Random
3 13731 14148 14431 147.00 14331
2 17.94 18.48 18.69 18.47 18.54
-1 2.39 2.52 251 2.48 2.59
0 0.69 078 0.73 072 0.79
1 6.41 735 6.95 6.78 747
2 59.03 68.54 64.17 62.35 70.10
3 634.12 734.43 690.26 671.70 748.62

Table 2. High Comp. and Low Comm. (10° < P. <10*,and 10 < P, <10%)

log(V. /7,) FNF NNF FAN NAF Random
3 14275 140.92 147.04 149.95 140.26
2 16.94 17.93 18.41 18.39 17.59
1 1.63 1.66 175 176 1.68
0 0.15 0.15 0.16 0.16 0.16
1 021 0.23 0.22 0.22 0.23
2 0.76 0.93 0.84 0.82 0.89
3 6.17 775 6.91 6.72 7.47

Average Schedule Length and Resource Selection Policies on Computational Grids 71

resource topology is high computation and low communication, then the NNF selec-
tion policy outperforms others. Table 3 and 4 shows that if the resource topology is
high communicational, the NNF policy performs the worst. Overall, the schedule
length of random policy is worse. The schedule lengths of FAN and NAF policies
perform between those of FNF and NNF in the computation-oriented problem.

Table 3. Low Comp. and High Comm. (10 < P.< 10%, and 10> < P < 10%)

log(V,. /7,) FNF NNF FAN NAF Random
3 2.20 2.44 2.27 221 2.40
2 0.83 0.97 0.89 0.85 0.96
1 0.52 0.63 0.58 0.54 0.62
0 0.47 0.56 0.51 0.49 0.55
1 6.23 7.36 6.77 6.44 7.19
2 58.07 69.35 63.56 60.24 67.99
3 624.15 74545 682.54 648.00 726.47

Table 4. High Comp. and Comm. (10° < P. <10*,and 10° < P, <10*)

og(V,. /¥,) FNF NNF FAN NAF Random
-3 1.42 1.48 1.44 1.38 1.40
2 0.19 0.19 0.18 0.18 0.18
1 0.02 0.03 0.02 0.02 0.03
0 0.01 0.01 0.01 0.01 0.01
1 0.06 0.07 0.07 0.06 0.07
2 0.56 0.70 0.62 0.58 0.69
3 5.97 7.46 6.65 6.18 7.34

5 Conclusion and Future Work

Conclusions of this paper are drawn as follows. The grid resource model and problem
model are established with resource and task parameters respectively. Several simple
and fast resource selection policies are proposed and studied in this paper. The num-
ber of selected resources can be found by adopting the FindAlpha Algorithm, and
using these resources can achieve the bound of schedule length above 90%. The Av-
erage Schedule Length is proposed to approximate the schedule length of improved
list scheduling algorithm. The accuracy of the Average Schedule Length is evaluated.
The maximal variation to schedule length drops below 14%, if the number of the
selected resources is greater than or equal to the assignable factor ¢ . The perform-
ance of resource selection policies is compared in four types of resource topologies
with a variety of problems distinguished by the ratio of computation to message
volume.

There are a number of directions for future research: (1) consider the background
loading in the gird resource model, (2) perform multiple problems in the computa-
tional gird simulation, (3) improve the FindAlpha algorithm and reduce its complex-
ity, (4) establish the model of the communication congestion and routing delay, (5)
compare the communicational cost of different routing methods, (6) adopt other task

72

U.-R. Chen, C.-H. Wang, and W. Lin

scheduling algorithms, and evaluate their performance, (7) compare with other selec-
tion policy, such as usage pattern and genetic algorithm, and (8) improve the effi-
ciency of the resource selection policy.

References

13.
14.
15.

. Foster, 1., and Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann, San Francisco, CA, (1999)
Ulman, J. D.: NP-Complete Scheduling Problems, Journal of Computing System Science,
10 (1975)

. Adam, T. L., Chandy, K. M., and Dickson, J. R.: Comparison of List Schedule for Parallel

Processing Systems, Communications of the ACM, 17 (1974)

Arikawa, H., Fujikawa, K., and Sunahara, H.: A Node Selection Mechanism based on the
Node Usage Pattern on Campus Grid, IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, (2003)

Goteti, S., and Subhlok, J.: Communication Pattern Based Node Selection for Shared Net-
works, Proceedings of the Autonomic Computing Workshop, (2003)

Liu, C., Yang, L., Foster, 1., and Angulo, D.: Design and Evaluation of a Resource Selec-
tion Framework for Grid Applications, Proceedings of the 11th IEEE International Sym-
posium on High Performance Distributed Computing HPDC-11, (2002)

. Lee, H., Chung, K., Chin, S., Lee, J., Lee, D., Park, S., and Yu, H.: A Resource Manage-

ment and Fault Tolerance Services in Grid Computing, Journal of Parallel and Distributed
Computing, 65 (2005)

Zhang, W., Fang, B., He, H., Zhang, H., and Hu, M.: Multisite Resource Selection and
Scheduling Algorithm on Computational Grid, Proceedings of the 18th International Paral-
lel and Distributed Processing Symposium, (2004)

Kolano, P. Z.: Surfer: An Extensible Pull-Based Framework for Resource Selection and
Ranking, IEEE International Symposium on Cluster Computing and the Grid, (2004)

. Cormen, T. H., Leiserson, C. E., and Rivest, R. L.: Introduction to Algorithms, The MIT

Press, (1990)

. Li, K.: Job Scheduling for Grid Computing on Metacomputers, Proceedings of the 19th

IEEE International Parallel and Distributed Processing Symposium (2005)

Sinnen, O., and Sousa, L. A.: Communication Contention in Task Scheduling, IEEE
Transactions on Parallel and Distributed Systems, 16 (2005)

GT-ITM project. http://www.cc.gatech.edu/projects/gtitm/.

Lloyd Allison’s web site. http://www.csse.monash.edu.au/~lloyd/tilde AlgDS/Graph/ DAG/.
Parberry, 1., and Gasarch, W.: Problems on Algorithms, Second Edition, (2002)

A Performance-Based Approach to Dynamic Workload
Distribution for Master-Slave Applications on Grid
Environments

Wen-Chung Shih', Chao-Tung Yang®*, and Shian-Shyong Tseng'

! Department of Computer and Information Science,
National Chiao Tung University,
Hsinchu 30010, Taiwan, R.O.C.
{gis90805, sstsengl}@cis.nctu.edu.tw
2 High-Performance Computing Laboratory,
Department of Computer Science and Information Engineering,
Tunghai University,
Taichung 40704, Taiwan, R.O.C.
ctyang@thu.edu. tw
3 Department of Information Science and Applications,
Asia University,
Taichung 41354, Taiwan, R.O.C.
sstseng@asia.edu.tw

Abstract. Effective workload distribution techniques can significantly reduce
the total completion time of a program on grid computing environments. In this
paper, we propose a dynamic performance-based workload partition approach
for master-slave types of applications on grids. Furthermore, we implement two
types of applications and conduct the experimentations on our grid testbed.
Experimental results showed that our method could execute more efficiently
than traditional schemes.

Keywords: Workload distribution, master-slave paradigm, grid computing,
parallel loop scheduling, data mining, Globus, NWS.

1 Introduction

As inexpensive personal computers and Internet access become available, much
attention has been directed to grid computing [2, 3, 4, 8, 9, 14, 21, 22, 23, 24, 25, 33].
The basic idea of grid computing is to share the computing and storage resources all
over the world via Wide Area Networks. In this way, computational jobs can be
distributed to idle computers far away, probably in other countries. Moreover, remote
data can be accessed for large-scale analysis.

Master-slave paradigms are commonly utilized to model the task dispatching
processes in parallel and distributed computing environments [38]. This model
designates one computing node as the master, which holds a pool of tasks to be
dispatched to other slave nodes. Divisible Load Theory (DLT) [1, 16, 17, 30] addresses

* Corresponding author.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 73 —82, 2006.
© Springer-Verlag Berlin Heidelberg 2006

74 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

the case where the total workload can be partitioned into any number of independent
subjobs. This problem has been discussed in the past decade, and a good review can be
found in [15]. In [19], a data distribution method was proposed for host-client type of
applications. Their method was an analytic technique, and only verified on
homogeneous and heterogeneous cluster computing platforms. In [20], an exact
method for divisible load was proposed, which was not from a dynamic and pragmatic
viewpoint as ours.

In this paper, we focus on the problem of dynamic distribution of workload for
master-slave applications on grids. We implement two types of applications, Parallel
Loop Self-Scheduling [18, 27, 34, 35, 36] and Association Rule Data Mining, with
MPI directives, and execute them on our grid testbed. Experimental results show that
effective workload partitioning can significantly reduce the total completion time.

Our major contributions can be summarized as follows. First, this paper proposes a
new performance-based algorithm to solve this dynamic workload distribution
problem. Second, we implement the algorithm and apply it to both loop self-
scheduling and data mining applications on our grid testbed. Consequently,
experimental results show the obvious effectiveness of our approach. To the best of
our knowledge, this is the first paper to consider dynamic workload distribution
within a program on grid environments.

Our previous work [31, 32] presents different heuristics to the parallel loop self-
scheduling problem. This paper generalizes their main idea and proposes to solve the
dynamic workload distribution problem. This approach is applied to both the parallel
loop self-scheduling application and the association rule mining application. There
have been a lot of researches of parallel and distributed data mining [12, 13, 26, 37].
However, this paper focuses on workload distribution, instead of proposing a new
data mining algorithm.

The rest of this paper is organized as follows. Our approach is proposed in Section 2.
Then, Section 3 shows the experimental results on our grid testbeds. Finally, we
conclude this paper in Section 4.

2 Our Approach

Our performance-based approach is based on the estimated performance of each
slave node and each link to distribute the corresponding workload. In this section,
the system model and the concept of performance ratio are explained first. Then, we
present the heuristics which the algorithm is based on. Finally, the algorithm is
described.

2.1 System Model

Our system model and cost model are extended from the framework in [15]. The
master-slave model for a grid is represented by a star graph G = {P,, P,..., P}, as
shown in Figure 1. In this graph, P, is the master node and the other n nodes, P,, ...,
P, are slave nodes. In addition, there is a virtual communication link L, connecting
the master node and the slave node P..

A Performance-Based Approach to Dynamic Workload Distribution 75

In our cost model, each node P; is associated with a computing capacity C;, a
memory capacity M;, and a disk storage capacity D;. Furthermore, each link L; is also
associated with a transmission capacity 7;. In our linear cost model, it takes WxC;
time units for the slave node P; to conduct computation on W units of data. Besides, it
takes WxT; time units for link L; to transmit W units of data. In this model, we assume
that the master can only communicate with one slave node at the same time.

P,

Fig. 1. The system model

2.2 Performance Functions and Performance Ratio

We propose to partition the workload according to the performance ratio of all slave
nodes. Therefore, the effectiveness of this approach depends on the accuracy of
estimating the performance ratio. To estimate the performance of each slave node, we
define a Performance Function (PF) for a slave node j as

PF; (Vy, Va, ..., Vo) (1)

where V, , 1<i<M | is a parameter of the performance function. In more detail, the
parameters could include CPU speed, networking bandwidth, memory capacity, etc.
In this paper, our PF for node j is defined as

1t B, 2)

J
Zl/ti +w, X

PFj=W]X

Vnode;e S Vnode,eS
where

e Sis the set of all slave nodes.

e 1 is the execution time (sec.) of node i for some benchmark application program,
such as matrix multiplication.

e B;is the bandwidth (Mbps) between node i and the master node.

e w; is the weight of the first term.

® 1w, is the weight of the second term.

The Performance Ratio (PR) is defined to be the ratio of all performance functions.
For instance, assume the PFs of three nodes are 1/2, 1/3 and 1/4, respectively. Then,
the PR is 1/2 : 1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if

76 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

there are 13 transactions to be processed, 6 transactions will be assigned to the first
node, 4 transactions will be assigned to the second node, and 3 transactions will be
assigned to the last one.

2.3 Performance-Based Algorithms

Our algorithm is based on two heuristics to dispatch workload to slave nodes.

1. The total workload is divided in n chunks according to the PR of the n slave nodes.
2. Send the data chunk to the node with faster network bandwidth first. The network

J

Vnode;eS

bandwidth is estimated by

In this paper, B;is obtained from NWS (Network Weather Service) statistics [7].
Specifically, our network bandwidth estimation is extracted directed from [11].

Our algorithm is also a master-slave type of application. In the MASTER module,
the total workload is divided according to the PR of slaves, and the partitioned
workload is transmitted accordingly. In the SLAVE module, the workload is
computed. The algorithm of our approach is described as follows.

Module MASTER
1. Initialization
Calculate performance ratio of all slave nodes
Partition the total workload according to the PR
Get network bandwidth B, of the link to node i

2
3
4
5. Send data to slaves in non-increasing order of B,
6. //Master could does its own computation work here
7. Gather results from all slave nodes

8. Print the results

9. Finalization

END MASTER

Module SLAVE
1. Receive workload from the master node
2. Conduct computation on its local workload
3. Send the result to the master
END SLAVE

Without loss of generality, we assume the master node does not participate in
computation in our algorithm. However, the algorithm can be modified to utilize the
computing power of the master node by remove the comment notation (//) in line 6.

A Performance-Based Approach to Dynamic Workload Distribution 77

3 Experimental Results

To verify our approach, a grid testbed is built, and two types of application programs
are implemented with MPI (Message Passing Interface) to be executed on this testbed.
This grid testbed consists of one master and three domains. We have built this grid
testbed by the following middleware:

e Globus Toolkit 3.0.2 [10]
e Mpich library 1.2.6 [5, 6]

In this experiment, the performance function and the performance ratio are the
same as those defined Section 2. Specifically, w; is assigned as 1 and w;, is assigned as
0.5, suggested by our experiences in this testbed. Furthermore, 7; for node i is
obtained by executing Matrix Multiplication, for input size 512x512, while B; for
node i is obtained by NWS statistics [7, 11]. The resulting performance ratio is shown
in Figure 2. For example, node 4 and node 5 have the same CPU speed. However, our
method assigns higher PR to node 4 because of its higher network bandwidth. In
addition, the execution time is an average of five repetitive measurements.

0.25

0.2

015 - O CPU Ratio
0.1 B Performance Ratio

Ratio

0.05

0
12 3 45 6 7 8 9

Node
Fig. 2. Performance ratio of 9 slave nodes for our grid testbed

3.1 Application 1: Parallel Loop Self-scheduling for Matrix Multiplication

We have implemented a series of application programs in C language, with message
passing interface (MPI) directives for parallelizing code segments to be processed by
multiple CPU’s. In this paper, the scheduling parameter is set to be 50 for all hybrid
schemes, except for the schemes by [36], of which is dynamically adjustable
according to cluster heterogeneity.

First, execution time on the grid for GSS [29] group is investigated. Figure 3(a)
illustrates execution time of static [28], dynamic [29] and our scheme, with input
matrix size 512x512, 1024x1024 and 1536x1536 respectively. Experimental results
show that our performance-based scheduling scheme got better performance than
static and dynamic ones. In this case, our scheme for input size 1536x1536 got 39%
and 23% performance improvement over the static one and the dynamic one
respectively.

Figure 3(b) illustrates execution time of previous schemes (ngss [35] and ngss2
[36]) and our scheme, with input matrix size 512x512, 1024x1024 and 1536x1536

78 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

300 250

250 200

200 /
O —e— Static @ 150 —e—ngss
ﬂE’ 150 —&— Dynamic (gss) “E’ / —#&— ngss2
= —&—Our = 100 —4— Our

100 //

50 %0 /
0 . . 0 .

512*512 1024 * 1024 1536 * 1536 512* 512 1024 * 1024 1536 * 1536

Matrix Size Matrix Size

Fig. 3. Matrix multiplication execution time on the grid for GSS group schemes. (a) Static,
dynamic (gss) and our scheme; (b) ngss, ngss2 and our scheme.

respectively. Experimental results show that our performance-based scheduling
scheme got better performance than static and dynamic ones. In this case, our scheme
for input size 1536x1536 got 32% and 28% performance improvement over the ngss
and the ngss2 respectively.

3.2 Application 2: Association Rule Mining

Traditional parallel data mining work assumes data is partitioned and transmitted to
the computing nodes in advance. However, it is usually the case in which a large
database is generated and stored in some station. Therefore, it is important to
efficiently partition and distribute the data to other nodes for parallel computation. As
the rising of parallel processing, parallel data mining have been well investigated in
the past decade. Especially, much attention has been directed to parallel association
rule mining. A good survey can be found in [37].

In this section, we implement the Apriori algorithm, and apply our approach to
conduct data distribution. Specifically, the parallelized version of Apriori we adopt is
Count Distribution (CD) [12, 13, 26].

In this experiment, “cd_eq” means to distribute the workload to slaves equally, and
“cd_cpu” means to distribute the workload to slaves according to the ratio of CPU
speed values of slaves. And, cd_our is our scheme. Our datasets are generated by the
tool as in [13]. The parameters of the synthetic datasets are described in Table 1.

Table 1. Description of our dataset

Dataset Number of Average Number of
Transactions Transaction Length Items
DI10KTS5I10 10,000 5 10
D50KTSI10 50,000 5 10
D100KT5I10 100,000 5 10

3.2.1 Relative Performance for Different Dataset Sizes

First, execution time on the grid for the three schemes is investigated. Figure 4
illustrates execution time of cd_eq, cd_cpu and our scheme, with input size 10K, 50K
and 100K transactions respectively. Experimental results show that our scheme got

A Performance-Based Approach to Dynamic Workload Distribution 79

——cd_eq —8—cd_cpu —A—cd_our ‘

350

300 -
250

200 -
150 |

I\

100

50

Execution Time (Sec.)

D10KT5I10 D50KT5110 D100KT5I110
Data Set

Fig. 4. Performance of data partition schemes for different datasets

—6—cd_eq ®—cd_cpu —A&—cd_our

40

35

30
25 |
20
15 A

10

Execution Time (Sec.)

1 2 3 4 5 6 7 8 9
Number of Slave Nodes

Fig. 5. Speedup performance of data partition schemes

better performance than cd_eq and cd_cpu. In this case, our scheme for input size
100K transactions got 18% and 52% performance improvement over cd_eq and
cd_cpu respectively.

From this experiment, we can see the significant influence of partition schemes on
the total response time. In grid environments, network bandwidth is an important
criterion to evaluate the performance of a slave node. Cd_eq and cd_cpu are static
data partition schemes. Therefore, they can not adapt to the practical network status.
When communication cost becomes a major factor, our scheme would be well
adaptive to the network environment.

Moreover, the reason why cd_cpu got the worst performance can be contributed to
the inappropriate estimation of node performance. In grid computing environments,

80 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

CPU speed is not the only factor to determine the node performance. A node with the
fastest CPU is not necessary the node with optimal performance. This has been
illustrated in Figure 2.

3.2.2 Speedup

In order to see how well our scheme speeds up, we keep the dataset constant to be
D10KTS5I10 and vary the number of nodes. Figure 5 shows that the response time of
our scheme is decreasing as the number of nodes increases. This means our scheme
can choose available computing power to optimize its execution time. However, the
curves of cd_eq and cd_cpu fluctuate as the number of nodes increases.

4 Conclusions

In this paper, we have proposed a performance-based approach to solve the dynamic
workload partition problem for master-slave applications, and have implemented it on
our grid testbeds. In each case, our approach can obtain performance improvement on
other schemes. In our future work, we will implement more types of application
programs to verify our approach. Furthermore, we hope to study theoretical analysis
to find better solutions, and consider more status information.

References

Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html

Global Grid Forum, http://www.ggf.org/

Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks

KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/

MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/

MPICH-G2, http://www.hpclab.niu.edu/mpi/

Network Weather Service, http://nws.cs.ucsb.edu/

Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/

TeraGrid, http://www.teraGrid.org/

The Globus Project, http://www.globus.org/

. THU Bandwidth Statistics GUI, http://monitor.hpc.csie.thu.edu.tw/tiger/

R. Agrawal and J. C. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions

on Knowledge and Data Engineering, vol. 8§, no. 6, pp. 962-969, Dec. 1996.

. R. Agrawal and R. Srikant, “Fast algorithms for Mining Association Rules,” Proc. 20th

Very Large Data Bases Conf., pp. 487-499, 1994.

14. Mark A. Baker and Geoffery C. Fox. “Metacomputing: Harnessing Informal
Supercomputers.” High Performance Cluster Computing. Prentice-Hall, May 1999. ISBN
0-13-013784-7.

15. O. Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang, “Scheduling Divisible
Loads on Star and Tree Networks: Results and Open Problems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 3, pp. 207-218, Mar. 2005.

16. V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling Divisible Loads in

Parallel and Distributed Systems, IEEE Press, 1996.

I ol o

=
D =S

—_
W

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

A Performance-Based Approach to Dynamic Workload Distribution 81

V. Bharadwaj, D. Ghose and T.G. Robertazzi, “Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-18,
Jan. 2003.

Kuan-Wei Cheng, Chao-Tung Yang, Chuan-Lin Lai, and Shun-Chyi Chang, “A Parallel
Loop Self-Scheduling on Grid Computing Environments,” Proceedings of the 2004 IEEE
International Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-
414, KH, China, May 2004.

N. Comino and V. L. Narasimhan, “A Novel Data Distribution Technique for Host-Client
Type Parallel Applications,” IEEE Transactions on Parallel and Distributed Systems, Vol.
13, No. 2, pp. 97-110, Feb. 2002.

Maciej Drozdowski and Marcin Lawenda, “On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems,” Euro-Par 2005 Parallel Processing:
11th International Euro-Par Conference, Lecture Notes in Computer Science, vol. 3648,
pp. 231-240, Springer-Verlag, August 2005.

I. Foster, N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems.” Proc. 1998 SC Conference, November, 1998.

L. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer Applications, 15(3), 2001.

I. Foster, C. Kesselman., “Globus: A Metacomputing Infrastructure Toolkit,” International
J. Supercomputer Applications, 11(2):115-128, 1997.

I. Foster, “The Grid: A New Infrastructure for 21st Century Science.” Physics Today,
55(2):42-47, 2002.

L. Foster, C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann; 1st edition (January 1999)

J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, 2001.

S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method scheme for scheduling
parallel loops,” Communications of the ACM, Vol. 35, 1992, pp. 90-101.

H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, vol. II, pp. 140-147, 1993.

C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling
Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, vol. 36, no. 12, pp
1425-1439, 1987.

T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Computer, vol. 36, no. 5,
pp- 63-68, May 2003.

Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng, “A Performance-Based
Parallel Loop Self-Scheduling on Grid Environments,” Network and Parallel Computing:
IFIP International Conference, NPC 2005, Lecture Notes in Computer Science, vol. 3779,
pp- 48-55, Springer-Verlag, December 2005.

Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng, “A Hybrid Parallel Loop
Scheduling Scheme on Grid Environments,” Grid and Cooperative Computing: 4th
International Conference, GCC 2005, Lecture Notes in Computer Science, vol. 3795, pp.
370-381, Springer-Verlag, December 2005.

Larry Smarr, C. Catlett, “Metacomputing,” Communications of the ACM, vol. 35, no. 6,
pp. 44-52, 1992.

T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4, 1993,
pp. 87-98.

82

35.

36.

37.

38.

W.-C. Shih, C.-T. Yang, and S.-S. Tseng

Chao-Tung Yang and Shun-Chyi Chang, “A Parallel Loop Self-Scheduling on Extremely
Heterogeneous PC Clusters,” Journal of Information Science and Engineering, vol. 20, no.
2, pp. 263-273, March 2004.

Chao-Tung Yang, Kuan-Wei Cheng, and Kuan-Ching Li, “An Efficient Parallel Loop Self-
Scheduling on Grid Environments,” NPC’2004 IFIP International Conference on Network
and Parallel Computing, Lecture Notes in Computer Science, Springer-Verlag Heidelberg,
Hai Jin, Guangrong Gao, Zhiwei Xu (Eds.), Oct. 2004.

M. J. Zaki, “Parallel and Distributed Association Mining: A Survey,” IEEE Concurrency,
vol. 7, no. 4, pp. 14-25, 1999.

C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, “Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15, No. 4, pp. 319-330, Apr. 2004.

The Peering Problem in
Tree-Based Master /Worker Overlays

Hung-Chang Hsiao and Hao Liao

Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan
hchsiao@csie.ncku.edu.tw

Abstract. Master-worker applications often demand high throughput.
A master-worker application consists of master and worker processes.
The master processes generate tasks, while the worker processes compute
the tasks. A peer can solely implement the master process, the worker
process, or both. A scalable implementation of master-worker applica-
tions is to form an overlay network in which masters deliver their tasks
to workers through their interconnect links, and workers either compute
received tasks or forward some of the tasks to other workers. Differ-
ent overlay construction could result in various system throughputs. In
this work, we study the fundamental issue. That is, how the overlay is
structured to maximize the system throughput. We first propose a basic,
simple overlay formation algorithm to form an overlay. Then, we develop
a number of peering strategies. The simple overlay formation algorithm
is flexible to integrate these peering strategies, generating types of the
overlay. Our performance studies show that the overlays based on the
exploitation of network locality can perform better.

1 Introduction

Peer-to-peer (P2P) applications received widely attention, recently. These ap-
plications include distributed file sharing such as Napster [1] and Gnutella [2],
content distribution networks [3], multiplayer games [4], etc. One widely received
P2P application, namely the master-worker application, is constituted by task
sources (master processes) and sinks (worker processes), in which sources gen-
erate tasks and sinks perform computation for these tasks. The bag-of-tasks
computational application such as SETI@home [5] is the example. In such an
application, one peer acts as a master generates tasks, while others are workers
performing computation for these tasks.

Applications with the master-worker paradigm often demand high through-
put. That is, the number of tasks completed per time unit is maximized. Maxi-
mizing the throughput denotes that the system can accommodate clients as much
as possible. The state-of-the-art master/worker interconnect such as SETI@home
in the Internet often is a star overlay network in which the root node implements
the master process while other workers are directly connected to the root. Such
an overlay requires that the root node is quite capable which can accept a very

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 83-92, 2006.
© Springer-Verlag Berlin Heidelberg 2006

84 H.-C. Hsiao and H. Liao

large number of connections to workers. This thus leads to the performance
bottleneck introduced to the root.

In contrast to the star interconnect, masters and workers may overlays such
as trees, meshes and grids. In such overlays, the master continuously generates
and sends tasks to workers that have overlay connections linked to the master.
Upon receiving tasks, a worker performs computation for the task. If the worker
cannot immediately process the task, then the worker either forwards the task
to another worker that has an overlay link to the worker, or buffers the tasks for
later computation.

Apparently, to maximize the through-
put of a master-worker overlay depends |, e 1
on the design of the overlay system. Con- 5
sider an example as shown in Figure 1. In 6 G O
Figure 1(a), four nodes form a star-based 3] J
interconnect in which the root node A

100

generates 100 tasks per time unit at most,
and the worker nodes B, C'and D can fin-
ish 3, 1 and 6 tasks per time unit, respec-
tively. A at most can respectively send
10, 5 and 1 tasks to B, C'and D. Conse-

(a)

Fig.1. Two overlays with four nodes,
where (a) a star overlay and (b) a tree-
shaped overlay

quently, the star-shaped overlay can ac-
complish 5 tasks per time unit at most. However, the tree-shaped overlay shown
in Figure 1(b) can finish 10 tasks per time unit if D is connected to B and B can
send 8 tasks per time unit to D. This throughput is twice of that generated by
the star-based overlay.

The issues of designing a master/worker overlay include at least as follows.

Task scheduling. As mentioned, a worker 7 may receive tasks from other workers
(say G). It forwards some of tasks it cannot accommodate to other workers in
G that may be able to handle the tasks, where all the workers in G have the
overlay links to i. Therefore, ¢ needs to determine which of the workers in G
are likely to perform the computations for the tasks it sends. To schedule tasks
to the workers j € G from ¢ may depend on several parameters including the
network bandwidth or the delay between i and j, the computation ability of 7,
the availability of j’s receiving buffers, etc. “Given” an overlay network graph,
previous studies [6] have proposed the scheduling algorithms for any workers in
the overlay to schedule their tasks in hand.

Overlay network topology. Given a set of nodes, where each node in the set has
a predefined maximum number of links (or bandwidth) that the node can be
used to connect other nodes, there are many possible topologies that the overlay
networks can be formed. Formatting the topology may require to consider the
heterogeneity (e.g., computation speeds) of nodes involving the master-worker
computation. In addition, communication bandwidths and delays among the
nodes are unlikely equal. The heterogeneity is the nature of an overlay. Efficient

The Peering Problem in Tree-Based Master/Worker Overlays 85

and effective exploitation of heterogeneity of a master-worker overlay may help
the scheduling algorithms adopted to further leverage the system throughput.

Allocation of master and worker processes. Typically, worker processes in a mas-
ter /worker application are identical and there is no clear difference when they are
deployed in different locations (i.e., nodes) in the overlay. However, when given
a scheduling algorithm and an overlay network topology, different locations of
the master process deployed may result in different overall system throughput.
Shao et al. [7] provided a study of how to deploy the master process in order to
maximize the system throughput.

This study devotes to the second challenge mentioned above and intends to
understand how to have a good overlay that can improve the system through-
put. Particularly, we study the tree-shaped overlay networks. This is because
tree-shaped overlays are scalable and they are easy to be implemented. Second,
there has existed a simple, heuristic localized scheduling algorithm [6] which can
maximize the throughput for any given tree-shaped overlay without knowing the
global knowledge including the capability of each node and the communication
bandwidth between any two nodes.

Formatting an overlay suitable for applications based on the master/worker
paradigm can have a number of design criteria. We first provide in this study a
basic, generalized algorithm for tree-based overlay construction. The algorithm is
flexible to include different peering strategies such that different types of overlays
can be generated. We investigate how different tree-shaped overlays can affect
the system throughput and discuss which of the designs can perform better.

To our best knowledge, few work studies the overlay formation issue for ap-
plications comprising of masters and workers regarding the system throughput,
and the novelty of this study is to provide the design of master/worker over-
lay formation and to investigate the performance impact on system throughput
using different peering strategies.

2 Preliminaries

System model. We consider a P2P overlay G(V, E), where V = {p1,p2,p3, -,
pn} is the set of peers and E = { p;p;|p;,p; € V, and p; and p; have a link (or
a connection) in the overlay G }. For short, p; is called the neighbor of p; and
vice versa. We assume that in this study an overlay link is bi-directional, that is,
pip; = pjpi ' In G, each node can only have a constant number of neighbors 2.
The maximal degree of a node p; is denoted as degmaz(pi), which is the maximal
number of neighbors p; can maintain. Consequently, |E| < e degm“’””(p 2

In G(V,E), an application designates a node ppq € V as the master node
which executes the master process. Each node ps € V' — {pap} is thus a worker
node responsible for performing the worker process. All worker processes are

! However, we believe that our idea proposed in this paper can also be simply extended
to overlays with asymmetric communication links, i.e., pip; # p;pi-

2 We believe that the discussion in this paper can be simply applied to the case that
each peer has a bandwidth constrain to connect to other peers.

86 H.-C. Hsiao and H. Liao

identical. Since worker nodes may be heterogeneous in terms of their compu-
tational power, a worker node pg is simply denoted to have the working rate
WP(ps) equal to the maximal number of tasks completed (including to send
back the result to or towards the master node) by ps per time unit. We note
that WP(par) is the maximum number of tasks generated and results manipu-
lated, if required, by the master node pa4.

Each worker node ps € V—{pa} has two first-in-first-out buffers: one denoted
as FIFOgr) is used to receive tasks and the other FIFOg(g) is used to buffer
the computation results. ps can pick a task in FIFOg(7y and then remove the
task from FIFOg(7) to execute if it can accept the task without exceeding its
working rate. If ps cannot process the tasks buffered in its task buffer locally,
it may forward those tasks to other worker nodes. If a task is forwarded, it is
removed from an associated task buffer. ps stores the computation results in its
local FIFOg(R) that will be then returned “towards” the master node pq. It
may help relay the computation results received from other workers towards paq
by buffering their results in its F'IFOg(g). Similarly, if a result is forwarded, it
is removed from FIFOgR).

For the master node pay, two buffers, namely FIFO 7y and FIFO yR),
are available to store tasks it generates and results received from workers, respec-
tively. The master simply forwards tasks to worker nodes, which does not com-
pute tasks it generates. However, it requires to process results in its FIFO v (r)-
If a result is processed, it is removed from FIFO rqr)-

We assume that either the master or any worker can simultaneously process
results and tasks in the result and tasks buffers, respectively. That is, a node
can perform computation and communication, concurrently.

Each overlay link p;p; also has a working rate WL(p;p;) that is the maximum
number of tasks transferred both from p; to p; (or p; to p;) per time unit over the link
pip;j. Apparently, WL(p;p;) is proportional to the bandwidth between p; and p;.

Since master and workers nodes cooperatively serve an application, we assume
that they are willing to arbitrarily interconnect.

Problem Statement. In this paper, we intend to design a high-throughput
overlay G(V,E) by formatting the overlay geometry structure. The high-
throughout overlay maximizes the working rate W* (i.e., to maximize the num-
ber of tasks completed per time unit) for the application running on top of G
subject to

V] de
— Imax\P

Apparently, the throughput of the overlay G is constrained by the task gen-
erating rate at paq, i.e., W* < WP (pm).

3 Basic Algorithm

Table 1 shows the notations used in this paper. We note that

e The total number of parent (p;.prt) and child neighbors (p;.chd(k)) of p; is
equal to ¢(p;), where ¢(p;) < degmaz(Pi)-

The Peering Problem in Tree-Based Master/Worker Overlays 87
Table 1. Notations used in the algorithms

Notation Description
G(V,E) V (F) includes all nodes (edges) in the system
pm, ps the master and worker nodes, respectively
DiD;j the overlay link with two end nodes p;, p; € V
degmaz(pi) the maximal degree (number of overlay links) of p;
¢(p;) the number of links currently used by p;
W* the overall system throughput
WP(p;) the maximal computation working rate of p;
WL(e) the maximal communication working rate of e € F
FIFO,, () the buffer to store pending tasks in p;
FIFO,,(r) the buffer to store computation results in p;
p;.prt the parent neighbor of p;
pi.chd(k) the k" child neighbor of p;
F(p;) the naming value of p;
dif f(p:;) the value of F(p;) — F(pm)

° |E‘ — E‘lzllzc(pz) S Zli‘l deé]maz(?i).

e The initial value of F(p;) will be discussed later.

3.1 Generalized Overlay Formation

When a node A intends to join (or rejoin 3) the overlay, it first connects to
the bootstrap node that provides an entry point, say a node B, of the overlay
(we adopt the mechanism similar to Gnutella [2] that provides a bootstrap node
for a node joining). In general, if dif f(A) < dif f(B), B requires leaving and
rejoining the overlay, and meanwhile it reports its parent (B.prt) to A (in this
study we simply let B to rejoin the overlay by connecting to A if A has available
connections to accept B as its child node). Upon receiving the network address of
B.prt, A then iteratively performs the joining request by sending the request to
B.prt. The joining process is proceeded until the joining request is forwarded to
an ancestor node @ of B.prt having the dif f(Q) such that dif f(Q) < dif f(A).

A then connects to @ if @ has not reached its maximum number of connections

(i.e., ¢(Q) < degmaz(Q)) and dif f(Q) < dif f(A). Otherwise, Q either

(i) forwards the joining request of A to one of its children nodes among Q.chd(i)
(where i =1,2,3,---, k) if ¢(Q) = degmaz(Q), or

(it) forwards the joining request of A to the bootstrap node that in turn randomly
picks a node to receive the joining request and this node is not a descendant

node of Q if dif f(Q) > dif f(A).

For choosing a child node (i.e., item (7)), each node maintains a needle value.
That is, @ forwards the joining request to a child node Q.chd(k’), where

3 A node rejoins if it detects the failure of its parent node.

88 H.-C. Hsiao and H. Liao

Zf:lldegmaw(Q.chd(i)) < needle < Zf;‘;l Meanwhile,) increases its nee-
dle value as follows when forwarding a joining request every time

k
needle = (needle + 1) mod Z degmaz(B.chd(i)). (2)
i=1

We note that @ sorts its children nodes in decreasing order according to their
degmaz(+) values. The idea is to let @ uniformly relay joining requests to its
children nodes according to their maximum numbers of connections. To avoid
generating cycles in the overlay, in our implementation once a joining request is
forwarded downwards the overlay, the request cannot be sent towards the master
node pa?.

As we mentioned in Section 2, the system throughput W* is smaller than or
equal to WP (pm).

Theorem 1. The “ideal” system throughput W* of a given tree-shaped overlay
G(V,E) is
W (prm), 3)

assuming that each node in G can effortlessly forward the tasks it cannot ac-
commodate to its children nodes. And,

W*(pa) =min | WP(pa), > min(WL(e), W (ps) |, (4)
VeeU{paprs}

where pg is a child node of p4.

Proof. The proof is trivial. Given a tree-shaped overlay G, to find a maximum
throughput of G is to recursively do the bottom-up traversal of the tree.

Figure 2 illustrates Theorem 1. 55 = min(90, 25) + min(30, 130)
Consider the node A that can
send tasks to its left-hand (B)
and right-hand (C) child nodes
in the rates of 50 = min(100, 50)
and 10 = min(10, 20) tasks per
time unit, respectively. The resul-
tant throughput for the sub-tree
rooted at A is thus 90 = 30+ 50+
10. Similarly, we can calculate the
throughput for other nodes. Con-
sequently, we can have the overall
system throughput W* = 55.

Fig. 2. The values denote the computation and
communication overlay rates

* Due to space limitation, the details of the algorithm can be found in [8]. [8] also
provides the maintenance and optimization for the overlay formation.

The Peering Problem in Tree-Based Master/Worker Overlays 89

3.2 Task Computation and Dissemination

Conceptually, the above overlay formation algorithm is to form a tree-shaped
overlay G(V, E). To our best knowledge, given G(V, E), the best scheduling al-
gorithm without global knowledge is based on the bandwidth-centric principle [9],
which lets a node A send a task to its child node according to the communication
delay between the sending node and each of its children nodes if A is execut-
ing another task and its task buffer FIFO 4.7 is not empty. More precisely, A
prioritizes its children nodes according to the delay required of receiving a task
sent by A. A child node B receives a task from A if B’s task buffer (F/FOpg(1))
is not full. Otherwise, A selects the next child node C that has the smallest
communication delay between A and C and that can accept the task sent by
A. In this study, higher the working rate of an overlay link, say AB, the higher
priority to receiving a task sent by A is assigned to B. To control the buffer
usage, we implement the heuristics proposed in [6].

When A completes a task, it pushes the associated computation result to its
result buffer (FIFO 4(r)). A pushes the results stored in the result buffer back
to its parent node A.prt if A.prt’s result buffer (FIFO 4 pr¢(r)) is not full.

4 Peering Strategies

In this section, we discuss a number of overlay alternatives using the basic al-
gorithm presented in Section 3. These alternatives depend on how we define the
naming value for each peer, i.e., the peering strategies. As we will show, the
basic algorithm is flexible to construct different types of overlays.

4.1 Degree-Centric

The degree-centric overlay (DC) is constructed by referring to the maximal num-
ber of connections a peer has. A previous study has shown that capable peers
are often connected by a large number of peers [10]. Therefore, the number of
overlay neighbors a peer can have implicitly implies the “capability” of a peer.

For formatting a degree-centric overlay (DC), we define the naming value

F(ps) for each worker node ps as degmalm(ps)' We note that in this type of

overlays F(pa) = 0 for the master node pag.

Apparently, if the naming function is defined as degmlaz ()’ then a degree-centric
overlay organizes nodes that have relatively larger degmq.(-) close to pas. Nodes
with less numbers of available connections are likely planted nearby the leaves
of the overlay. Intuitively, this overlay will potentially have a low diameter in
terms of the number of overlay hops.

4.2 Network Delay-Centric

In the network delay-centric overlay (NDC), the naming function F(ps) is de-
fined as the delay required to send a task from ps to paq for any ps € V. For

90 H.-C. Hsiao and H. Liao

simplifying the discussion, we assume the overlay link is symmetric, i.e., the de-
lays of sending a task from ps to paq and from paq to ps are equal. Notably,
F(pm) = 0.

Conceptually, the network delay-centric overlay is to structure nodes accord-
ing to their network delays to the master. Nodes geographically close to the
master join nearby the master. Nodes nearby the leaves of the overlay are dis-
tant from the overlay root. That is, the delay-centric overlay intends to match
the underlying network topology.

It will be clear that the master node in a delay-centric overlay can rapidly
disseminate its tasks to workers. However, this requires a node to measure the
communication latency between the master and itself. If the node joins multiple
applications, then the node will need to take considerable overhead to measure
these delays. It becomes worse if the delays have high variance, and thus requires
nodes to measure the delays often.

It is possible that a delay-centric overlay depends on the public network service
such as the network positioning system [11] that provides the virtual coordinate
of any node in the system. If so, we can simply estimate the communication
delay between any two nodes by calculating the difference of their coordinates.
However, this approach depends on the availability of the network coordinate
service.

We note that in this study we measure the delay of an overlay link e € E as
the value t%IZEgP

4.3 Compute-Centric

= Whps):
Here, F(pa) = 0. The heuristic of constructing such an overlay is to aggregate
nodes that have high computation working rates W7P(+) nearby the master node.
These nodes may efficiently accomplish tasks when compared with incapable
ones.

Notably, nodes in a compute-centric overlay need to estimate their WP(:)
values. However, nodes can be heterogeneous and need to compare their naming
values. Consequently, nodes require benchmarking their performance regarding
a reference machine [12]. Clearly, this needs to have representative benchmark
programs.

The compute-centric overlay (CC) refers to the naming function F(ps)

4.4 Synthetic

It is possible to synthesize several naming functions into a single one in order to
generate a desirable overlay. That is, the naming function is defined as

F(ps) = fi(ps) @1 fo(ps) @2 -+ Dr—1 [r(ps)- (5)

We discuss one possible type of overlay as follows.

Delay
Compute

overlay (denoted as g) by having k = 2, ®; as the division operator, fi(ps) as

Delay

Compute -Centric

-Centric. One possible type of overlays is called the

The Peering Problem in Tree-Based Master/Worker Overlays 91

the delay of sending a task from paq to ps, fa(ps) = WP(ps), and fi(pm) ©
f2(pam) = 0. This type of overlays is from the intuition that the master node is
likely to send its tasks to nodes that are capable and also geographically nearby.

Clearly, when including more performance metrics to the naming function,
the overheads to measure those metrics are increased, accordingly.

Hybrid of ID-, Degree-, Delay- and /or Computer-Centric. Basically, the
ID-, degree-, delay- and compute-centric overlays are special types of synthetic
overlays. They simply choose a single naming function such as the random hash,
degmlm o and W713(.) . It is possible to study other synthetic overlays with different

Delay

naming functions, though we only consider the Compute

-centric in this paper.

5 Performance Results

We perform the detailed simulations °. We also perform the numerical analysis.
However, due to space limitation, the readers who are interested in the analysis
results can refer to [8]. The simulation results are shown in Figure 3. When "™ 6
decreases, the performance bottleneck appears in the overlay network links. This
leads to DC, NDC, CC and g have the nearly identical system throughput (see

Figure 3(a)). However, when 77" increases, NDC performs better than DC and

CC (see Figure 3(c)). This is because NDC can exploit the network locality to
improve the system throughput. However, g has the performance results nearly
identical to NDC. This does not confirm what we have estimated for 2 [8]. This
may be because we have not taken the estimation errors into our analysis. We
will investigate this in the future.

o

.

016 - -

f=] [=]
. =
=1 =1
= LwDC B
o [=]
=1 - =1
2 [
= =
= =

-SR-S T

0.10 RENDC .

G-a--e
TR

0.05 pEDIC i | S Fomrgprpm)

0.00 s | L 1 L 1 L | L 0 " | " | " | " | L
o Z00 400 B00 a0o 1000 o 200 400 600 200 1000

Mumber of Moces Number of Nodes

comm
comp

Fig. 3. Effects of varying

® The details of the experimental setting are in [8].
5 The Cc‘j;::; ratio denotes the ratio of the communication working rate to the compu-
tation working rate.

92

6

H.-C. Hsiao and H. Liao

Conclusions

We have presented an overlay formation algorithm which dynamically structures
master and worker nodes as a tree-shaped master-worker overlay. The basic
algorithm is flexible to include different peering strategies based on the number of
connections, network delay, computation capability, etc. We investigate a number
of different master-worker overlays, namely, DC, NDC, CC and g. Through
numerical analysis and simulations, we conclude that NDC can perform better
than DC, CC and g in terms of the system throughput since it is designed with
the exploitation of network locality in mind.

References

N =

10.

11.

12.

. (Napster) http://www.napster.com/.

(Gnutella) http://rfc-gnutella.sourceforge.net/.

. Verma, D.C.: Content Distribution Networks, An Engineering Approach. Wiley

(2002)

. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-Peer Support for Massively

Multiplayer Games. In: Proceedings of IEEE INFOCOM. (2004)

. (SETI@home) http://setiathome.ssl.berkeley.edu/.
. Kreaseck, B., Carter, L., Casanova, H., Ferrante, J.: Autonomous Protocols for

Bandwidth-Centric Scheduling of Independent-task Applications. In: Proceedings
of the International Parallel and Distributed Processing Symposium, IEEE Com-
puter Society (2003) 26-35

. Shao, G., Berman, F., Wolski, R.: Master/Slave Computing on the Grid. In:

Proceedings of the Heterogeneous Computing Workshop, IEEE Computer Society
(2000) 3-16

. Hsiao, H.C., Liao, H.: The Peering Problem in Tree-based Master /Worker Overlays.

Technical report, National Cheng-Kung University, Taiwan (2005)

. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.:

Scheduling Strategies for Master-Slave Tasking on Heterogeneous Processor Plat-
forms. IEEE Transactions on Parallel and Distributed Systems 15 (2004) 319-330
Sen, S., Wang, J.: Analyzing Peer-to-Peer Traffic Across Large Networks.
ACM/IEEE Transactions on Networking 12 (2004) 219-232

Ng, T., Zhang, H.: Predicting Internet Network Distance with Coordinates-Based
Approaches. In: Proceedings of IEEE INFOCOM. (2002) 170-179

(SPEC) http://www.spec.org/.

MUREX: A Mutable Replica Control Scheme
for Structured Peer-to-Peer Storage Systems

Jehn-Ruey Jiang', Chung-Ta King?, and Chi-Hsiang Liao®

! Department of Computer Science and Information Engineering,
National Central University,
Jhongli, 320 Taiwan
jrjiang@csie.ncu.edu.tw
2 Department of Computer Science, National Tsing Hua University,
Hsinchu, 300 Taiwan
king@cs.nthu.edu.tw, g926704@oz.nthu.edu.tw

Abstract. This paper proposes MUREX, a mutable replica control scheme, to
keep one-copy equivalence for synchronous replication in structured P2P
storage systems. For synchronous replication in P2P networks, it is proper to
adopt crash-recovery as the fault model; that is, nodes are fail-stop and can
recover and rejoin the system after synchronizing their state with other active
nodes. In addition to the state synchronization problem, we identify other two
problems to solve for synchronous replication in P2P storage systems. They are
the replica acquisition and the replica migration problems. On the basis of
multi-column read/write quorums, MUREX conquers the problems by the
replica pointer, the on-demand replica regeneration, and the leased lock
techniques.

1 Introduction

Peer-to-Peer (P2P) storage system has been an active research topic and many
systems have been proposed [1, 3-6, 10, 12, 14, 16]. Some systems adopt the
unstructured P2P approach [1, 3], in which there is no restriction on the
interconnection of the nodes. Unstructured P2P storage systems are easy to build and
maintain, but it is difficult to guarantee the quality in accessing the stored data [11].
Many P2P storage systems [4-6, 10, 12, 14, 16] are thus built on top of structured
P2P networks [11, 13, 15].

Structured P2P storage systems rely on the concept of distributed hash table
(DHT). Data objects and peer nodes use the same hash function to acquire their IDs.
A data object with the hashed key k is published to and managed by the peer node
whose hashed key (or ID) is “closest” to k. Any given key in the hashing space has a
node to take charge of. Even after that node leaves, the underlying routing scheme
will always send requests for that key to the node currently having the closest ID to
the key. In this way, the leaving node is substituted and the keys managed by it are
taken over by the substituting node. Please refer to Fig. 1 for such a scenario (node p
substitutes leaving node g). Similarly, when a node newly joins the network, it will
partially substitute a certain node to manage the keys that are now closest to its ID.
Please refer to Fig. 1 for such a scenario (newly joining node u partially substitutes
node v).

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 93 — 102, 2006.
© Springer-Verlag Berlin Heidelberg 2006

94 J.-R. Jiang, C.-T. King, and C.-H. Liao

Data Object Data Object
(s

Hash Function

r s

‘ Hashed Key Space \

nodeeaving node joining

Fig. 1. The scenarios of node joining and leaving

Although the underlying P2P routing can adapt to dynamic node joining and
leaving, there is a problem that the data object stored in nodes will be lost when nodes
fail or leave. A common solution to this problem is to replicate the data objects
among nodes to provide high data availability. If the data objects are read-only (or
non-mutable), then the P2P storage system will only need to consider where to
replicate the data objects [4-6]. The system becomes much complicated if the data
objects are mutable [10, 12, 14, 16]. In this paper, we concentrate on mutable P2P
storage systems because they are desirable by most practical applications.

In mutable P2P storage systems, data replication must obey the criteria of one-copy
equivalence to ensure data consistency. There are two types of mechanisms to achieve
such a criterion: synchronous replication and asynchronous replication. The former
requires that each write operation should finish updating all replicas before the next
write operation proceeds. The latter regards a local write operation as complete once
data object is written to the local replica; data object is then asynchronously written to
other replicas. The synchronous replication can ensure data consistency strictly, but
may have long operation latency. On the other hand, the asynchronous replication
may violate data consistency, but has shorter latency. However, when data
inconsistency occurs, complex log-based mechanisms should be invoked to roll back
the system to a consistent state. In this paper, we adopt synchronous replication since
we take data consistency as the most significant factor and we regard that there may
not be available storage for storing logs for system roll-back in asynchronous
replication.

For synchronous replication in P2P networks, it is proper to adopt crash-recovery
as the fault model. In a crash-recovery system, nodes are fail-stop and can recover and
rejoin the system after synchronizing their state with other active nodes. In addition to
the state synchronization problem, we have two more problems to solve for
synchronous replication in P2P storage systems. First, in P2P environments, an active
node p may substitute some failing/leaving node ¢ in the recovery process. Thus, node
p must acquire the replicas hosted by node g somehow. Below, we call this the replica
acquisition problem. Second, a newly joining node u will partially substitute an active
node v to share v’s load by hosting part of v’s replicas. Thus, part of v’s replicas
should be migrated to node u. Below, we call this the replica migration problem.

MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 95

In this paper, we propose MUREX, a mutable replica control scheme, to keep one-
copy equivalence for synchronous replication in structured P2P storage systems. On
the basis of multi-column read/write quorums, MUREX conquers the problems
mentioned by the replica pointer, the on-demand replica regeneration, and the leased
lock techniques. We will analyze and simulate MUREX in terms of communication
cost and operation success rate.

The rest of the paper is organized as follows. Preliminaries are given in Section 2.
In Section 3, we discuss the problems encountered in realizing synchronous
replication for P2P mutable storage systems. We then in Section 4 show how
MUREX solves the problems, and simulate MUREX in Section 5. Concluding
remarks are drawn in Section 6.

2 Preliminaries

As a replica control scheme, MUREX needs to ensure data consistency. In this paper,
we adopt the one-copy equivalence consistency criteria [8], which states that the set of
replicas must behave as if there were only a single copy. Conditions to ensure one-
copy equivalence are

(1) no pair of write operations can proceed at the same time,
(2) no pair of a read operation and a write operation can proceed at the same time,
(3) aread operation always returns the replica that the last write operation writes.

Quorum-based schemes are popular mechanisms to enforce one-copy equivalence
for synchronous replication since they render relatively high data availability and low
communication cost. The basic concept of such schemes is described as follows. Each
data object has n replicas, each of which is associated with a version number. A read
operation should read-lock and access a read quorum of replicas and return the replica
owning the largest version number. On the other hand, a write operation should write-
lock and access a write quorum of replicas and then updates them with the new
version number, which is one more than the largest version number just encountered.
If we restrict the write-write exclusion and the write-read lock exclusion, and restrict
that any pair of a read quorum and a write quorum, and any two write quorums have a
non-empty intersection, then one-copy equivalence is guaranteed.

MUREX adopts the multi-column quorums, which have the smallest quorums
(constant-sized quorums in the best case) among the mechanisms. It is noted that
smaller quorums imply few accesses of replicas, which in turn imply lower
communication cost. Furthermore, as shown in [8], multi-column quorums are
candidates to achieve the highest availability, which is the probability for a quorum to
be formed in an error-prone environment.

Multi-column quorums are constructed with the aid of the multi-column structure
MC(m)=(Cy,...,C,,), which is a list of pairwise disjoint sets of replicas. Each set C; is
called a column and must satisfy |C;|>1 for 1<i<m.

By organizing data replicas as multi-column structure MC(m)=(C4,...,C,,), the write
and the read quorums are defined as follows:

96 J.-R. Jiang, C.-T. King, and C.-H. Liao

A write quorum under MC(m) is a set that contains all replicas of some column C,
1<i<m (note that i=1 is included), and one replica of each of the columns Cj,y,...,C,,.
A read quorum under MC(m) is either

Type-1: a set that contains one replica of each of the columns Ci....,C,,.

Or

Type-2: a set that contains all replicas of some column C;, 1<i<m (note that i=1 is
excluded), and one replica of each of the columns Cj,y,...,C,,.

3 The Problems

In this section, we identify three problems encountered in enforcing synchronous
replication for structured P2P storage systems. The three problems are replica
migration, replica acquisition, and state synchronization. Below, we elaborate the
problems one by one.

® Replica Migration: When a node u newly joins the system and partially substitutes
another node v to host some replicas, node v should transfer the replicas to u
immediately. However, in a constantly changing P2P environment, the cost of
transferring replicas may be too high. We need an efficient mechanism to allow
replicas to migrate from substituted node to substituting node.

® Replica Acquisition: When an active node p substitutes a failing/leaving node ¢,
node p needs to acquire all replicas hosted by ¢g. The problem is that node ¢ has no
idea about which replicas are hosted by p. Thus, we need a mechanism to make
node p know which replicas are hosted by node ¢ and to acquire the replicas
efficiently.

® State Synchronization: Suppose an active node p substitutes a failing/leaving node
g, and p has acquired a replica r hosted by g previously. To make replica r
effective, we have to synchronize r’s state, i.e., to ensure that all the participating
nodes have the same view with respect to r’s states. We must ensure the acquired
replica r is an up-to-date copy. Furthermore, since there may be a node that has
locked replica r to make r in the locked state, we need a mechanism to ensure that
the locked state is not violated after p acquires replica r.

4 The Proposed Scheme - MUREX

4.1 Overview

For a data object, there are n replicas with hashed keys ki,....,k,, where
k;=HASH;(data object name), ..., k,=HASH,(data object name). The replicas are
disseminated to the nodes whose hashed ID are nearest to ki,...,k,, respectively.
Please refer to Fig. 2 for the illustration of the replica dissemination. Each replica has
a version number which is O initially and will increase gradually. MUREX organizes
the n replicas into a multi-column structure to help form read and write quorums.
MUREX provides the following operations:

MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 97

® publish(CON, DON): to place n replicas at the nodes associated with k;,...,.k, for
the object of name DON (standing for Data Object Name) with content CON
(standing for CONtent) and version number 0.

® read(DON): to acquire the up-to-date replica of the object of name DON by
locking all replicas of a read quorum.

e write(CON, DON): to update all the replicas of a write quorum with content CON
for the object of name DON.

Data Object
/ "
[Hash Function 1 | [Hash Function2 | ... [Hash Functionn]
kz kl kn
0 2181
\ Hashed Key Space \

replica 2 replica n

Fig. 2. The dissemination of n replicas of a data object

4.2 Read/Write Quorum Construction

Initially, a data object owner publishes the data object of name DON with content
CON by calling publish(CON, DON). Afterwards, any participant can call read (or
write) operation to read (or write) the data object by issuing RLOCK (or WLOCK)
messages. With the help of the DHT and the multi-column structure, the messages
will reach all members of a read (or write) quorum. The two functions
Get_Read_Quorum and Get_Write_Quorum in Fig. 3 try to issue RLOCK and
WLOCK messages to nodes in a last-to-first column-wise manner to return
respectively the read and the write quorums under a multi-column structure. It is
noted that below we use the words “node” and “replica” interchangeably since a
replica must be hosted by a node. Below, we also use LOCK messages to stand for
WLOCK messages or RLOCK messages.

When a node receives a LOCK message to request for locking a data object, it
sends a MISS message to the requester if it does not own a replica of the data object.
As we will show, the MISS message will cause the requester to send an up-to-date
replica of the data object later. It is noted that a node has at most one pending MISS
message for each replica. A MISS message is said to be pending if there is no replica
sent in response to it. When a node has a pending MISS message for a replica and
further receives a LOCK message for locking the replica, it will send a WAIT
message to the requester. On the other hand, if the node owns the replica when it
receives a LOCK message for a data object, it then checks if there is a lock conflict.
We say that there is a lock conflict if a read-locked replica receives a write-lock
request, or if a write-locked replica receives a write-lock or a read-lock request. If

98 J.-R. Jiang, C.-T. King, and C.-H. Liao

there is no lock conflict, the node locks the replica and then replies with an OK
message containing the replica version number. On the contrary, if there is a lock
conflict, the node replies with a WAIT message.

Function Get_Write_Quorum((Cs;,...,Cm): MC Structure): Set;
Var R = J: Set;
For (i=m,...,1) Do
Send WLOCK to all nodes in C;jand enter “wait period” for getting replies;
If all nodes in C;reply with WAIT or MISS
Then {Send UNLOCK to nodes in Ciu...uC;; Exit;}
If all nodes in C;reply with OK Then Return RUC;
Else If a node u replies OK Then R=RuU{u}; //note: NO Return here
EndFor
End Get_Write_Quorum
Function Get_Read_Quorum((Cs,...,Cn): MC Structure): Set;
Var R = J: Set;
For (i=m,...,1) Do
Send RLOCK to all nodes in C;and enter “wait period” for getting replies;
If all nodes in C; reply with WAIT or MISS
Then {Send UNLOCK to nodes in Ciu...uC;j; Exit;}
If 1 and all nodes in C;reply with OK Then Return RUC;
Else If 21 and a node u replies with OK Then R=RuU{u}; //note: NO Return here
Else If =1 and a node u replies with OK Then Return Ru{u};
EndFor
End Get_Read_Quorum

Fig. 3. Two functions that can properly return a read and a write quorum, respectively

After sending LOCK messages, a node enters the “wait period”, which is of the
length of a turn-around time. During the wait period, if a node has got any WAIT
message, it can conclude that there is lock contention. For such a case, the node sends
UNLOCK messages to all the nodes that it has sent LOCK messages. Only after a
random backoff time, can the node start over again to send LOCK messages
for locking replicas of a quorum. The random backoff concept is borrowed from
Ethernet [2]. It is used to avoid continuous conflicts among contending nodes.

After Get_Write_Quorum or Get_Read_Quorum function returns a write quorum
or a read quorum, it means that all replicas in the quorum have been locked. The node
calling the function can then execute the desired operation. After the operation is
finished, a node sends UNLOCK messages to all nodes that it has sent LOCK
messages to unlock the replicas. A read operation in MUREX reads the replica of the
largest version number from the read quorum. On the other hand, a write operation
always writes all replicas of a write quorum with the version number one more than
those ever encountered.

4.3 Replica Pointers

When a node u newly join the system to share part of the load of node v by managing
replicas of keys from k to k7 the replicas of keys from k to k”should migrate from

MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 99

v to u. To reduce the cost of transferring all the replicas, MUREX transfers replica
pointers instead of the actual replicas. A replica pointer is a five-tuple of the form:
<hashed key, data object name, version number, lock state, actual storing location>.

It is produced when a replica is generated and can be used to locate the actual
replica. When node v owns the replica pointer of replica r, it is regarded as 7’s host,
which can reply to the lock request for r. On the other hand, when node v sends out
the replica pointer of replica r, it is no more the host of r and cannot reply to the lock
request for r (even if it stores the actual replica of r).

The replica pointer is a lightweight mechanism for transferring replicas; it can be
propagated from node to node in a very low cost. When a node u owing the replica
pointer of r receives a lock request for r, it should check whether the node actually
storing r is still alive. If so, u can behave as host of r. Otherwise, u regards itself as
having no replica r. It is noted that every transfer of replica pointer between two
nodes, say from v to u, should be recorded locally by v so that later messages, such as
UNLOCK messages, destined to v for replica r can be sent to the last node having the
replica pointer.

4.4 On-Demand Replica Regeneration

When a node ¢ fails/leaves and another node p substitutes node ¢, it is needed for
node p to acquire all replicas hosted by ¢g. However, we have the problem that node p
has no idea about which replicas are hosted by g. Below, we show how the replicas
can be acquired in an on-demand manner. The term “on-demand” means that node p
only acquire requested replicas. When node p receives a LOCK message from node u
for locking a replica, it should send a MISS message if it does not own the replica.
Node p is assumed to have no replica r if the following conditions hold:

1. p does not have the replica pointer of r
2. p has the replica pointer of r and the pointer indicates that w stores r, but w is not
alive.

After obtaining (resp., generating) the newest replica by executing a read (resp.,
write) operation, node u should send the replica to node p. It is noted that a node has
at most one pending MISS message for a replica. Furthermore, when a node has a
pending MISS message for a replica and further receives a lock request for the
replica, it will send a WAIT message to the requester. In such a manner, we can
ensure that a node will only receive one replica in response to a MISS message.

By the on-demand replica regeneration technique, node p passively acquires
replicas only when the replicas are requested. For the replicas never requested, there
is no need to acquire them to keep the overhead as low as possible. However, the
number of replicas of a data object may decrease gradually and influence the
persistency of the data object. Fortunately, the bad influence does not occur for
replicas that are accessed frequently. Moreover, we can allow the publisher of a data
object to periodically perform the “dummy read operation” for the data object, which
will be described later. We even can demand each participating node to periodically
perform the dummy read operation for rarely-accessed data object replica hosted by it.
When a replica of a data object is not accessed for a specific period of time, the
dummy read operation is performed once. The dummy read operation is similar to the
read operation and plays the role of checking if replicas of the data object are still

100 J.-R. Jiang, C.-T. King, and C.-H. Liao

alive; it does not read the replica in practice and thus only incurs little overhead.
When some replicas of the data object are missed, the node initiating the dummy read
operation can re-disseminate the replica to the proper node. The persistency of the
data object can thus be ensured.

4.5 Leased Locks

When a replica r of a data object is re-disseminated to some node, we must ensure
that all participating nodes have the same view with respect to the replica. We first
need to ensure the replica is up-to-date. If the replica is re-disseminated due to a
node’s receiving a MISS message, the replica is surely up-to-date. This is because a
node re-disseminates the replica only after it has executed the read (or write)
operation to acquire (or generate) the up-to-date replica. On the other hand, if the
replica is re-disseminated due to a node’s performing a dummy read operation, the
node is demanded to first obtain the up-to-date replica and then to re-disseminate the
replica.

The second thing for all participating nodes to agree with is the state of replica r.
Since there may be some node that has locked replica r to make r in the lock state, we
need to ensure that the lock state is not violated. To achieve this, each lock is assumed
to be a leased lock that has a leased period of L. That is to say, after a replica is
locked, it becomes unlocked automatically after a period of L. Assume that the critical
section (CS) of a read or a write operation takes C time to complete. A node should
release any obtained lock if it still has no chance to enter the CS and H>L-C-D holds,
where H is the holding time of the lock and D is the propagation delay for
transmitting the lock. Please see Fig. 4 for the relation of H, L, C and D. The
condition of H>L-C-D can ensure a node to complete the desired operation before any
lock expires.

L

¥ time

S |
[~ “1
!

LOCK message

» time

Fig. 4. The relation of H, L, C and D

When a node detects that a lock of a specific replica is expiring (i.e., H>L-C-D is
going to hold), it is possible that the locks of other replicas will also expire in the near
future. Thus, we demand a node to release all locks and start over to acquire the locks
again. In this manner, MUREX can avoid deadlock and starvation. Furthermore, we
demand a node to wait for a random backoff time before acquiring the locks next
time. This can alleviate the chance of repeatedly occurrence of contention-then-
release-all-locks situation.

Now, we describe how to make all participating node have the same view for the
lock state by the concept of leased locks. Suppose a node p substitutes a failing/
leaving node ¢ to host replica r, and node p has received the up-to-date replica of r at
time 7. After receiving the up-to-date replica, node p generates a replica pointer for r

MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 101

and can start to reply to LOCK messages for locking r at time 7+L, where L is the
leased period of the lock. In this manner, all participating nodes have the same view
with respect to 7’s lock state.

5 Simulation

We conduct a simulation for MUREX with regard to success rates of operations for
the purpose of evaluating the influence of different multi-column quorums. An
operation is considered to be successful if it can finish before any leased lock expires.
The simulation assumes that the underlying DHT is Tornado [7]. We adopt four
multi-column structures, namely MC(5, 3), MC(4, 3), MC(5, 2) and MC(4, 2), for the
construction of read/write quorums. When we simulate the case for MC(m, s), the
leased period is assumed to be mx(turn-around time). We also assume that there are
totally 2000 nodes in the system. There are three experiments in our simulation. For
each experiment, we perform the simulation for 3000 seconds, during which 10000
operations are requested, half for reading and half for writing. Each request is
assumed to be destined for a random file (data object); thus, when the number of files
increases, the degree of contention decreases. We have plotted performance figures
for the three experiments. However, due to the limitation of space, we do not include
them here. Please refer to [9] for the figures.

In the first experiment, we assume there are 200 nodes that may join or leave the
system randomly during the experiment. In this experiment, we observe that the
success rate increases as the number of files increases. This is because the degree of
contention decreases when there are more files. Among the four multi-column
structures, we can see that MC(5, 3) achieve the best performance and MC(4, 2)
achieves the worst, while MC(4, 3) and MC(5, 2) achieve in-between and resembling
performances. From this experiment, we can check that lower contention renders
higher success rates.

In the second experiment, we assume there are 250 files in the systems and 0, 50,
100 or 200 nodes may leave during the experiment. We observe that the success rate
decreases as the number of leaving nodes increases. This is because more leaving
nodes can cause more unsuccessful lock requests. Among the four multi-column
structures, we can see that MC(5, 3) renders the best performance and MC(4, 2)
renders the worst, while MC(4, 3) and MC(5, 2) render in-between and resembling
performances. From this experiment, we can see that higher node leaving rates cause
worse performances.

In the third experiment, we assume that no node joins or leaves. We observe that
the success rate increases as the number of files increases. This is because the degree
of contention decreases when there are more files. We can also see that the
performances for the four multi-column structures are resembling. By this
experiment, we can see that the degree of contention is a dominant factor in the
success rate.

6 Conclusion

In this paper, we have identified three problems for synchronous replication in DHT-
based mutable P2P storage systems. The problems are replica migration, replica

102 J.-R. Jiang, C.-T. King, and C.-H. Liao

acquisition and state synchronization. We have proposed MUREX, a mutable replica
control scheme, to solve these problems by the concepts of multi-column read/write
quorums, replica pointers, on-demand replica regeneration and leased locks. We have
simulated MUREX to show that it has good operation success rates.

References

1. Bhagwan, R., Moore, D., Savage, S., Voelker G.: Replication Strategies for Highly
Available Peer-to-peer Storage. In: Proc. of International Workshop on Future Directions
in Distributed Computing. (2002)

2. Chockler, G., Malkhi, D., Reiter, M. K: Backoff Protocols for Distributed Mutual
Exclusion and Ordering. In: Proc. of the 21st International Conference on Distributed
Computing Systems. (2001) 11-20

3. Cohen, E., Shenker, S.: Replication Strategies in Unstructured Peer-to-peer Networks. In:
Proc. of SIGCOMM. (2002)

4. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area Cooperative
Storage with CFS. In: Proc. of SOSP. (2001)

5. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility. In:
Proc. of HotOS VIII. (2001)

6. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive Replication in
Peer-to-peer Systems. In: Proc. of International Conference on Distributed Computing
Systems. (2004)

7. Hsiao, H.-C., King, C.-T.: Tornado: A Capability-aware Peer-to-peer Storage Overlay.
Journal of Parallel and Distributed Computing. 64 (2003) 747-758

8. Jiang, J.-R.: The Column Protocol: A High Availability and Low Message Cost Solution
for Managing Replicated Data. International Journal of Information Systems. 20 (1995)
687-696

9. Jiang, J.-R., King, C.-T, Liao, C.-H.: MUREX: A Mutable Replica Control Scheme for
Structured Peer-to-Peer Storage Systems. Technical Report. In: http://www.csie.ncu.edu.
tw/ ~jrjiang/MUREX .pdf. (2006)

10. Muthitacharoen, A., Morris, R., Gil, T., Chen, B.: Ivy: A Read/write Peer-to-peer File
System. In: Proc. of the Symposium on Operating Systems Design and Implementation.
(2002)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proc. of ACM SIGCOMM. (2001)

12. Rodrig, M., Lamarca, A.: Decentralized Weighted Voting for P2P Data Management. In:
Proc. of the 3rd ACM International Workshop on Data Engineering for Wireless and
Mobile Access (2003) 85-92

13. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In: Proc. of IFIP/ACM International Conference on
Distributed Systems Platforms. (2001)

14. Stein, C., Tucker, M., Seltzer, M.: Building a Reliable Mutable File System on Peer-to-
peer Storage. In: Proc. of 21st IEEE Symposium on Reliable Distributed Systems. (2002)

15. Stoica, L., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. In: Proc. of ACM SIGCOMM. (2001)

16. Yu, H., Vahdat, A.: Consistent and Automatic Replica Regeneration. In: Proc. of First
Symposium on Networked Systems Design and Implementation. (2004)

The Subscription-Cover Based Routing Algorithm
in Content-Based Publish/Subscribe

HongLiang Yuan, ChangGuo Guo, and Peng Zou

School of Computer, National University of Defense Technology, ChangSha, China
hlyuan@nudt.edu.cn, cgguo@l63.net, pzou@nudt.edu.cn

Abstract. Subscription-cover relationship has been proposed to reduce the size
of routing-table in intermediate brokers in the publish/subscribe network.
Existing researches neglect the extent that covering can be applied and don’t
give a simple approach to validate the correctness of routing-table when using
subscription-cover. In this paper, we propose two routing algorithms based on
subscription-cover, which are strict subscription-cover based routing (SSCBR)
and relaxed subscription-cover based routing (RSCBR). The goal of the former
is to maintain the least covered subscriptions. The latter maintains more
covered subscriptions to balance in memory, time and network traffic. On the
other hand, we propose a necessary and sufficient condition of correct routing-
table configuration when applying SSCBR. We can easily validate the
correctness of broker’s routing-table through it. Experiments evaluate the
ability of two algorithms in reducing the routing-table size of intermediate
broker and the efficiency of SSCBR and RSCBR under different
subscribing/unsubscribing distribution.

1 Introduction

Publish/Subscribe (P/S) paradigm provides asynchronous, anonymous and one-to-
many communication, which has got great attention over the past few years. P/S
decouples in time, space and control flow [3]. Subscribers specify their interests in
certain event conditions, and will be notified afterwards of any event fired by a
publisher that matches their registered interests. Especially content-based
publish/subscribe provides filtering on notification’s content, which has been widely
used for selective data dissemination [1], P2P and pervasive computing [2], and so on.

The research emphasis has been on the architecture [6], matching algorithm [23,
24] and content-based routing [5, 11, 21]. For large scale P/S system, a great
challenge is to manage amounts of subscriptions (interest of information consumer)
and events. Most existing content-based P/S use subscription forwarding [6] to build
route for events diffusing. Subscription-cover [5, 6, 11] has been proposed to reduce
the routing table size of intermediate broker. But they all focus on how to efficiently
manage and calculate subscription covering. All of them pay attention on the
optimal subscription-cover, which is to reduce the routing table size as best as. But
that may need much time to calculate the covering or covered relationship
between subscriptions. Either of them doesn’t distinguish the extent of applying

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 103 —114, 2006.
© Springer-Verlag Berlin Heidelberg 2006

104 H. Yuan, C. Guo, and P. Zou

subscription-cover idea. Additionally, Either of them doesn’t put forward a simple
and efficient approach to validate the correctness of broker’s routing table.

This paper focuses on the covering relationship between subscriptions when the
broker topology is an acyclic graph. Our contributions are three folds. First, we
distinguish the optimal and suboptimal subscription-cover. We propose two routing
algorithms based on subscription-cover: strict subscription-cover based routing
(SSCBR) and relaxed subscription-cover based routing (RSCBR). The former is the
optimal subscription-cover as defined by other research effort [11]. The latter is
suboptimal subscription-cover, which balances in memory, calculation time and
network traffic. Secondly, We propose a necessary and sufficient condition of correct
routing-table configuration when using SSCBR. We can easily validate the
correctness of broker’s routing table according to it. Furthermore, we prove the
correctness of SSCBR and RSCBR algorithm implementation through that necessary
and sufficient condition. Thirdly, we evaluate SSCBR and RSCBR in detail and
compare their performances under different subscribing and unsubscribing operation
distribution.

This paper is organized as follows. We first introduce the background and our
contributions. Section 2 presents related works. Section 3 describes our subscription-
cover based routing algorithm in detail. Section 4 is experiments. Section 5 concludes
this paper and presents future works.

2 Related Works

Now there exist many publish/subscribe routing algorithms. They can approximately
be divided into two categories [8], filter-based approach [5, 6, 7, 8, 9, 10, 11] and
multicast-based approach [12, 13, 14, 15, 16, 17, 18]. In the multicast-based
approach, event is mapped into the single appropriate group at the publisher side.
Because only a limited number of multicast groups can be built, subscribers with
different interests may be clustered into same group, and events may be sent to
uninterested subscribers as well. The network efficiency of this approach is often
highly sensitive to the distributions of events and subscriptions.

In the filter-based approach, events are filtered on its content at each hop in the
transmission from publisher to subscriber, and only forwarded toward directions that
lead to matching subscriptions. This approach can achieve high network efficiency,
but at the cost of expensive subscription information management and event matching
at every intermediate server. On the other hand, filter-based approach is highly
affected by the publish/subscribe server topology. In order to avoid duplication, most
system adopt acyclic (application layer) network topology, such as acyclic graph
topology [5, 6, 7, 11], hierarchical topology [6, 9, 10]. Some others [19, 20, 21] use
distributed hash approach to assign a subscription to one server, and send producing
events to that server. If matching, events are directly sent to matching subscriber.
Paper [22] presents a distance vector/dynamic receiver partitioning (DV/DRP)
protocol for sensor network, supporting cyclic graph. However, this protocol is only
suitable for the scenario that less node consume data and more node produce data.

In an acyclic graph topology, the simplest routing algorithm is forwarding each
subscription to every broker unconditionally [7]. Because each subscription would

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 105

appear in the routing table of every broker, the size of routing table will linearly
increase with subscription number. So subscription-cover idea [5, 6, 11] is suggested
to decrease the subscriptions of intermediate broker. But they don’t distinguish the
extent applying subscription-cover. They only consider the optimal covering.
Additionally, paper [11] proposes a condition of correct routing-table configuration.
But the condition presented by paper [11] is based on notification forwarding, not on
subscription issuing. We cannot judge whether the configuration of routing table is
correct just according to subscription information. On the contrary, our necessary and
sufficient condition of correct routing-table configuration bases on subscription
issuing information. So we can validate the correctness of routing-table configuration
just basing on subscriptions knowledge.

3 Subscription-Cover Based Routing Algorithms

The routing based on undirected acyclic graph topology usually use subscription
forwarding scheme [6], in which subscriber’s subscription (named S) is sent to access
broker, named SHB (Subscriber Hosting Broker), then SHB forwards subscriptions to
neighbor brokers. All brokers compose a spanning tree about subscription S, rooted at
SHB. Each broker’s routing table is composed of (S, U) pairs, which indicates
direction of broker U issues subscription S. When publisher produces events, events
are sent to access broker, named PHB (Publisher Hosting Broker). PHB forwards
events (Notification) to neighbor brokers, which directions have issued subscription
matched by events. Events are forwarded from PHB to all SHBs hop-by-hop,
eventually to all subscribers.

Let N(S) denote the notification set of matching subscription S. For subscription S1
and S2, if N(S1) 2 N(S2), then we say S1 covers S2, denoted by S1o 52 . If N(S1) = N(52),
then say S1 equals to S2, denoted by si=52. If N(S1) > N(S2), then say S1 is a real
cover of S2, denoted by S1> 52 . If subscription S1 covers S2, we only need forward
S1 to neighbors, because S1 can stand for S2 to express interest to neighbor
directions, which is the idea of subscription-cover. Subscription covered by other
subscription needn’t be forwarded to all brokers, which can reduce the size of
broker’s routing table and the time of notification matching in general.

In this paper, we assume that Broker network topology is undirected acyclic graph,
message transition between brokers is FIFO and reliable, sub(s) denotes producing a
new subscription s, unsub(s) denotes canceling subscription s, all the brokers denoted
by B! (1<i< N, N is the broker number), SHB(S) denotes the access broker of the client

issuing subscription S. SUB(B') denotes the subscription set issued by all the client

accessed to broker B', RTB is the abbreviation of the routing table. We are only
concerned about brokers, and ignore clients, because client is irrelevant to routing.
In order to facilitate discussion, we give some definitions.

Definition 1. The configuration of RTB is correct iff notifications matching S will be
forwarded from PHB to SHB(S) except S is cancelled before notifications
arrive SHB(S) .

106 H. Yuan, C. Guo, and P. Zou

Definition 2. The publish/subscribe system is stable iff no sub(s) or unsub(s) message
are in transition over the broker network.

Definition 3. A publish/subscribe routing algorithm is correct iff when receiving
subscription or unsubscription , through definite sequence sub(s) or unsub(s)
forwarding, publish/subscribe system can be stable and the configuration of RTB is
correct.

Definition 4. The edge between broker B" and B" is defined by ¢™", then the path

between B' and B’ denoted by route(B', B) = B'¢" B ¢ B B
There is only one path between two brokers because an acyclic graph is a tree in fact.

Definition 5. For subscription Se SUB(B'), let BGSUB>S) = {B'1 3 S e SUB(B),
§'5S,1<j<N }, BSUB=S)={B|3S ¢ SUBB'), s'=5,1<j<N }.

B(SUB o §) defines such brokers: the clients accessed to them issue subscriptions that
cover S. B(SUB=S) defines the case of equivalence.

Definition 6. For subscription Se SUB(B'), let B>S)= {B" | VB € B(SUB>S),
B"e route(B'B)),1<m<N }, B(=S) ={B"IV B'e B(SUB=5),B" < route(B,B'), 1<m<N }.

B(>S) defines the common (overlapped) path of all the route(SHB(S) , SHB(S'))
(8'> 8). If there is only one broker B'in B(SUB> S), then B(>S) are all the brokers in
route(Bi, Bj). If B' is also in B(SUB> S), then B(>S) only contains B'. B(=S) defines
the case of equivalence. In Figure 1, the set of B(> $5) contains {B5, B4, B2}.

el (S1, cl) (S1,B2) (S5, c5)
(S2, B2) (S5, B5) (S1, B4)
(S2,B
c2 B2 Js5,84)
(S1,B1)
(S2,C2)
(S1, B2
(S2, B2)

Fig. 1. Example of Strict Subscription-Cover Based Routing (S1 > §5,52> 55)

Below we give two routing ideas of subscription-cover, which differ in maintaining
the count of covered subscriptions. A condition of correct RTB configuration basing
on SSCBR is proposed. We prove the correctness of the routing algorithm
implementation through this condition.

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 107

3.1 Strict Subscription-Cover Based Routing Idea

Definition 7. Except using subscription-forwarding scheme, a routing algorithm is
called Strict Subscription-Cover Based Routing (SSCBR) if it uses below rules [11].

(1) A subscription is not forwarded to a neighbor if a subscription that covers
the former was forwarded to that neighbor that has not been canceled.

(2) If a subscription is forwarded, the receiving broker deletes all routing
entries whose subscriptions are covered by the new subscription and that
refer to the same destination as new subscription.

(3) An unsubscription is not forwarded to a neighbor if there is a subscription of
a local client or another neighbor that covers the former.

(4) If an unsubscription is forwarded to a neighbor, the sending broker also
forwards a possibly empty subset of subscriptions covered by former.

SSCBR aims at deleting the entry of covered subscription as best as and
maintaining the least covered subscriptions. According to SSCBR, there is no entry of
S5 in broker B1, B3, B6 and B7 in Figure 1.

Theorem 1. When applying SSCBR, the configuration of RTB is correct iff when
publish/subscribe system is stable, for subscription Se SUB(B') :

(1) Ifthere are only subscriptions that is real cover of S, then S is only contained
in RTB of brokers in B(> S), and there is no entry of S in other broker’s RTB.

(2) If there are only subscriptions that are equal to S, then RTB of brokers in
B(=S) must contain entry of S, and other broker’s RTB either contains S, or
the equal subscription of S.

(3) If the condition of (1) and (2) hold at the same time, then RTB of brokers in
B(> S) contains either S or the equal subscription of S, but there is no entry
of S in other broker’s RTB.

(4) Otherwise, all the brokers’ RTB contains entry of subscription S.

Proof
The Necessity. For (1), (a). According to subscription forwarding scheme, we only
need prove that if RTB of all the neighbor broker of B(>$) (of course not including
the neighbor broker that belongs to B(o 5)) does not contain entry of S, then we can
conclude that RTB of all the brokers except for B(>S) do not contain entry of S.
Consider B’(B®¢ B(> 5)) that is the any neighbor of B(>), if entry of S is in B®, then
there is a broker B'e B(>s), because S is diffused from B(>), and B® contains (S,
B"). On the other hand, 3 S' € SUB(B’) (Bje B(SUB> S)), S' is not covered by any
other subscription, and B’ is not in route(Bi,Bj) because B® is not in B(>S), then B’
must contain (S, B") otherwise S’ cannot be forwarded to B (there is only one path
between two brokers). So entry (S, BY) and (S', BY) are both in RTB of B®, according
to SSCBR, (S, B") must be deleted, that is to say there is no entry of S in B®.

(b). Consider the farthest broker from B' in B(>S) is B', then the brokers in
B(> S) are in route(Bi,Bt). Now we prove that the entry of S is certainly contained in
RTB of brokers in route(Bi,Bt). Otherwise, don’t lose universality, assume that (S, B")

108 H. Yuan, C. Guo, and P. Zou

is not in RTB(B"), B is the neighbor broker of B'. Because there is no s'>s and (S,
B") is in RTB(B"), else indicate 3B'e B(SUB>S), s.t B'e¢ route(B',B'), which is not
consistent with the definition of B(>S). Then system cannot forward notifications
matching subscription S to SHB(S') , which need traverse broker B!, so it is illogical.
Therefore the RTB of brokers in B(> S) must contain entry of S.

According to (a) and (b), S is only contained in the RTB of brokers in B(> S) .

(2) can be proved in similar approach. (3) can be proved by colligating (1) and (2).
(4) holds obviously. So far we complete necessity proof.

The Sufficiency. Assuming the PHB is B” which published notification matching S.
(a) If there is no subscriptions which are equal to or real cover of S, then notification
can be forwarded to B! (SHB(S)) along route(Bp,Bi) hop-by-hop. (b) If there are
subscriptions which are real cover of S, assuming the farthest broker from B' in
B(>S) is B', then there must exist $'>5, and notification can be forwarded to B'
along route(BP,B") according to matching S' (if BP cannot see S', then can prove in
recursive method). Then notification can be forwarded to B! (SHB(S)) along

route(Bt,Bi) according to matching S or S" (§" =) if there exist. (c) If there are only
subscriptions that are equal to S, then notification can be forwarded to B' (SHB(S))

along route(BP,B") according to matching S or " (S" =S5) if there exist. Summing up
(a), (b) and (c), we have proved that notification matching S can be forwarded from
any PHB to sHB(S) . The sufficiency is proved. i

Theorem 1 describes that covered subscription S would just exist in B(>S) .
According to the property of graph, we can compute B(>S) and B(=S) easily.
Therefore, we can validate the correctness of SSCBR routing.

3.2 SSCBR Algorithm Implementation and Correctness Proof

In order to maintain subscription-cover relation, [6] proposes a POSET (Partially
Ordered Set) method. We extend POSET and name it SCG (Subscription Covering
Graph). SCG records every subscription and its sender (neighbor broker or local
client). Each subscription/sender pair has two variables, named Np-covering-degree
and Lc-covering-degree, which denote neighbor directions and local clients whose
subscription covers current subscription respectively. SCG supports two functions:
s_add_SCG(S, sender) and s_delete_SCG(S, sender), in which S is a subscription,
sender is the neighbor or local client issuing S. Function s_add _SCG and
s_delete_SCG calculate the value of Ng-covering-degree and Lc-covering-degree.
When broker receives a new subscription S, s_add_SCG adds “in” and “out” directed
edges of S (from covering subscriptions to S and from S to subscriptions covered
by S).
SSCBR algorithm implementation is in the left of figure 2.

Algorithm Correctness Proof

As long as we can prove SSCBR algorithm can make publish/subscribe system stable
and the configuration of routing table satisfy the necessary and sufficient condition of
theorem 1, then the SSCBR algorithm implementation is correct.

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 109

Assume for subscription Se SUB(B') and a set of subscription real covering S,
named S¥, S¥e SUB(B’") ,1<k<n, the cross point of route(B',B’) ..., route(B',B’") is
B'. According to definition 6 and the assumption, the brokers in B(> §) are all in
route(B',B").

Subscription Forwarding. When sub(S) is forwarded along route(B',B") from broker

B' to B!, for any broker B¢ in route(B',B"), (1) if B¢ hasn’t received any one of
{sub(S*)} yet, sub(S) will be forwarded to all neighbors of B¢ when B® receives

// SSCBR algorithm // RSCBR algorithm

void PrcessSubMessage(Sender,sub(S)) void PrcessSubMessage(Sender,sub(S))

1. { 1. {

2. s_add_SCG(S,Sender); 2. s_add_SCG’(S,Sender);

3. CI={(SLw)IS1 D S,u# Sender,(Sl,u)e SCG}; | 3. CI={(SLw)IS1 2 S,u# Sender,(Sl,u)€ SCG};
4. C2={(S2,u)IS D S2}; 4. if Lc-covering-degree of (S, Sender) >0 then
5. if Sendere Ng then S. ret‘urn;

6. for (S2,Sender) € C2do 6. endif ‘

7. s_delete_SCG(S2,Sender); 7. switch Ng-covering-degree of (S,Sender)

s. end for ' ’ 8. case 0: forward sub(S) to all neighbors

9. endif except Sender;

10. if Lc-covering-degree of (S, Sender) >0 then 9. case 1: only forward sub(S) tou, (*,u) € CL;
11. return; 10. default:(= 2) don’t forward sub(S);

12. endif 11. end switch

13. switch Np-covering-degree of (S,Sender) 12. record the neighbors that S is forwarded to;

14. case 0: forward sub(S) to all neighbors 3.3

except Sender;

15. case 1: only forward sub(S) tou, (*u) € Cl; void ProcessUnsubMessage(Sender, unsub(S))

L |
(> > .
}g entileial;it:l_ 2) don’t forward sub(S); 2 if Lc-covering-degree of (S,Sender) =0 then
1 8' ! W 3 if Ng-covering-degree of (S,Sender) = O then
void ProcessUnsubMessage(Sender, unsub(S)) 2 els:orward unsub(S) to all neighbors;
L { 6 forward unsub(S) to neighbors that sub(S)
2. Cl={(S1,u)IS1 D S,u# Sender,(S1,u)e SCG}; has been forwarded to:
3. if Lc-covering-degree of (S,Sender) =0 then 7. end if ’
4. switch N-covering-degree of (S,Sender) 8. endif
5. case 0: forward unsub(S) to all neighbors; 9. s_delete_SCG(S,Sender);
6. case 1: only forward unsub(S) to u, 10. C2={(S2,u)lS D S2};
() € Cl; 11 for (S2.u) € C2 do
7. defal_lltil(22) don’t forward unsub(S); 12. if Lc-covering-degree of (S2,u) =0 then
g' eg‘%fsw"c 13. C3={(S3,)/ S3 D S2,v £ u};
. endi

10, s_delete_SCG(S,Sender); 14. switch Ng-covering-degree of (S2,u)
11' &—{(Siu)ls D’S2}' ’ 15. case 0: forward sub(S2) to neighbors that
1 2' for_ (s2 1;) p 62 do ’ sub(S2) has not been forwarded to;

: ’ 16. case 1:only forward sub(S2) to v,

13. if Lc-covering-degree of (S2,u) =0 then
14. (.:3={(S3’V)I S.3 252y #u}; been forwarded to v;

15. switch N-covering-degree of (S2,u) ‘> R]
16. case 0: forward sub(S2) to all neighbors ; 17. default:(= 2) don’t forward sub(S2);

17. case 1:only forward sub(S2) to v,(*,v) € C3; 18. end switch

(*,v) € C3 and if sub(S2) has not

19. end if
(> > .

18. defau‘lt.(22) don’t forward sub(S2); 20. record the neighbors that S is forwarded to;
19. end switch

. 21. end for
20. endif 2.}
21. end for '
2.}

Fig. 2. SSCBR algorithm and RSCBR algorithm

110 H. Yuan, C. Guo, and P. Zou

sub(S). The line 5~9 of procedure ProcessSubMessage assures that the broker in the
neighbor directions of B would delete the entry of S after it receives any one of
sub(S*). (2) if B has received any one of {sub(S")}, the line 10~17 of procedure
ProcessSubMessage assures that sub(S) will just be forwarded along route(B',B").

Combine (1) with (2), procedure ProcessSubMessage just keep the entry of S in
route(B',B) and store the cover knowledge in route(B',B‘) (through SCG graph),
which assures the necessary and sufficient condition of theorem 1 holds. If there are
subscriptions equaling to S, then B(> S) may keep the subscription that equals to S,
which also satisfies the necessary and sufficient condition of theorem 1.

Due to acyclic graph assumption, procedure ProcessSubMessage assures that sub
message would terminate in definite forwarding.

Unsubscription Forwarding. The line 3~9 of procedure ProcessUnsubMessage
assures that unsub(S) would not be forwarded to a neighbor direction if an un-
canceled subscription that covers S has been forwarded to that direction.

If any one of {S*} is unsubscribed, we can divide two scenarios: (a). before
unsub(s") is forwarded to B'; (b). After unsub(s") is forwarded to B'.

(1) For any broker B' in route(B,BY), when it process unsub(s*), if there is
subscriptions in B' that covers S, so B' needn’t re-forward S. Otherwise, there is no
entry of S in B! and no subscription covering S , that is to say another unsub(s*) has
already been processed by B', the proof can be merged into (2).

(2) If unsub(s") can be forwarded to B' (there is no subscriptions covering S¥), for
any direction of B', if there is no subscription covering S, The line 10~21 of procedure
ProcessUnsubMessage assures that S can be re-forwarded. So S can be forwarded by
procedure ProcessSubMessage. Therefore the necessary and sufficient condition of
theorem 1 holds when using procedure ProcessSubMessage.

In one word, SSCBR algorithm implementation is correct. o

3.3 Relaxed Subscription-Cover Based Routing Algorithm

In last section, we investigate the scenario of strict subscription-cover based routing.
For subscription S1, S2 and S1> §2, if sub(S2) and sub(S1) is received from the same
neighbor direction, SSCBR algorithm deletes the entry of S2 if S2 is received first,
which can reduce the size of broker’s routing table. But if unsub(S1) is issued before
unsub(S2), then SSCBR will re-forward S2, the cost of earlier forwarding S2 is
wasted in vain. So we propose a Relaxed Subscription-Cover Based Routing
(RSCBR) algorithm:

(1) A subscription is not forwarded to a neighbor if a subscription that covers
the former was forwarded to that neighbor that has not been canceled.

(2) An unsubscription is not forwarded to a neighbor if it never be forwarded to
that neighbor (because there is a subscription that covers it).

(3) If an unsubscription is forwarded to a neighbor, the sending broker also
forwards a possibly empty subset of subscriptions that are covered by the
former and never be forwarded to that neighbor.

The goal of SSCBR algorithm is to reduce the size of routing table as best as.
RSCBR admits the fact that covered subscription has been forwarded. It doesn’t

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 111

consider whether current subscription covers earlier received subscriptions, which
reduces the time of calculating subscription-cover and decreases the traffic of
duplicate forwarding of covered subscriptions when covering subscriptions are first
canceled. RSCBR and SSCBR is a trade-off between time/network-traffic and space.

RSCBR algorithm implementation is in the right of figure 2.

In RSCBR algorithm, the semantic of s_add_SCG is changing. So we rename it
s_add_SCG’. s_add_SCG’ only find the subscriptions that cover current subscription,
and it doesn’t calculate whether there are subscriptions covered by current
subscription. That is to say s_add_SCG’ only return in-edge of S.

RSCBR algorithm implementation would keep subscription-cover knowledge in
B(>S), so the correctness of it is obvious. Proof is omitted. Both SSCBR and
RSCBR use subscription-cover idea, so they can reduce the size of routing table in
intermediate broker. Compared with SSCBR, RSCBR maintains more covered
subscription in intermediate broker. We will evaluate their behavior in reducing the
size of routing table and network traffic through experiments.

4 Experiments

The goal of experiments is to evaluate the behavior of SSCBR and RSCBR in
reducing the size of routing table, network traffic, etc. The metric of routing table size
is the average subscription count of each broker. The metric of network traffic is the
average sub and unsub message number of each subscription. We evaluate three
routing algorithm SSCBR, RSCBR and N-CBR (routing without using subscription
cover).

The experiments setup is as follows.

(1) There are 1000 brokers and broker network topology is undirected acyclic
graph. The longest path (from one broker to another broker) is 15 brokers. All brokers
distribute symmetrically as best as.

(2) For simplification, all the subscriptions contain three predicates on the same
(attribute name) numeric type attribute, for example length € [100-1, 100+1], width
€ [80-w, 80+w], height € [50-h, 50+h]. The subscription count issued by each broker
(broker’s client) is the same. Every broker first issues all the subscription, then issue
unsubscription one by one after all subscription have be issued.

(3) The most important factor influencing the behavior of SSCBR and RSCBR is

>c,
the cover ratio p. We define the cover ratio p:%, N is the active subscriptions
count, C; is the count of subscription that covers subscription S;. The cover relation
increases with p . The value of p can range from O to N/2. The most extreme scenario
is that subscription S; is covered by S,, S, ..., Sy, and S; is covered by S;, ..., Sy, and
soon. SO p=((N-1)+(N-2)+...+1+0)/N=N/2.

We test SSCBR and RSCBR with #=0.5 and # =0.8 individually. From Figure 3(a),
we find that both SSCBR and RSCBR can greatly reduce the size of routing table,
and the size of routing table decrease with increasing #, which can be explained that

112 H. Yuan, C. Guo, and P. Zou

the more covering relation, the less covered subscription would be forwarded. Under
the same £, SSCBR can reduce more size of routing table than RSCBR.

In Figure 3(b), we set 2 =0.8. The **-R means random unsubscribing
subscriptions. The **-FC means first unsubscribing covered subscriptions. The **-LC
means last unsubscribing covered subscriptions. The average message count of N-
CBR is approximately twice the count of brokers (2*N), which is not affected by the
subscription count.

The traffic of SSCBR-LC is the most, which can be explained that because covered
subscriptions are last unsubscribed, so SSCBR need re-forward them when covering
subscriptions are unsubscribed. On the contrary, SSCBR-FC produces the least traffic.
The traffic of RSCBR-FC is between SSCBR-FC and SSCBR-LC. The traffic of
RSCBR-FC is more than SSCBR-FC is because RSCBR-FC need forward more
unsub message of covered subscription than SSCBR-FC (because RSCBR store more
covered subscription in intermediate brokers than SSCBR). However, the traffic of
RSCBR-R, RSCBR-LC and RSCBR-FC is less than SSCBR-LC at any time because
RSCBR algorithm maintains redundant covered subscriptions (which don’t need to be
re-forwarded when covering subscription are canceled) than SSCBR. In general,
RCSBR-R, RSCBR-LC and RSCBR-FC produce less traffic than SSCBR-R.

20000 4_/*

15000 -
10000

5000

subscription

avg message count of eac

L

0

avg sub count of each broker

5 50 100 150 200 250 300 350
subscription count of each broker 5 50 100 150 200 250 300 350
subscription count of each broker

—e— N-CBR —#— SSCBR-0.5 SSCBR-0.8 —e— N-CBR —=&— SSCBR-R SSCBR-FC SSCBR-LC
RSCBR-0.5 —%— RSCBR-0.8 —*— RSCBR-R —@— RSCBR-FC —+— RSCBR-LC

Fig. 3. (a) routing table size experiment. (b) traffic experiment.

We can’t arbitrarily say that RSCBR would produce less traffic than SSCBR
because the network traffic of RSCBR largely depends on subscribing/unsubscribing
distribution. If covered subscriptions are first canceled, RSCBR still needs to forward
those unsubscribing messages. But because RSCBR need calculate less subscription
covering relationship than SSCBR, we can definitely say that RSCBR costs less
calculating time than SSCBR, which is not illustrated by us.

5 Conclusions and Future Works

The necessary and sufficient condition of correct routing-table configuration proposed
by us can be used to validate the correctness of SSCBR routing idea. The two
subscription-cover routing (SSCBR and RSCBR) use different policy to maintain the

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 113

count of covered subscriptions. They can find suitable scenarios for different
subscriptions distribution individually.

We have compared SSCBR and RSCBR in network traffic through evaluations.
But that is only primary. Further experiments are necessary to evaluate them in other
performance metric. In addition, it is a great challenge to apply the idea of
subscription-cover into cycled graph. For cycled graph, an alternate routing algorithm
is DV-based [22] (distance/vector). In DV approach, for brokers in a circle, they may
not forward matching events to the direction of covered subscription if that direction
is not the shortest path for the covering subscriptions. However, we must find a
method to solve this problem if we extend subscription-cover idea to cycled graph.
We have tried several methods. It is believed that we would make a progress in the
forthcoming future.

Acknowledgements

This paper is founded by the National Natural Science Foundation of China under
Grant Nos. 90412011, and by the National High-Tech Research and Development
Plan of China under Grant Nos. 2003AA115410, Nos. 2004AA112020.

Reference

1. C. Marchetti, M. Mecella, M. Scannapieco, and A. Virgillito. Enabling Data Quality
Notification in Cooperative Information Systems through a Web-service based
architecture, Proceedings of the 4th International Conference on Web Information Systems
Engineering, Roma, Italy, 2003.

2. Simon Courtenage and Steven Williams. Automatic Hyperlink Creation Using P2P and
Publish/Subscribe, In the Workshop on Peer-to-Peer and Agent Infrastructures for
Knowledge Management (PAIKM), Apr 2005.

3. P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Publish/
Subscribe, ACM Journal Comput, Vol. 35, No. 2, page 114~131, March 2003.

4. Ying Liu, Beth Plale. Survey of Publish/Subscribe Event Systems, technical report,
Department of Computer Science. (CSCI) at Indiana University, TR574, May 2003.

5. Guoli Li, Shuang Hou, Hans-Arno Jacobsen. A Unified Approach to Routing, Covering
and Merging in Publish/Subscribe Systems Based on Modified Binary Decision Diagrams,
In Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems (ICDCS'05), Pages 447-457, 2005.

6. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation
of a wide-area event notification service, ACM Transactions on Computer Systems, 19(3):
332~383, 2001.

7. IBM Corporation. Gryphon: Publish/subscribe over public networks. Technical report,
IBM T. J. Watson Research Center, 2001.

8. Fengyun Cao, Jaswinder Pal Singh. Efficient Event Routing in Content-based Publish-
Subscribe Service Networks, In IEEE INFOCOM 2004.

9. G. Cugola, E. Di Nitto, and Fugetta. The JEDI event-based infrastructure and its
application to the development of the OPSS WEFMS, IEEE Transactions on Software
Engineering 27, 9 (Sept.), 827~850, April 2001.

114

10.

11.

12.

14.

18.

19.

20.

21.

22.

23.

24.

H. Yuan, C. Guo, and P. Zou

G. Cugola, E. Di Nitto, A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems, In Proceedings of the 20th International Conference on
Software Engineering, Kyoto, Japan, April 1998.

Gero Muhl. Large-Scale Content-Based Publish/Subscribe Systems, PhD thesis, Technical
University of Darmstadt, 2002.

L. Opyrchal, M. Astley, Joshua S. Auerbach, G.Banavar, R. E. Strom, and D. C. Sturman.
Exploiting IP Multicast in Content-Based Publish-Subscribe Systems, In Proceedings of
Middleware 2000, 2000.

. Z. Ge, M. Adler, J. Kurose, D. Towsley and SteveZabele. Channelization problem in

large-scale data dissemination, Technical report, University of Massachusetts at Amherst,
2001.

A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang. Clustering Algorithms for content-based
publication-subscription systems, In Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS'02), 2002.

. T. Wong, R. Katz, and S. Mc Canne. An evaluation of preference clustering in large scale

multicast applications, In Proceedings of IEEE INFOCOM, March 2000.

. G. Banavar, T. Chandra, B. Mukherjee, et al. An efficient multicast protocol for content-

based publish-subscribe systems. In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, pages 262~272, 1999.

. Xue T, Feng BQ. Research on routing algorithm and self-configuration in content-based

publish-subscribe system. Journal of Software, 16(2): 251-259, 2005.

J.C. Lin and S. Paul. A reliable multicast transport protocol, In INFOCOM, pages
1414~1424, 1996.

Antony L. T. Rowstron, Anne-Marie Kermarrec, et al. SCRIBE: The design of a large-scale
event notification infrastructure, In Networked Group Communication, pages 30~43,
2001.

S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination, In Proceedings
of International Workshop on Network and Operating Systems Support for Digital Audio
and Video NOSSDAYV, 2001.

P. Triantafillou and I. Aekaterinidis. Content-Based Publish-Subscribe Over Structured
P2P Networks, In International Workshop on Distributed Event-Based Systems
(DEBSO04), 2004.

C.P. Hall, A. Carzaniga, J. Rose, and A.L. Wolf. A Content-Based Networking Protocol
For Sensor Networks, Technical Report, Department of Computer Science, University of
Colorado, August 2004.

Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M., and Chandra, T. D. Matching
Events in a Content-based Subscription System, In Proceedings of ACM PODC, Atlanta,
GA, Pages 53-61, 1999.

Fabret, F., Jacobsen, H., Llirbat, F., Pereira, J., Ross, K., and Shasha, D. Filtering
Algorithms and Implementations for Very Fast Publish/Subscribe Systems, In Proceedings
of ACM SIGMOD. Santa Barbara, California, Pages 115-126, 2001.

Alliatrust: A Trustable Reputation Management
Scheme for Unstructured P2P Systems*

Jeffrey Gerard, Hailong Cai, and Jun Wang

Computer Science & Engineering, University of Nebraska—Lincoln
{jgerar, hcai, wang}@cse.unl.edu

Abstract. Content pollution and free-riders are increasingly threaten-
ing the utility and dependability of modern peer-to-peer systems. One
common defense against these threats is to maintain a reputation for each
peer in the network based on its prior behavior and contributions, which
can help other users make informed decisions about future transactions.
However, most current reputation schemes for unstructured P2P sys-
tems are prone to attack and therefore not very reliable. In response, we
propose a trustable, distributed, reputation-management scheme called
Alliatrust to combat content pollution and free-riders. Alliatrust demon-
strates resilience against collusion by malicious peers by elegantly man-
aging distributed copies of reputation data on a few homologous peers.
Simulations show that Alliatrust is able to reduce undesirable transfers
of polluted resources to good peers by up to 70%, while decreasing the
success of queries issued by malicious peers and free-riders.

1 Introduction

Modern peer-to-peer (P2P) networks reach gigantic proportions with many users.
While a large P2P community affords more benefits for each peer, a network of
extensive scale necessarily incurs many unexpected incidents that harm the com-
munity. Anonymity opens the network to possible misuses and abuses, and P2P
users cannot be assumed to exhibit inherit credibility or altruism.

Consequently, both free-riding and content pollution are prevalent in mod-
ern P2P networks. Free-riders are peers that consume system resources without
sharing any of their own. One study of a Gnutella P2P network found 68% of
all active peers to be free-riders [1]. Meanwhile, more than half of the copies
of many popular songs in the KaZaA network are polluted, meaning they have
corrupt data content or inaccurate associative metadata [2]. As such, a P2P sys-
tem that does not consider peers’ reputations may fall victim to threats such as
dominance of free-riders, polluted content, and hacking.

* This work is supported in part by the US National Science Foundation under grants
CNS-0509480 and CCF-0429995, the US Department of Energy Early Career Princi-
pal Investigator Award DE-FG02-05ER25687, and a University of Nebraska-Lincoln
Undergraduate Creative Activities & Research Experiences grant.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 115-125, 2006.
© Springer-Verlag Berlin Heidelberg 2006

116 J. Gerard, H. Cai, and J. Wang

1.1 Motivation

While trust metrics are useful in P2P systems, their efficacy relies on the ability
to securely store and distribute reputation data. Existing reputation manage-
ment schemes work well in structured networks [3,4]. For example, the secure
implementation of the EigenTrust reputation computation algorithm organizes
data placement throughout the network using a distributed hash table, which
makes it easy to attain homologous peers as candidate computation and storage
agents. However, distributed hash tables require costly maintenance overhead
to handle rapid node churn, and they limit the effectiveness of keyword-search
queries. [5, 6].

Perhaps for these reasons, we observe a strong prevalence of unstructured
networks in commercial P2P software [7, 8] and subsequently envision that repu-
tation schemes for unstructured networks presently have greater pragmatic value.
Without proper restraints on data placement, however, the design of reputation
schemes for unstructured networks faces more challenges in enforcing symmetric
functionality. Specifically, the security of schemes proposed thus far for use in
unstructured environments is often unreliable. Most of these schemes store a
single peer’s reputation data on the peer itself, where it may easily be subjected
to hacking attempts [8,9,10].

Unstructured, decentralized networks require a reliable reputation manage-
ment scheme in which each user’s reputation data is distributed among multiple
homologous peers in the network. Only by asking multiple peers to be engaged
in managing each peer’s reputation can we trust these reputation values with
confidence.

1.2 A Novel Solution

We propose Alliatrust, a trustable, distributed reputation-management scheme
for unstructured, decentralized P2P systems. Alliatrust provides incentives for
peers to share quality resources and is resilient against malicious nodes. In Al-
liatrust, each peer has multiple managers that maintain copies of its reputa-
tion value. We fashion a reputation overlay to create links between peers and
their managers, so that managers can compute, maintain, and supply reputa-
tion values. New data to be used in updating a peer’s reputation is always sent
directly to the managers as it becomes available to prevent a peer from med-
dling with its own reputation value. As to not place undue emphasis on any
particular peers, all peers in the network have approximately the same number
of managers and comparable responsibilities to store reputation data for other
users. We also develop a majority-voting policy that peers can use to resolve
discrepancies of a reputation value that might arise in the presence of deceitful
managers.

Experiments demonstrate Alliatrust’s ability to impede uploads of polluted con-
tent by malicious peers and its capability to fail ten times as many queries issued by
malicious peers and free-riders, compared with a baseline system. Whether mali-
cious peers work independently, cooperate with others, or camouflage their motives

Alliatrust: A Trustable Reputation Management Scheme 117

by sharing authentic resources occasionally, they are generally unable to distribute
large amounts of polluted content when our reputation scheme is activated.

1.3 Assumptions

In developing a new, highly reliable reputation scheme, we must make important
assumptions regarding the nature of the network. To ensure a high degree of
security, our scheme never assumes that any given node is trustworthy. We tackle
this vulnerability, which is inherent to public, unsupervised networks, by avoiding
intermediaries wherever possible and by always duplicating sensitive data. We
also assume that each peer has an unique identifier that can be used to locate
the peer in the network, such as an IP address.

Without a central authority, the accumulation of any distributed data in a
network will ultimately reflect the testimony given by the majority of the users.
For example, if all peers maintain individual opinions of each other, and most
users find favor in unpolluted content, then the peers that share unpolluted
resources will accrue high reputations, even though the network may contain
peers with differing predilections. Thus, although we never presume any single
peer is trustworthy, we must assume that more peers are trustable than are not.

2 Alliatrust

The Alliatrust system architecture consists of several components, including a
reputation overlay, a way to propagate reputation updates, and a fault tolerance
mechanism.

2.1 The Reputation Overlay

In our distributed reputation-management scheme, each node n has a number
of peers called managers that store n’s reputation value (n.RV); every node also
stores a copy of its own reputation value locally to prevent data loss if all its
managers should fail. Having multiple copies of n.RV helps combat node churn
and protect integrity in the presence of untrustworthy peers. We propose, then,
a reputation overlay that exists over all nodes in the P2P network. This overlay
connects each of n’s managers to n itself via connections referred to as supervisor
links. Supervisor links are unidirectional to make corrupt arrangements difficult
by hindering two nodes from controlling each other’s reputation values [9].
While the host-manager relationship is unidirectional, node n does know
about the role its managers have and maintains each of its managers’ unique
identifiers in a manager list, M (n). The reputation overlay is defined such that
each node n has a number of managers |M (n)|, which is the cardinality of its
manager list. Not all nodes have exactly the same number of managers, but we
restrict | M (n)| such that My, < |M(n)| < Mpax for all n. The lower and upper
bounds of the number of managers for each node, My,in and M.y respectively,
are constants throughout the network and should be fairly tight. As a result,
nodes empirically have roughly the same number of managers, labeled M,,.

118 J. Gerard, H. Cai, and J. Wang

When a new node n joins the network, it bootstraps onto an existing peer,
which becomes n’s first manager. Immediately, n builds its manager list by
searching for peers in the network that are managers of fewer than My, . peers.
Once n has a total number of managers |M(n)| = Mmin, n stops searching for
new managers and distributes a message to all the managers it found, instructing
them to initialize n.RV to the system’s default starting reputation value.

Although a node initially seeks only M ,;,, managers when it joins the network,
it continues to passively enlist additional managers throughout its regular P2P
activity. At the onset of occasional transactions, node n asks its client or server
peer p if p can become n’s manager. As before, n enlists p as a new manager
if p manages fewer than M.« other peers. The frequency of these searches is
determined by the number of managers that n has already: if |M(n)| is close
t0 Muin, n will look for new managers more actively than if |M(n)| is large.
Because n and p are already involved in a transaction, p is temporarily storing
a copy of M(n) as will be specified in Section 2.3. By passively procuring new
managers, n will usually have a sufficient number to endure one’s departure.
However, if |M (n)| should ever drop below Mpin, n will immediately search out
new managers in the same way that it did when it first joined the network.

2.2 Calculating Reputation Values

Alliatrust’s primary purpose is to facilitate secure storage and retrieval of repu-
tation data in an unstructured network, leaving the meticulous details of actually
calculating reputation values to other research [3,10]. Nevertheless, we must as-
sume some basic attributes of the computation procedure. We adopt a condition
common to many reputation schemes that a node’s reputation value is updated
whenever it is involved in a transaction with another peer, whether the node
acts as a server or client. When a client node receives a resource, its reputation
value is decreased to represent its debt to the network. Conversely, when a peer
p serves a resource to a node n, p.RV is updated according to its contribution
to the network. Upon completion of the transfer, n is allowed to rate the quality
of the resource it received, based on criteria such as the accuracy of metadata
and the degree of pollution. If n deems the resource to be of sufficient quality,
p.RV is increased, but if n finds the resource to be polluted, p.RV is decreased
as punishment for sharing polluted material in the network.

2.3 Distributing Reputation Updates

We assumed that a peer’s reputation is updated after it completes a transaction.
Any new information regarding the transaction should be distributed as soon as
possible to provide the most accurate impression of a peer via its reputation
value. To minimize the control a peer has over its own reputation value, the
peers on both sides of a transaction notify each other’s managers directly with
this additional transaction information.

Following a transaction in which p serves a resource to n, both p’s and n’s
reputation values should be updated. Before the actual resource transfer begins,

Alliatrust: A Trustable Reputation Management Scheme 119

p and n exchange their manager lists, M (p) and M (n), during the underlying
network’s handshake process. This way, upon completion of the transfer, the
peers can alert each other’s managers to initiate an update of their reputation
values. Server p tells n and n’s managers that n received a resource, triggering
all these nodes to independently calculate n’s new reputation value using the
same reputation calculation algorithm. Simultaneously, n rates the resource it
received according to predefined criteria and sends its evaluation to p and the
managers in M (p).

However, the rating process that n performs on the resource it receives from p
may be expensive to perform or require human interaction [11]. Thus, although
p will notify n’s managers to decrease n.RV immediately after the transaction,
n may defer this rating interminably, or may not even do it at all. One possible
solution is to initially assume that a transferred resource was of decent quality
and update p.RV with a tentative positive rating. If the client n does rate the
resource some time later, it can simply update p.RV via p’s managers.

The overhead required in exchanging manager lists is low. The greatest strain on
the network occurs when the peers notify each other’s managers about the trans-
action. Both peers send messages to about M, managers and to the other peer,
generating a total of 2 x (M, + 1) messages. This is 10 extra messages per trans-
action when M, = 4, as observed in our simulations described in Section 4.1.

2.4 Resolving Discrepancies

Reputation schemes allow a node to know at a glance which peers to favor in
future transactions. With Alliatrust, the most secure way to obtain a peer’s rep-
utation value is to ask that peer’s managers directly. There is no guarantee that
any given manager is trustworthy, so a node ought to query multiple managers
of a peer and independently resolve any discrepancies of the returned reputation
values. A querying node does not necessarily have to query every manager of
a peer, but rather the proportion of managers it asks should rely on the sever-
ity of any negative consequences resulting from inaccurate data. For simplicity,
however, we will assume that the utmost available trust is always essential, so
the nodes we describe here will always query every manager of the peer whose
reputation value is desired.

After a node accumulates the responses from a peer’s managers, it compares
all the copies of reputation values and checks for any disagreement. If there is
a disparity, our experiments show that there will likely remain a majority of
managers exhibiting the correct value. Hence, the node can simply assume the
statistical mode' of the set to be correct. If there is more than one mode, the
node uses the arithmetic mean of these modes.

2.5 Tolerating Peer Departures and Failures

When node n leaves the network, either intentionally or as the result of a fail-
ure, it saves its own reputation and manager list locally, and its managers retain

! The mode is the value that occurs the most frequently in a set.

120 J. Gerard, H. Cai, and J. Wang

its reputation value for a specified duration after the departure. This duration
should be long enough to survive most “round trips” of leaving and returning
to the network [5,12], but must be small enough so that managers do not be-
come overwhelmed with reputation data about old peers. When n returns to
the network later, it attempts to contact all the peers in its stored manager list.
Any former managers still in the network continue as n’s managers. Then, n
seeks to replace any managers that had since departed from the network until it
again has My,;, managers. If, however, none of n’s former managers remain in
the network, n’s new managers will be forced to adopt n’s local copy of n.RV.
This final scenario is unfavorable because of our assumption that n may not be
trustable; fortunately, our experimental results show that this happens less than
5% of the time.

3 Using Reputation in Queries

Alliatrust can benefit P2P applications in a number of ways. We demonstrate two
examples in which reputation data can improve search queries in the network,
one of the most utilized services in current P2P systems. We offer one tactic
peers can use and another that may be implemented by the P2P system itself.

3.1 Differentiated Quality of Service

For a reputation scheme to be beneficial, the P2P system must provide some
manner of incentive for peers to increase their own reputations. Several ap-
proaches can differentiate the quality of service a peer receives, each with its
own features and applications. One scheme allows users to download resources
only from peers with equal or lesser reputation values than their own [13]. Other
research recommends that peers forward search queries according to the reputa-
tion values of the querying users: queries from users with high reputations might
receive a longer time-to-live, or forwarding peers might arrange incoming queries
in a priority queue, serving those from highly-reputed users first [9, 13].

3.2 Selecting Quality Resources

Once a network has provided sufficient incentive for peers to foster their repu-
tations by sharing their resources with others, the peers can use the reputation
system to make informed decisions in their transactions.

If a peer p is able to fulfill a forwarded search query, p responds directly to
the client n that issued the query. In addition to the typical information that
p sends n as is implemented in the underlying P2P system, p also transmits its
own reputation value and manager list. Over time, n collects this information
from various peers that have the targeted resource. After a maximum amount of
time has passed or a minimum number of peers have responded to the query, n
can use these replies and their accompanying reputations to pick a trustworthy
server peer.

Alliatrust: A Trustable Reputation Management Scheme 121

The client n selects a peer ¢ that sent a high reputation value along with
its response to the query. To verify that ¢.RV is indeed what was claimed in
the query response, n contacts one or more of ¢’s managers. If the reputation
value that ¢ claimed to have is greater than the value of ¢.RV reported by ¢’s
managers, then n assumes ¢ is untrustworthy and repeats this verification process
using another responding peer. The client n will request the resource from the
first peer it finds that did not inflate its reputation value.

4 Experimental Results

To evaluate Alliatrust’s performance in combating free-riders and polluted con-
tent, we implement the reputation overlay on a large-scale network model. We
simulate network activity under an assortment of threat models and compare
the Alliatrust scheme with a baseline that has no reputation scheme in place.

4.1 Simulation Configuration

We construct a physical topology emulating a hierarchial Internet network using
the Transit-Stub model [14] with the same parameters described in [15]. Of the
51,984 nodes that comprise the network model, we randomly choose 10,000 to be
peers participating in the P2P system. Our logical network topology is modeled
from a Gnutella network trace provided by the Limewire Organization [7]. Each
peer in the P2P system shares a number of resources, following the distribution
observed in a real Gnutella network [12]. Accordingly, 24% of all peers are free-
riders, sharing no resources at all. The specific resources stored on the remaining
peers are assigned according to a probabilistic content distribution model [16].

Peers disseminate queries to the system via the Gnutella overlay. In baseline
networks, the time-to-live (TTL) for all queries is six hops. Alliatrust differen-
tiates quality of service as summarized in Section 3.1. Specifically, it partitions
the range of possible reputation values into five balanced segments, each with a
corresponding TTL value. These five TTL values are 2, 3, 5, 7, and 8, providing
longer TTLs to queries from peers with high reputations. For example, queries
from brand new peers with a median reputation value live for five hops, while
queries issued by well-behaved peers can live for seven or eight hops.

We assign a constraint that a peer must have at least My,;, = 3 managers and
may not have more than M,.x = 6. In all our simulations, these bounds produce
an average number of managers per peer M, = 4. For simplicity, we choose an
inelaborate reputation calculation algorithm in which reputation values may take
on integers from 0 to 200 points. New peers start with the median reputation
value of 100. The penalty for receiving a resource is 3 points, and a peer may
gain or lose 5 points for serving a resource, depending on the rating it receives.

4.2 Peer Behaviors

Essentially, we consider three types of peers in the network: good peers, mali-
cious peers, and free-riders. These groupings form disjoint subsets that partition

122 J. Gerard, H. Cai, and J. Wang

the set of all peers. Free-riders do not share resources but do actively issue
queries and, when the reputation scheme is in place, truthfully rate all resources
they receive. Both good and malicious peers share resources and issue queries,
but a specified ratio of all resources distributed by malicious peers are polluted.
Furthermore, malicious peers try to attack Alliatrust’s effectiveness by misrep-
resenting reputation values or rating resources unfittingly. We study a variety of
such strategies, or threat models, that malicious peers might employ to thwart
the reputation scheme. Good peers share quality resources 95% of the time, ac-
counting for rare mistakes users might make in generating metadata or forgetting
to remove a polluted resource from the shared folder.

Threat Models. In threat model A, malicious peers act individually, and en-
deavor to fill the network with polluted content. They always serve polluted
resources and rate resources they receive as “quality” if they are polluted and
“not quality” if they are not polluted. This is the opposite behavior of good
peers. Malicious peers also attempt to thwart the reputation scheme to receive
a privileged quality of service: when any peer asks a malicious peer p for its
reputation value, p returns a value equal to 150% of p.RV’s true value.

We conduct a series of simulations in which malicious peers behave according
to threat model A. We assign a ratio of peers to be malicious such that they make
up between 10% and 50% of all peers in the network. For each scenario, Figure 1
compares Alliatrust with a baseline system using the proportion of polluted
resources received by good peers out of all resources received by good peers.
Alliatrust reduces the number of accidental downloads of polluted resources as
much as 70%, because malicious peers acquire low reputations, causing good
peers to seldom choose them as servers. By contrast, malicious peers find no
difficulty dispersing polluted content in the baseline system, and the fraction
of polluted downloads actually exceeds the fraction of malicious peers in the
network.

g 1o ::] D Alliatrust M Baseline [: g o :] [Alliatrust B Baseline [:

- % - %

S Jov g Jov

2 60% 2 60%

S 50% S 50%

F o 40% - = 40% 4

® 30%- B 30% 4

5 20% - 5 20%

S 10% - S 10% -

o 0% A A 0% -

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Malicious Peers Malicious Peers

Fig. 1. Alliatrust helps good peers re- Fig. 2. Even when malicious peers form
ceive up to 70% more quality resources collectives under threat model B, Alli-
when malicious peers operate under atrust decreases the polluted resources

threat model A transferred to good peers

Alliatrust: A Trustable Reputation Management Scheme 123

Figure 1 may seem unconvincing when half of the peers are malicious because
such scenarios violate our assumption that trustable peers should outnumber
malicious peers. For instance, when 40% of peers are malicious and 24% are
free-riders, only 36% are good peers. Even so, Alliatrust noticeably reduces the
number of polluted resource transfers in these harsh environments. Moreover, no
reputation scheme in existence claims to completely abolish polluted resources.

Under threat model B, malicious peers can recognize each other and form col-
lectives, allowing them to inflate their claims of each other’s reputation values to
good peers. As before, malicious peers only share polluted content, rate polluted
content favorably, and multiply their own reputation values by 150%. In addi-
tion, if a malicious peer m manages another malicious peer p, and an outsider
requests p.RV from m, then m returns a value equal to 150% of the true p.RV.
This is analogous to a single malevolent user creating numerous identities and
using them to boost each other’s reputation values [17].

As before, we test situations in which a malicious collective makes up between
10% and 50% of all peers, even though it is unlikely that a single collective
could comprise half of a large-scale P2P network. Figure 2 portrays the fraction
of polluted resources received by good peers for experiments in networks with
and without Alliatrust. The formation of collectives scarcely increases malicious
peers’ attempts to circulate polluted content, and Alliatrust continues to reduce
the number of polluted resources downloaded by good peers by up to 70%.

Unable to successfully thwart the Al-
liatrust reputation scheme by actively

O,
inflating each other’s reputation values g igoﬁ:l:l O Alliatrust B Baseline [:
through collectives, malicious peers may T 40%
try to increase their reputations by shar- b gg:ﬁ’
ing some quality resources. Under threat § 25::2
model C, malicious peers inherit all the '_; 20%
behaviors from threat model B, but they o 13:?’
also share a certain fraction of quality % 50/:
resources to cloak their true intentions, o 0%
thereby attempting to raise their repu- 0% 20% 40% 60% 80%
tation values. Authentic Resources

We run a series of simulations in which
malicious peers act under threat model
C, returning proportions of quality re-
sources ranging from 0% to 80%. They
comprise 25% of all peers. Figure 3 shows
the fraction of polluted downloads by
good peers when malicious peers share various fractions of authentic resources.
With Alliatrust, malicious peers see almost no additional success by occasionally
sharing authentic resources to thwart the scheme. Only about 11% of downloads
by good peers are polluted in all cases.

Fig. 3. Sharing a fraction of quality re-
sources in an attempt to inflate their rep-
utations does not help malicious peers
disseminate polluted content

Discouraging Free-Riders & Malicious Peers. In addition to reducing
the polluted resources that good peers receive, Alliatrust deters bad peers by

124 J. Gerard, H. Cai, and J. Wang

differentiating quality of service according to a peer’s reputation. Without shar-
ing any quality resources, free-riders’ reputations should steadily fall as they
issue queries to the system. Similarly, under the assumption that a peer’s rep-
utation value should decrease when it transfers a polluted resource, malicious
peers’ reputations should fall even more rapidly.

Having completed simulations under multiple threat models, we measure the
failure rates of queries that were issued by malicious peers and free-riders. This is
the only occasion we actually desire a high failure rate, because the poor quality
of service that bad peers receive provides them with a strong motivation to
increase their reputation values. Generally, Alliatrust causes ten times as many
queries from bad peers to fail.

5 Conclusions

Alliatrust, a trustable, distributed reputation-management scheme for decen-
tralized, unstructured P2P systems can successfully reduce the prevalence of
polluted content by over 70% when malicious peers comprise 30% of the net-
work. Even if peers form a malicious collective or camouflage their intentions by
sharing quality resources, Alliatrust consistently and significantly cuts distribu-
tion of polluted content. The scheme also discourages free-riders and malicious
peers by failing ten times as many of their queries, thereby providing bad peers
with fewer query results than in a baseline network. By distributing reputa-
tions on multiple, homologous peers, Alliatrust can securely maintain accurate
reputation values in the presence of malicious peers.

References

1. Fessant, F.L., Handurukande, S.B., Kermarrec, A.M., Massoulié, L.: Clustering in
peer-to-peer file sharing workloads. In: International Workshop on Peer-to-Peer
Systems. (2004) 217-226

2. Liang, J., Kumar, R., Xi, Y., Ross, K.W.: Pollution in P2P file sharing systems.
In: Proceedings of IEEE Infocom. (2005)

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for
reputation management in P2P networks. In: Proceedings of the 12th international
conference on World Wide Web, New York, NY, USA, ACM Press (2003) 640-651

4. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities. In: IEEE Transactions on Knowledge and Data Engineer-
ing. (2004) 843-857

5. Cai, H., Wang, J., Li, D., Deogun, J.S.: A novel state cache scheme in structured
P2P systems. Journal of Parallel and Distributed Computing 65 (2005) 154-168

6. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like P2P systems scalable. In: SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, New York, NY, USA, ACM Press (2003) 407-418

7. Limewire: (http://www.limewire.org/)

8. KaZaA: (http://www.kazaa.com/)

10.

11.

12.

13.

14.

15.

16.

17.

Alliatrust: A Trustable Reputation Management Scheme 125

. Dutta, D., Goel, A., Govindan, R., Zhang, H.: The design of a distributed rat-

ing scheme for peer-to-peer systems. In: Workshop on Economics of Peer-to-Peer
Systems. (2003)

Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks.
In: Proceedings of the 13th international workshop on Network and operating sys-
tems support for digital audio and video, New York, NY, USA, ACM Press (2003)
144-152

Marti, S., Garcia-Molina, H.: Limited reputation sharing in P2P systems. In:
Proceedings of the 5th ACM conference on Electronic commerce, New York, NY,
USA, ACM Press (2004) 91-101

Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file
sharing systems. Technical Report UW-CSE-01-06-02, (University of Washington)
Ranganathan, K., Ripeanu, M., Sarin, A., Foster, I.: To share or not to share: An
analysis of incentives to contribute in collaborative file sharing environments. In:
Workshop on Economics of Peer-to-Peer Systems. (2003)

Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork.
In: Proceedings of IEEE Infocom. (1996) 594-602

Cai, H., Wang, J.: Foreseer: a novel, locality-aware peer-to-peer system architecture
for keyword searches. In: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, New York, NY, USA (2004) 38-58

Schlosser, M.T., Condie, T.E., Kamvar, S.D.: Simulating a P2P file-sharing net-
work. In: First Workshop on Semantics in P2P and Grid Computing. (2002)
Douceur, J.R.: The Sybil attack. In: First International Workshop on Peer-to-Peer
Systems. Volume 1. (2002)

A Fault-Tolerant Distributed Scheme for Grid
Information Services

Ming-Jeng Yang', Chin-Lin Kuo?, Shih-Hsiang Lin’, and Yao-Ming Yeh®

! Department of Information Technology, Takming College, Taipei, 114 Taiwan
mjyang@mail.takming.edu.tw
? Department of Information & Computer Education, National Taiwan Normal University,
Taipei, 106 Taiwan
{genemlshl78, virtualbow}@yahoo.com.tw, ymyeh@ice.ntnu.edu.tw

Abstract. The Grid Information Service (GIS), mainly used for resource dis-
covery and monitoring, is a key component of grid system. The resource de-
scription and specification should be meditated for efficient search and access.
In this paper, we propose a distributed system for grid information services,
which deploys a number of registry servers at different regions of the world. A
new scheme for registering, updating, querying, and deregistering a resource in
registry servers is devised. For the purpose of fault-tolerance and load-balance,
the meta-data, including description and specification, of each resource can be
replicated and disseminated at some registry servers instead of reproducing re-
source itself for service discovery. In our scheme, the workload on each registry
server is balanced and the faults of registry servers can be tolerated. Also, the
user could obtain all resource information satisfied with the query conditions
even some of registry servers crashed.

1 Introduction

Grid technology has increasing played an important role in scientific computing field.
The resources of grid are scattered on numerous places or organizations and with
distinct type, function or/and owner. The issues of resource information discovering,
registering and securing become more and more important. In order to discover nec-
essary resources as soon as possible, effective mechanism of information service,
such as accessing interface, meaning of parameters and resource function, is strongly
demanded. Hence, resource description and specification must be clear and efficient
enough. In [1] the authors propose an XML-based grid resource specification lan-
guage and its usage in Resource Registry Meta-Service.

Grid is considered as a service oriented architecture (SOA) system and could be
accessed through services. So we still take grid as a different type of web service. But
there are still many problems required to be conquered. For example, the centralized
model of UDDI [2] which is the information center of web service architecture pro-
viding XML based service specification standardization is not appropriate for the grid
environment. Web service inspection language (WSIL) [3] does not provide good
implementation at distribution of services and is difficult to be used in grid. There are
several related works about grid information service, which include GMA [4],

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 126136, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Fault-Tolerant Distributed Scheme for GIS 127

Hawkeye [S] and MCS [6]. However these works are not open grid service infrastruc-
ture (OGSI) [7] compliant and therefore their ability of manipulating dynamic, het-
erogeneous, distributed information is profoundly limited.

The open grid service architecture (OGSA) [8] was developed to solve the chal-
lenges in such dynamic, heterogeneous and geographical grid environment. OGSA
builds on the web service technology mechanisms to create, name and discover tran-
sient grid service instances with a uniform manner and it is a popular and a widely
accepted architecture. Web services provide important machinery, but are lack of
some important topics relevant to basic service semantics: how services are created,
how long they live, how to manage faults, and how to handle long-lived state. These
issues are addressed by the design of OGSI which defines essential building blocks
for distributed systems. The OGSI is a formal and technical specification from
OGSA. Using a combination of WSDL interface descriptions and human readable
specifications, OGSI defines mechanisms for creating, naming, managing lifetime,
monitoring, grouping, and exchanging information among grid services. OGSI also
introduces standard factory and group registration interfaces for creating and discov-
ering grid services. While developing a GIS system, the requirement and features of
OGSA should be taken into consideration. The globus toolkit 3 [9], a reference im-
plementation of the OGSI, provides a grid service-oriented information service.

In this paper, we present a quorum based grid fault-tolerant scheme for information
service registering, updating and querying. In our scheme, based on the Leg-Ring
system [10], the workload disseminated on each service node is balanced and the
faults of service nodes can be tolerated. Meanwhile, by using the meta-data which
describes and explains resource characteristics detailed, the service could provide
efficient and accurate interface for searching, understanding and further processing.

The rest part of this paper is organized as follows: section 2 describes the architec-
ture of the grid information service. Section 3 explicates Legion structure, quorum
system and its application on this GIS. Section 4 describes these protocols that in-
clude registry, query, update and deregistry. Finally, in section 5, we draw conclu-
sions based on our research.

2 Architecture Overview

In our design, the information service is based on the distributed architecture and the
meta-data information of resources is stored at a number of service nodes. For the
purpose of fault tolerance and load-balance, the meta-data, including description and
specification, of each resource can be replicated and disseminated at some service
nodes instead of reproducing resource itself for service discovery. Similar to meta-
data based model in [11], each user in client terminal could issue a query with appro-
priate keywords to a server. Upon receiving the query, the local server forwards the
message to some servers for discovering registered resources satisfied with the in-
quired conditions.

We call this information service “Quorum-based fault-tolerant information service
(QFIS)”. The architecture of QFIS consists of three layers: resource layer, control
layer, and service layer, which are depicted in figure 1.

128 M.-J. Yang et al.

I0f

Service Laver

Assign 1D,

Rewistry Cuery Update Deregisiry Control Layer

Resource Layer

Fig. 1. Architecture of QFIS — three service layers in each RS

® Resource layer is composed of various grid service data (GSD) [12]. The crea-
tors or providers of GSD should provide detailed meta-data, including description
and specification, and send the meta-data information to the registry mechanism
of QFIS. The registry mechanism will assign a unique resource id about the re-
source.

e Control layer manages actions of resource meta-data, such as registration, gen-
eration of a unique id, query and deregistration. The operation of fault tolerance
is implemented in this layer. After receiving the meta-data from lower layer, the
control layer replicates the meta-data and then disseminates them to other registry
nodes which are randomly selected from the quorum sets. The detailed selecting
scheme will be described in later section.

® Service layer provides the user interface and aggregates these parameters from
the control layer. Communicating with other registry servers is manipulated and
included here. Since information service is a component of grid, a special web
service, and SOAP is the basic communication protocol for web service, we
adopt SOAP as the messages passing method in the process of registration, query
and so on.

From the geographical view of global world, we separate the whole server nodes
into N partitions. Each partition contains exactly one resource registry server (RS) and
other server nodes. A partition is called a region and the number of server nodes in a
region should be meditated when we program the region area. While there is a fault
occurring on a RS, the leader election algorithm [13], [14] is launched among these
server nodes in this region and a newly elected RS is generated, which maintains the
functions of the fault RS.

A Fault-Tolerant Distributed Scheme for GIS 129

3 Quorum Constructions for QFIS

In the QFIS system, all the resource registry servers (RSs) play the role of a fault-
tolerant system. Based on a quorum-based scheme, the fault-tolerant system can toler-
ate the failures of RSs. In this section, in order to prove the correctness of quorum
system for QFIS, we introduce some definitions and theories, such as quorum, set
system [15], and Legion structure [10] of our previous work.

A set system [15] is composed of a number of quorums.

Definition 1. A set system C = {Q,, Q,...., OQ,}, 1< n, is a collection of nonempty
subsets Q; cU of a finite universe U.

Each element Q; of C in Definition 1 is called a quorum.

Take the set C = {{a,b,c}, {d,e}, {f,k,h}} as an example. C is a set system, and any
element in C, for example, {f;k,h} is a quorum.

In the following, we introduce a definition of Legion structure, which is our previ-
ous work [10]. A Legion is constructed from set systems.

Definition 2. A Legion structure {C;, C;} is a collection of two set systems that has
the following properties:
(11 C; = {01, Os..., Qu} and C; = {Qy, Qs,..., On} are set systems. (1='n, m)
[II] For any pair of quorums Q, € C; and Q, € C;, there is Q,NQ, # . That is,
Q, and Q, have at least one common element. (1< s <n, 1<t < m)

Claim 1. The Legion structure {C;, C;} defined in Definition 2 can be used as a
mathematic model for quorum-based information service in QFIS system.

According to the Definition 2, any two quorums of a pair (Qy, Q,) have at least one
common element, where Q; is a quorum in C; and Q, is a quorum in C;. This structure
can be applied to develop a quorum-based information service scheme for QFIS sys-
tems. In QFIS systems, if one of the servers requires information from the other, it
suffices to query one server from an appropriate quorum. While using this quorum-
based service scheme, we can assign quorums in C; as registration-quorums, and quo-
rums in C; as query-quorums. According to the definition of Legion, the set of queried
servers is bound to contain at least one server that belonged to the registration-quorum
that received the registration information. O

Based on the properties of Legion structure, we use ring-based approach to construct a
quorum scheme called LegRing in order to manage location information. First, N
registry servers (RSs) are arranged as a logical ring, denoted by N-LegRing. Every RS
in the QFIS system is assigned a distinct number from 0 to N-1 and arranged by its
number sequentially. In the following, some sequences of patterns in the N-LegRing
are employed as Registration-quorum (R-quorum) and Query-quorum (Q-quorum).

Definition 3. In an N-LegRing system, the Registration-set system (R-set) and Query-
set system (Q-set) are defined as follow:

R-set = {{n, (n+1) mod N, (n+2) mod N,..., (n+d-1) mod N} | 0< n < N-1}

Q-set = {{n, (n+d) mod N, (n+2d) mod N, ..., (n+kd) mod N}l 0< n < N-1,

130 M.-J. Yang et al.

k=[(N-1)/d]}
Where d = [Jﬁ] ;n, k, and N are all integers.

Each element of R-set and Q-set is called an R-quorum and a Q-quorum,
respectively.

Claim 2. The R-set and Q-set of an N-LegRing system defined in Definition 3 satisfy
the properties of Legion structure {C;, C; }.

According to the Definition 2, the properties of Legion structure { R-set, Q-set} are: (I)
R-set and Q-set are set systems. (II) Any pair of R-quorum in R-set and Q-quorum in
O-set have joint elements. We need to prove these properties. First, according to
Definition 3 and Definition 1, it is easy to see that R-set and Q-set are set systems.
Second, we define the distance of ordered pair of registers vy, v, in the N-LegRing
system as Dist(vy, v2)= vp-vy, if 1<y, ; or vp+N-vy, if vi>v, . We choose an arbitrary R-
quorum {uy, Uy, ..., ug}={n, (n+1) mod N, (n+2) mod N,..., (n+d-1) mod N}. It is obvi-
ous that this R-quorum are d consecutive registers in the N-LegRing system, since any
tow adjacent registers of R-quorum have Dist(u;, u;)=1, 1<i< d-1. Now we choose
another arbitrary Q-quorum {vy, vy,..., Vi1}={n, (n+d) mod N, (n+2d) mod N, ...,
(n+kd) mod N}. The distance of any two adjacent registers of Q-quorum is Dist(v;,
vip1)=d (1<i<k) and Dist(v,q, v;) <d. Since Dist(v;, vi,)=d for any two adjacent regis-
ters v;, iy and Dist(vy,, v)<d in Q-quorum, and u,, u,,..., Uy are d consecutive regis-
ters, we can conclude that at least one register v; in Q-quorum intersects with one
register #; in R-quorum, i.e. v; = u; , for some j (15j<d). This satisfies property (II).
Hence, the R-set and Q-set of N-LegRing system satisfy the properties of Legion
structure. O

4 Quorum-Based Approach

In the information service system QFIS, there are mainly four mechanism including
registry, query, update, and deregistry for a single resource. The resource provider
creates a resource and its metadata which describes the name, location, functions, and
other properties at the same time. First, the local RS will assign a global unique re-
source id for it. After generating the resource global id, the local RS forwards the
registry message to the RSs in the registry quorum.

The data of resource registry is completely distributed. When demanding services,
the user issues a query with keywords to local RS. Upon receiving the query, the RS
selects the query quorum and sends a query message to all the RSs in this quorum.
When a RS receives a query, it searches registry database for the satisfied resource
information and replies back. The user could obtain all resource information satisfied
with the query conditions. If a user queries with resource id, then exact one resource
information is responded.

A Fault-Tolerant Distributed Scheme for GIS 131

4.1 Data structures in a RS

To accomplish the QFIS system, the RSs maintain some data structures and algo-
rithms. In our design, the system should be initialized and the registry and query set
table should be kept in each RS. The following items are necessary for a RS.

» RS ID: Each RS has its own unique registry server id.

» N-LegRing system: including R-set and Q-set. The construction of this system
should be initialized and the set table should be kept in each RS before launching
the registry mechanism.

» Registry database: a space for storing the metadata information of registered re-
sources. Each entry has the format (G_id, metadata), where metadata is an XML
file of small size and includes all the needed attributes-- name, location, time,
status etc.

4.2 Registry

When a service provider creates a new resource, the first step is to register on the
information service system and the owner of this resource is the service provider.
Naturally, the metadata, the description document (XML file), of the resource should
be provided. Basically, the registry process is separated into two stages. The first
stage randomly generates a new resource number r_id and checks the other existed
r_ids in local RS to acknowledge that this new r_id is unique. Meanwhile, each RS
was assigned an identical prefix id. Then the global unique G_id for this resource is
“RS’s id” + “’this newly generated r_id”. Such method of generating G_id can guaran-
tee that each G _id is globally unique. Meanwhile, the resources can be found by using
the G_ids.

Local registry server
(local RS)

forwarding ‘ ;

Provider

_ Buipremioy

/

registry server (RS)/'

Randomly selected
R-quorum

Fig. 2. The registry process -- local RS forwards REGISTRY (G_id, metadata) to all the RSs in
the randomly selected R-quorum

132 M.-J. Yang et al.

After finishing the first registry stage, the registry process of local RS goes to the
second stage and sends REGISTRY(G_id, metadata) messages to all the RSs in an R-
quorum to enter the resource information into registry databases. Figure 2 shows the
registry process.

The registry procedure is described in the following steps:

Step 1: The service provider sends the metadata of this resource to local RS and the
RS generates a new random number r_no for it.

Step 2: The local RS compares this _no with existed r_nos in registry database.

Step 3: If this »_no had existed , then discards it and randomly regenerate another
one and goes step 2; else assign “the local RS’s id” + "’this newly generating
r_no” as the global identification G_id of this resource; and appends the
G_id to the metadata of this resource;

Step 4: The local RS forwards REGISTRY(G_id, metadata) to all the RSs in the
randomly selected R-quorum.

Step 5: Upon receiving the REGISTRY(G_id, metadata), the RSs add the new in-
formation received in their caches and send the registry acknowledgement
R_ACK messages back.

Step 6: If the local RS does not receive all the R_ACK messages from all the RSs in
the quorum during a given period of time, then it randomly selects another R-
quorum and sends REGISTRY (G_id, metadata) to all the RSs in this quorum
and goes to step 5.

Step 7: After receiving all the R_ACK messages, the local RS sends R_DONE mes-
sage to all the RSs in the R-quorum, stores the resource information
FORWARD(G_id, R-quorum) in its database and replies R_COMPLETED
(G_id) back to the resource provider.

Step 8: Upon receiving the R_DONE message, the RSs save the cached REGISTRY
(G_id, metadata) information into their registry databases.

4.3 Query

By using the keywords, the user can inquire the resources registered in the databases
of RSs distributed in the different regions. The keywords could be the different attrib-
utes of metadata or be a G_id. With the quorum-based fault-tolerant information ser-
vice (QFIS), when a user queries a resource service, the local RS only multicasts the
searched keywords or resource G_id tor/N RSs in a Q-quorum. Figure 3 shows the
query process. Based on the theory of Legion structure, there is at least one common
RS node in any pair of R-quorum and Q-quorum. That is, it’s sufficient to search the
RSs in a Q-quorum for all resources. If the user has already known the G_id of the
queried resource, then there is exactly one resource information responded. If the user
searches with keyword(s), many resources satisfied will be returned.
The query procedure is described in the following steps:

Step 1: First, the user sends the QUERY (keyword) message to local RS which for-
wards the message to all the RSs in the randomly selected Q-quorum.

Step 2: Upon receiving the QUERY (keyword) message, the RS, which has copies of
the queried information, returns all REPLY (G _id, metadata) messages back.

A Fault-Tolerant Distributed Scheme for GIS 133

Step 3: When all the REPLY messages from all the RSs in the quorum are received,
the local RS forwards these available information to the user.

Step 4: If the local RS does not receive all the REPLY messages after a given period
of time, then it randomly selects another Q-quorum, forwards the
QUERY (keyword) message to all the RSs in this new quorum, and goes to
step 2; Otherwise, the procedure stops.

g Local registry server
» (local RS)

.
.......... g
................... fé)rwarding <

-
EY
=

4

. R)/'

REPLY(G id, metadeaia) registry server (RS

Fig. 3. The query process -- local RS forwards QUERY (keyword) to all the RSs in the ran-
domly selected Q-quorum

4.4 Deregistry

When the resource provider would like to terminate the service, the procedure is in-
voked by the user to remove the resource information from the RSs. With the G_id,
the following steps are performed.

Step 1: The service provider sends the DELETE(G_id) to local RS.

Step 2: Upon receiving the DELETE(G_id) message, the local RS looks up the
R_quorum where the resource was registered previously and forwards the
message to all the RSs in the R-quorum.

Step 3: Upon receiving the DELETE(G_id) message, the RS deletes the information
registered by the provider previously and returns DEL_ACK back.

Step 4: If the local RS does not receive all the DEL._ACK messages from all the RSs
in the R-quorum during a given period of time, then it sends the
DELETE(G_id) message to the deletion pool of itself, which continues to
handle the deletion processes until the crashed RSs recover their faults and
call back.

Step 5: After receiving all the DEL_ACK messages from all the RSs in the
R_quorum or transferring the DELETE(G_id) messages to the deletion pool,
the local RS terminates the deletion procedure.

134 M.-J. Yang et al.

4.5 Update

When any attributes of metadata of resource are changed, the provider invokes the
update procedure through the local RS. All the RSs of the dedicated update quorum
are notified to modify the metadata with new information. The dedicated update quo-
rum is the same as the registry quorum (R-quorum) which is the quorum that the re-
source registered previously. The procedure of update is performed as follows.

Step 1: The service provider sends the UPDATE(G_id, new metadata) to local RS.

Step 2: Upon receiving the UPDATE(G_id, new metadata) message, the local RS
looks up the R_quorum where the resource was registered previously and
forwards the message to all the RSs in the R-quorum.

Step 3: Upon receiving the UPDATE(G_id, new metadata) message, the RS over-
writes it in registry database and returns UPD_ACK back.

Step 4: If the local RS does not receive all the UPD_ACK messages from all the RSs
in the R-quorum during a given period of time, then it goes to execute the de-
letion procedure followed by executing the registry procedure with new
metadata; Otherwise, the procedure stops.

We take an example to illustrate the construction of Leg-Ring system and the regis-
try, update, and query actions of RSs. Assume that there are nine registry servers
(RSs). Let N=9 and the id number of RSs be 0,1,2,...... ,8. Based on definition 3, the
construction of R-set and Q-set are shown in the following.

R-set={{0,1,2},{1,2,3},{2,3,4},{3.,4,5},{4,5,6},{5,6,7},{6,7,8},{7.8,0},{8,0,1}}
QO-set = {{0,3,6},{1,4,7},{2,5,8},{3,6,0},{4.,7,1},{5.8,2},{6,0,3},{7,1,4},{8,2,5} }

Obviously, every pair of R-quorum and Q-quorum contains at least one common
element. When a provider wants to register a resource r;, the local RS, for example,
server 3, generates a G_id and forwards the REGISTRY(G_id, metadata) message to
all the RSs, for example, servers 8, 0, and 1, of the R-quorum. Upon receiving the
message, the RSs add the information in their caches and send the R_ACK back. If
any RS, for example server 1, crashed, the local RS resends the REGISTRY(G_id,
metadata) message to all the RSs, for example, servers 6, 7, and 8, of new randomly
selected R-quorum. After receiving all the R_ACK messages, the local RS sends
R_DONE and R_COMPLETED(G_id) messages to all the RSs in the R-quorum and
the resource provider, respectively. Similarly, another provider could register a re-
source r, at servers 3, 4, and 5 of the R-quorum.

After a period of time, the provider invokes the update procedure through the local
RS which forwards the UPDATE(G_id, new metadata) message to all the RSs, for
example, servers 6, 7, and 8, in the R-quorum where the resource r; was registered
previously. Upon receiving the UPDATE(G _id, new metadata) message, the RS
overwrites it in registry database and returns UPD_ACK back. Hence, the servers 6,
7, and 8 have the newest registration information of resource r;.

When a user wishes to get resource services, the user sends the QUERY (keyword)
message to local RS which forwards the message to all the RSs, for example, servers
0, 3, and 6, in the randomly selected Q-quorum. If the keyword of query is included
in the metadata of resources r; and r,, then these registry information of resources
should be inquired and delivered to the user. Therefore, through the intersected serv-
ers 6 and 3, the resource information of r; and r, could be retrieved, respectively.

A Fault-Tolerant Distributed Scheme for GIS 135

Furthermore, assume that some of queried servers crashed, for example, servers 0 and
3, and the procedure requests other RSs, for example, servers 2, 5, and 8, in the ran-
domly reselected Q-quorum for resource information. Therefore, through the inter-
sected servers 8 and 5, the resource information of r; and r, could be retrieved,
respectively.

5 Conclusion

Grid computing has becoming an important technology in many scientific fields need-
ing huge computing work. For the dispersion of plentiful resources in the world, the
information service of resources makes a challenging issue. Most of the related works
design the architecture of information service as hierarchical levels. From the point of
discovery view, hierarchical architecture can provide an effective method of discov-
ery and appendage but it lacks the ability of fault tolerance. In this paper, we propose
a distributed architecture for grid information service. Since the Leg-Ring system has
the properties of symmetry, load balance and fault tolerance, our quorum-based in-
formation service provides absolutely distinct algorithms for resource registry, query,
update and deregistry. In a region there is exactly one registry server (RS) selected to
execute the information service. Every resource provider only sends the message to
the local RS and then the local RS will complete the registry process. Based on the
proposed mechanism and Leg-Ring system, the system for a resource service is effec-
tive enough, fault-tolerant, and load-balanced.

References

1. Huang, Z.C., Gu, L, Du, B., He, C.: Grid Resource Specification Language based on XML
and its usage in Resource Registry Meta-Service. In: Proceedings of the 2004 IEEE Inter-
national Conference on Service Computing (SCC’04), September (2004) 467-470

2. OASIS UDDI Specification TC: http://www.oasis-open.org/committees/tc_home.
php? wg_abbrev =uddi-srec

3. Web Service Architecture: The W3C Web Service Architecture working group, public
draft: http://www.w3.0rg/TR/2003/WD-ws-arch-20030808/, August (2003)

4. Tierney, B., Aydt, R. et al: A Grid Monitoring Architecture. In: The Global Grid Forum
GWD-GP-16-2, January (2002)

5. Hawkeye: http://www.cs.wise.edu/condor/hawkeye

6. Singh, G., Bharathi, S. et al: A Metadata Catalog Service for Data Intensive Applications.
SC2003, Nov. (2003)

7. Tuecke, S., Czajkowski, K., Foster, L. et al: Open Grid Services Infrastructure (OGSI) Ver-
sion 1.0. Global Grid Forum Draft Recommendation, http://www-unix.gridforum.org/
mail_archive/ogsi-wg/2003/06/pdf00004.pdf (2003)

8. Foster, 1., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. http://www.globus.org/research/
papers/ogsa. pdf, January (2002)

9. Globus Toolkit 3.0: http://www.globus.org/gt3

136

10.

11.

15.

M.-J. Yang et al.

Yang, M.J., Yeh, Y.M., Cheng, Y.M.: Legion Structure for Quorum-Based Location Man-
agement in Mobile Computing. Journal of Information Science and Engineer, vol.20
(2004) 191-202

Zang, T., Jie, W., Hung, T., Lei, Z., Turner, S. J., Cai, W., Zhu, M., Katsinis, C.: An
OGSI-compliant Grid Information Service-Its Architecture and Performance Study. High
Performance Computing and Grid in Asia Pacific Region, 7™ International Conference on
(HPCAsia’04), July (2004) 63-71

. Tuecke, S., Czajkowski, K., Foster, 1., Frey, J. et al: Grid Service Specification.

http://www. globus.org/ogsa

. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circu-

lar configurations of processes. Communications of the ACM, vol.22(5), May (1979) 281-
283

. Lann, G. L.: Distributed systems-towards a formal approach. In: Bruce Gilchrist, editor,

Information Processing 77; Proceedings of IFIP Congress, vol. 7, North-Holland, Amster-
dam (1977) 155-160

Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE Trans-
actions on Parallel and Distributed Systems, vol. 9 (1998) 909-922

A Market-Oriented Model for Grid Service Management*

Huan Wang, Zhihui Du, Lei Wu, Suihui Zhu, and Erfan Shang

Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084
Huan-wang03@mails.tsinghua.edu.cn

Abstract. Grid service management and trading is a complex undertaking as
services are geographically distributed, heterogeneous and large-scale, owned by
different organizations with their local policies. Each service provider needs
flexible relationships between them, and each consumer joins Grid with the
intention of getting its purchase requirements satisfied. To allow Grid to reduce
the cost of e-business trading, to deal faster and to open up more new
opportunities, a market-oriented architecture called GTM (Grid Trading Model)
is proposed in order to establish a real-life Grid which provides a business
mechanism for organizing users and services efficiently based on market
economic rationale. GTM derives from an inherent similarity between typical
networks and classical economic market structures based on Virtual
Organization (VO) concept and the small-world theory. An emulated
environment is presented to illustrate the model’s economic feature, performance
and cheap service trading cost.

1 Introduction

Grid provides an opportunity to integrate large numbers and various types of dynamic
services owned by different individuals or organizations with their own policies in
distributed environment [1]. Service management and trading in large-scale Grid is
challenged due to Grid needs to organize users and services efficiently and let users
find more trading opportunities, which is similar with the business problem in the
real-life market. A market-oriented Grid environment can combine the advantages of
traditional service providing systems, and integrate present network applications across
distributed, heterogeneous, dynamic environments and communities, in order to
organize services in various industries, facilitate service providers finding credible
cooperation partners, establish efficient service trading platform between enterprises
and consumers. How to operate business process in Grid based on service characteristic
and the market economic rationale is the challenging problem which this paper tries to
deal with.

The specific problem that underlies the market-oriented Grid is coordinated resource
sharing and problem solving in dynamic, multi-institutional Virtual Organizations

* This paper is partly supported by National Natural Sciences Foundation of China
(No0.60503039), Beijing Natural Sciences Foundation(No0.4042018) and China’s National
Fundamental Research 973 Program (No. 2004CB217903).

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 137 - 146, 2006.
© Springer-Verlag Berlin Heidelberg 2006

138 H. Wang et al.

(VO) [2]. In real-life market economy, enterprises producing homologous products in
the same industry form a “Product Group” [3]. In our market-oriented Grid model,
Product Groups of different industries come to form corresponding industrial Virtual
Organizations. Each VO in the model provides some distinct kinds of services in order
to classify service provider and consumer groups by different service requirements and
purchase interests.

To support service trading, The VO-based Grid model is focuses on market driven
service management architecture, in which an essential base is the inherent symmetric
relationship between typical networks architectures (including Client/Server,
small-world and P2P) and classical economic market structures (including monopoly,
oligopoly, monopolistic competition, perfect competition). By detailed description of
network/market relationship, we expound that monopoly market fits in with
Client/Server network; monopolistic competition market fits in with small-world
network; and perfect competition market fits in with P2P network. Based on the most
popular market type in e-business environment (monopolistic competition structure)
and its corresponding network (small-world), we propose an architecture which can be
employed in Grid market situation, and establish the Grid Trading Model (GTM).

2 Principles of Economics and the Small-World Phenomenon

2.1 Principles of Economics in GTM

Market structures are influenced by the number of sellers in the marketplace. With the
number of enterprises increasing, the roles of product sellers, originally as price
makers, are converted into price takers, and the product price is closer to its marginal
cost [4]. A classification of markets is defined as the following four major types:

Monopoly: A single seller with complete control and the price maker over an industry
in which each product has no close substitute, such as industries of water and
CATYV.Oligopoly: A market condition in which sellers are so few that the actions of
any one of them will materially affect price and have a measurable impact on
competitors, such as industries of tennis ball and base oil. Monopolistic competition:
There are many sellers producing products that are close substitutes for one another.
Sellers produce slightly differentiated products. It is popular in real-life economy; such
as movies, books, PC games and music industries which are most popular contents of
network market today. Perfect Competition: It is only an ideal market with many
sellers and buyers in the market where sellers are price takers and price competition
forces the price to marginal cost, such as industries of wheat and milk.

2.2 The Small-World Phenomenon

A social network exhibits the small-world phenomenon if, roughly speaking, any two
individuals in the network are likely to be connected through a short sequence of
intermediate acquaintances [5]. Recent work has suggested that the phenomenon is
pervasive in a range of networks arising in nature and technology [6]. The GTM can be
also demonstrated as a self-organized system based on small-world network.

A Market-Oriented Model for Grid Service Management 139

Watts-Strogatz model [6] is one of the most refined models that were formulated in
recent work. The edges of the model are divided into “local” and “long-range” contacts.
Two characteristics distinguish the small-world networks: first, a small average path
length, typical of random graphs (here 'path' means shortest node-to-node path);
second, a large clustering coefficient C that is independent of network size. Suppose
that a node v has k, neighbors; then at most k(k-1)/2 edges can exist between them. Let
C, denote the fraction of the valid edges that actually exist. Define C as the average of
C, over all v [7]. C is less than 1 and it captures how many neighbors of a node are
connected to each other.

3 Symmetric Relationship Between Market Structures and Typical
Networks

[7] proposes a random rewiring procedure to interpolate between a regular ring lattice
(p=0) and a random network (p=1), in which the edges of the network are divided into
“local” and “long-range” contacts (Fig.1). It starts with a ring of N nodes, each
connected to its k nearest neighbors by undirected edges. With probability p, it
reconnects each edge to a node chosen uniformly at random over the entire ring, with
duplicate edges forbidden and the process completes till each edge rewires.

[7] defines characteristic path length L(p) and clustering coefficient C(p) for the
family of randomly rewiring graphs. When L(p) is almost as small as L(I) yet C(p)
remains almost constant at its value for the regular lattice and C(p)>>C(1), the graph
situation transform to the small-world.

‘ Client/Server | | Small World |
Monopoly @ Competition
Competition

increasing competitors
Q=1/N - ~ 1/2
decreasing price

Fig. 1. Symmetric relationships between market structures and typical networks

With p increasing from 0 to /, more and more nodes provide long-range edges. We
define that the probability of one node being a server (white node in Fig.l) is

0=1- (Pk / *))- p-(1—-p/2), i.e. one node that initiated a long-range edge has the

probability of (/-p/2) become a server which represents an enterprise in Grid market.
Others are clients (black node in Fig.1) which represent consumers. Along with Q’s

140 H. Wang et al.

increasing, different forms of network and market structures are homologous
transformation.

Monopoly Vs C/S: When p &0 and Q=1/N, only one node initiates a long-range edge
which become the unique server, and the graph state is a typical Client/Server network.
The single server who is a monopolist in its industry; the clients who have edges to the
server become real consumers; other clients are only latent consumers still outside the
market.

Monopolistic competition Vs small-world: When p is small (about 0.001<p<0.1 in
Fig.1), p(1- p/2) = p and Q = p, some nodes become servers, and the graph state is

transformed to the small world network which we will use in GTM. The nodes close to
the servers cluster into sub graphs which connect with each other by long-range edges.
Each sub graph represents a distinct industry’s consumer group. Each server is an
enterprise in this industry. If a client has no edge to any server, it doesn’t enter the
market yet. Some servers monopolize several industries together and compete against
each other when they are so near that they have a large size of client intersection. When
a server has no or few intersection with other servers, it means this server monopolize
one industry alone. One or some enterprises monopolize some kind of services in their
sub graphs, and they compete for the same industry’s consumers. That is a typical
monopolistic competition structure.

Perfect Competition Vs Peer-to-Peer: When p is close to 1, (1-p/2)=1/2 and Q=1/2,
long-range edges are all over the graph; completely random graph is homologous with
a Peer-to-Peer network in which each node may be a server. This situation accords with
current P2P network in that free riders are ubiquity and demanders are unequally the
suppliers of files in P2P networks [8]. About half of the nodes are designed to be
servers in the model. Each server is only provides similar and limited services and no
peer is larruping, which are the features of a perfect competition market.

In Grid market, along with increasing number of servers and decreasing services
price, consumer surplus is increasing continually and more and more latent consumers
will participate in market transactions. As a result, Grid market model transform from
perfect monopoly to perfect competition.

4 Grid Trading Model Architecture

Based on [9] and symmetric relationships between market structures and typical
networks, monopolistic competition structure and its corresponding small-world
network are selected for VO-based GTM to satisfy nowadays e-business market. Fig.2
shows the schematic view of GTM.

GTM has four basic specifications:

Model ::= Service, VO, Relation, Edge
VO ::= VO server, General node
Relation ::= Client/Server, P2P, Complete connectivity

Edge ::= Local edge, Long-range

A Market-Oriented Model for Grid Service Management 141

" long-range edges
—_—_— ——

Fig. 2. The schematic view of Grid Trading Model

The model has four basic components: Service, VO, Relation and Edge. SV;
represents the i” type of service. VO is the basic unit of user and service management,
represented by VO,. VO contains VO server, General node. S represents the set of all the
VO servers in GTM, S; represents the set of all servers in VO;, and S;; represents server
No.j in VO,. Server §; is an enterprise which provides some types of services in Grid
market. G represents a General node, or a consumer in GTM. Gy, represents General
node No.k in VO,. Relations between nodes inside VO involve Client/Server, P2P, and
Complete connectivity. There are two kinds of edges between nodes: Local edge and
Long-range. Local edge exists inside VO (between S;; and Sy, G;; and Gy, S;; and Gy, j #
k); Long-range exists between different VOs (between S; and Sy, S;; and Gy, G and
Gims 1 £ k).

VO; is a node organization partitioned by service requirements and purchase
interests. It provides [SV,, SV;,] types of services, where im and in are numerically
close, and im < in, indicating that each VO provides some slightly differentiated types
of services and VO, is the product group of [SV;,, SV..]. Enterprises establish servers
actively by their profit needs, and accordingly organize an industry product group in a
VO, and attract G to join their VOs. Generally, the number of servers in S; and
Long-range edges are both more than 1 in VO;, not a single one in network models
illustrated in Section 3. Some servers monopolize several kinds of services in their VO,
and they compete in the same industry. That is a typical monopolistic competition
feature. S is capable of running for a long time stably and reliably, so it dominates the
topology of GTM. Complete connectivity among each VO’s servers.

User’s requirements and interests are seldom changed in a short term, for instance
one user’s most interested services are to download mp3, download movies and browse
news at all times. So the model should not be stroked by user’s behavior of frequently
entering and exiting different VOs.

Three general e-business trading process modes in GTM are B2B, B2C and C2C,
where B2B takes place between servers, B2C takes place between server and client, and
C2C takes place between clients.

142 H. Wang et al.

5 Performance Analysis of GTM

This section focuses on two problems in the emulated GTM system: (1) Proving GTM
is certainly based on small-world network and virtual organization. (2) Proving the
service transaction cost is fairly cheap in the model.

There are two types of messages in the model: service publishing information and
service request. In simulation process, Gossip [10] protocol is employed here for those
two kinds of information disseminations. The simulator is written in Java, and each
node is implemented as a Java object. The simulation results presented in this paper are
based on 100 simulations for each configuration.

In our simulations, the number of VO is n; VO,’s size is m; and the total number of
nodes is N. The number of server in VO; is s;. Let Model’s clustering coefficient is C
and the average node-to-node path length is L.

5.1 Small-World and VO Concept in GTM

5.1.1 Clustering Coefficient in GTM

Cy(local) measures the clustering coefficient inside VO;, calculating only local edges
without long-range edges. Assume that all nodes had joined GTM before the first
request was generated. The starting topology including two types of edges is
constructed with two steps: (I) each node randomly selects k local nodes inside VO and
I nodes in other VOs (long-range) to connect with. (1) adds edges between any two
servers in local VOs to extend S; to be a complete sub-graph; each server randomly
selects k; servers in other VOs to connect with. After connecting edges, the model
graph is constructed by loosely connecting a set of almost complete sub-graphs, which
can be pictured a typical Small World [7].

1 r ~ N
0.9
0.8
—
_—
< 0.7 [
=)
S 0.6 F ——C (local) =0. 1=1
"t:; —#—C(local) =0.63 and 1=1
< 0.5 1 C(local) =0. 80 and 1=2
© 0.4 F C(local) =0.63 and 1=2
) —#—C(local) =0.80 and 1=3
0.3 —4—C(loeal) =0.63 and 1=3
I) e

10 40 70 100 130 160 190

YO size

Fig. 3. Influence for C/C(local) by long-range’s emergence

A conclusion (1) can be drawn from the random node edge connection: the value of
C(local) is independent of the number of VO n and VO size m, and only decided by the
value of k.

Cis simulated in two situations to prove the model has a large clustering coefficient:
1) each VO has the same size m, the total number of nodes in the balanced distribution

A Market-Oriented Model for Grid Service Management 143

is N=m*n; 2) VO is divided into different sizes by uniform distribution and Gaussian
distribution separately.

(1) Balanced Distribution of VO Size

C/C(local) is simulated in [=1,2,3, and k=0.8%m,0.5*m separately, described in Fig.3.
Two large numbers of C(local) with the value of 0.8 and 0.63 respectively are created
according to different values of k. Long-range edge’s emergence makes C/C(local)
decrease because long-range edges bring local nodes new neighbors, whereas the graph
connectivity with new ones is looser. The simulation results suggest that it will
influence the value of C/C(local) when [is larger. When /=3 and VO size is 100,
C/C(local) drops to 81%. Fig.3 also reveals that influence of long-range edge’s
emergence for C/C(local) falls by the increasing of VO’s size. When VO’s size is larger
than 50 nodes and I=1, C/C(local)>90%. So long-range edge brings small effect to C
when VO is in rational sizes.

(2) Unbalanced Distribution of VO Size

Firstly, Gaussian distribution is adopted. Let =1, k=0.8*m and n=100. Suppose the
network model is divided into 9 kinds of VOs ranging from /0 to 90, spacing out /0
nodes apart. The total number of nodes is about 5000. In Gaussian distribution, ¢ is
from 0.1 to I and u=0, the clustering coefficient is named C,. Most VOs’ sizes are close
to 50. When C=0.677, m=50, n=100 and N=m*n=5000. And C, only decreases less
than /0% with C. Similar result is gained from uniform distribution experiment. There
are 10 sizes of VOs from /0 to 100 by 10 nodes apart, so N=5500, and the clustering
coefficient is 93.4% of C.

Due to the small influence on C/C(local) by long-range edge’s emergence, after
initialization of graph’s two types of edges, regardless of the distribution type of VO
size, the entire model’s clustering coefficient C can follows large C(local) inside VO so
long as each node has enough local neighbors.

5.1.2 Short Average Node-to-Node Path Length
This model also has short average node-to-node path length L. L is calculated by
Dijkstra arithmetic. L is simulated with VO sizes changing between /00 and 4000,
shown in Fig.4. Simulation result reveals that after adding (1) and (II) edge, L is very
small. L in larger scale isn’t simulated, because Dijkstra arithmetic is not the practically
used path length calculation method in GTM, which is detailed in next section.

Each node in the model holds a great deal of VO local information (local edges) and
some other VOs’ information (long-range). Each node has lots of local information to

2.8
— =20

2.7

- 2.6

2.5

2.4

10 30 50 70 90 110 130 150 170 190

VO size

Fig. 4. The average node-to-node path length L in balanced distribution of VO size

144 H. Wang et al.

make large C and short L. The emulated model for GTM is thus based on small world
network and virtual organization.

5.2 Cheap Service Transaction cost

Transaction cost includes three main sorts: search and information costs, bargaining
and decision costs, and policing and enforcement costs [4]. GTM is focus on solving
the search and information costs of finding trading partners. For L is short in the model,
one node can reach any other node through a small hops. So one search request will be
fed back quickly in the model, and small L brings low service transaction cost.

Table 1. Relationship of L(local) and C(local)

VO size C(local) L(local) C(local) L(ocal) | Cdocal) L(local)
100 0.804 1.195 0.695 1.303 0.556 1.444
200 0.802 1.198 0.700 1.299 0.552 1.447
300 0.799 1.201 0.697 1.302 0.545 1.451

According to the local edge connection mode and conclusion (1), conclusion (2) is
drawn as following.

C(local) + L(local) = 2 conclusion (2)

L(local) measures average path length among nodes inside local VO. Conclusion (2)
shows that large C(local) is corresponding to the small L(local), and is tenable when

k*N >+/N at least. Table 1 also indicates that L(local) and C(local) are both
independent of VO size.

The connection mode of (1I) edge forms a set of complete sub-graphs connected by
some long-range edges. Regarding each VO as one node, and long-range edges among
servers is corresponding to local edge inside a VO; the connection mode of (1) edge is
almost the same with a single VO. So the relationship among different VOs’ servers
obey conclusion (2) too.

Using Dijkstra arithmetic, with the number of VO 7 increasing, transaction cost is
more and more expensive along with L’s increasing continuously. In the model’s
trading process, including B2B, B2C and C2C, conclusion (2) is used practically to
assure stably low transaction cost. This is because GTM distinguishes General node
and VO server so that local information inside VO is able to disseminate efficiently
abroad through long-range edges among servers. The clustering coefficient of edges
connecting servers in different VOs is called C(VO).

In B2B process, distance among local servers in same VO is /. The model assumes
that the shortest trading distance between any two enterprises is (2-C(VO)+1) at most.
Adding / is for dissemination among servers inside VO. In B2C process, client sends
service request to local server directly, and then it is the same process with B2B.
Therefore the model’s maximum trading distance is (2-C(VO)+1+1). In C2C process,
the distance of service request disseminating in local VO; is (2-Cylocal)). If the
destination service provider is not in VO;, local servers use (2-C(VO)) hops to send
message to any other VO’s server. In the destination VO,, request also disseminates
(2-Cj(local)) hops to any VO’s node. That is to say, the appearance of VO server makes

A Market-Oriented Model for Grid Service Management 145

the average node-to-node path length in the graph of the model to be
(2—C;(local)+2—~C(VO)+2~C (local)) , which is independent of the model size.

This conclusion brings cheap search and information costs, so it controls the Grid
transaction costs efficiently.

6 Related Work

This architecture can be associated with super-peer [11]. The differences of the two
systems are: each super-peer is a complete proxy of its clients who submit queries to
their super-peer and receive results from it, and this query mode only takes place in
GTM’s B2C process. In GTM each client has its own long-range edges and many local
edges, so each node has the ability of forwarding requests outside local organization.

Some present search protocols [12],[13] can be applied to GTM system, as the use of
GTM and the choice of those are orthogonal issues so long as enterprises and
consumers obey service and user organization policy of GTM. Market-based
computational and resource trading system designs including some useful market
models, which can also be employed seamlessly inside VO domain of GTM, which
have been proposed in [14].

A few other systems such as GRACE [15] and JaWS [16] have built up
market-oriented environments. However, they just try to solve idle computer resources
reusing problems by renting computational power, storage, or special services, which is
a different aspect of Grid economy problem from ours.

7 Conclusions and Future Work

GTM derives from an inherent similarity between typical networks and classical
economic market structure. It is simulated based on graph model [7]. We expound that
GTM may also turn out to be a useful model for “real-life economics”.

GTM is a hybrid system which integrates C/S and P2P structure (P2P relation is
among VOs; C/S and P2P are concurrence inside VO), so the architecture can adapt to
different trading processes. The small-world feature of GTM brings system large
clustering coefficient and short average node path length which are corresponding to
the various close business relationships and cheap transaction cost. All of those system
advantages make GTM fit in with monopolistic competition mode economy.

Some interesting directions of this work are still to come in future work. 1)
Incentives for query forwarding: competition is a problem in P2P frameworks that rely
on peers to forward queries, because a peer acting in its own best interests will not
forward queries to potential competitors. 2) The tragedy of web services: If one
company becomes dependent on many companies, it will be only a question of time
until it is out-of-business because one of the companies that it depends on goes
out-of-business. 3) GTM essentially thinks about service Qos, security and payment
system, and considers preventing the illegal sharing of copyrighted files. 4) We will
build a more practical Grid system to explore the integration of market economy and
Grid. And more information search protocols will be applied to GTM to improve the
trading efficiency.

146

H. Wang et al.

References

10.

12.

13.

15.

. Foster, C. Kesselman, J. Nick and S. Tuecke, “The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration”, Globus Project, 2002.

I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations.”, International Journal of High Performance Computing
Applications, 15 (3), 2001.

. CR. Mcconnell, S.L. Brue. Macroeconomics Principles, Problems, and Policies.

McGraw-Hill Inc. New York, 2001.

G. Mankiw, “Principles of Economics”, 3t Edition, South Western College Publishing,
USA, 2004

S. Milgram, “The small world problem.”, Psychology Today, 22, 1967, pp. 61-67

J. Kleinberg, “The Small-World Phenomenon: An Algorithmic Perspective.”, Tech. rep
99-1776, Cornell University, 1999

D. Watts, S. Strogatz, “Collective dynamics of ‘small-world’ networks.”, Nature 393, 1998,
pp. 440-442

E. Adar and B.A. Huberman, “Free Riding on Gnutella.” Technical report, XeroxPARC,
Aug, 2000

E.F. Shang and Z.H. Du, “Efficient grid service location mechanism based on virtual
organization and the small-world theory”, Journal of Computer Research and Development,
Beijing, 40 (12), 2003, pp. 1743-1748.

A. Kermarrec, L. Massoulie, A. Ganesh, “Reliable probabilistic communication in
large-scale information dissemination systems.”, MSR-TR-2000-105, Microsoft Research
Cambridge

. B. Yang, H. Garcia-Molina, “Designing a Super-Peer Network”, 19th International

Conference on Data Engineering, Bangalore, India, March 2003, pp. 49-62

A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems.”, In Proc. of
the 28th Intl. Conf. on Distributed Computing Systems, July 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable
content-addressable network.”, In Proc. ACM SIGCOMM, August 2001.

. M. Stonebraker, R. Devine, M. Kornacker, etc., “An Economic Paradigm for Query

Processing and Data Migration in Mariposa”, Proceedings of 3rd International Conference
on Parallel and Distributed Information Systems, Austin, TX, USA, Sept. 1994.

R. Buyya, J. Giddy, D. Abramson, “An Economy Grid Architecture for Service-Oriented
Grid Computing”, 10th IEEE International Heterogeneous Computing Workshop (HCW
2001), In conjunction with IPDPS 2001, San Francisco, USA, April 2001.

. S. Lalis and A. Karipidis, “An Open Market-Based Framework for Distributed Computing

over the Internet”, First IEEE/ACM International Workshop on Grid Computing (GRID
2000), Dec. 2000, Bangalore, India: Springer Verlag, Germany.

Pricing Web Services

Kevin Ho', John Sum!*, and Gilbert S. Young?**

! Department of Information Management, Chung Shan Medical University,
Taichung, 402, Taiwan, ROC
pfsum@csmu.edu.tw
2 Department of Computer Science, Cal State Poly Pomona CA, USA

Abstract. In this paper, a preliminary survey on the utilization of com-
binatorial auction as a mechanism for the allocation and the Gomory-
Baumol price and the Shapley value as a pricing mechanism for web
services is presented. It is shown that Gomory-Baumol price is in general
unable to determine the prices for the individual service, even though the
services can be optimally allocated. Except when the solution of the allo-
cation problem is integral, the condition for which the Gomory-Baumol
price could be determined is unclear. On the other hand, it is found that
Shapley value could be applied to price individual service. By allowing
the service providers setting reserve prices on their services, it can guar-
antee that the price is individual rational.

1 Introduction

Computing grid, an infrastructure enabling the integrated, collaborative use of
high-end computing systems, networks, data archives, and scientific instruments
that multiple organization operate (p.65 in [14]), has been one of the major re-
search topics in recent years. While lots of works have been done on the techno-
logical advancement enabling the construction of such infrastructure [8, 14], only
a few work have been done on the pricing of a resources being shared within the
grid or P2P [7, 9, 10, 12, 17]. Unless the stakeholders (both services providers
and consumers) of a grid are all from non-profit organizations, services should be
priced and service consumers should pay for what they have been served. That
should be the way for the sustainability of a grid.

A computational grid is essentially an online market for trading services (like
web services) and resources (like Internet bandwidth). Providers publicize the
services or resources they can supply, and then the consumers utilize the services
or resources by paying service charge. As in a normal market, trading services
could be accomplished by 4 different models. The simplest is that a buyer goes
directly to a seller site to get the service and then pay for what he/she has got.
Flea market is an example of this type. In the second to the forth type of market
are shown in Figure 1.

* Corresponding author.
** The work is supported in part by US NSF Grant 0321333.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 147-156, 2006.
© Springer-Verlag Berlin Heidelberg 2006

148 K. Ho, J. Sum, and G.S. Young

Provider Broker Q Broker Consumer Q/' Broker O

Consumers Providers Providers Consumers

(a) (b) (c)

Fig. 1. Trading models: (a) Single supplier (provider) multiple buyers (consumers);
(b) Multiple suppliers (providers) single buyer (consumer); (c¢) Multiple suppliers
(providers) multiple buyers (consumers)

Amongst these four types of trading model, the complication lies in the fact
that each consumer might want to buy products from more than one provider,
and each provider might provide more than one product. In such case, the trading
problem is essentially a combinatorial optimization problem. While the trading
involves a large number of consumers/providers and the number of services for
auction off is large, the problem is intractable (in the sense of computational
complexity). Generally speaking, the fundamental problems to be solved in a
trading market can be summarized as the following two problems.

Q1 Revenue maximization: How the services can be sold at their maximum
market value 7

Q2 Services pricing: How the money being collected can effectively pay back
to the suppliers! ?

Many studies have been reported in the literature [1, 2, 6, 11, 13] in regard to
these problems. Basically, the solutions developed are problem depended. For
many instance, problem Q2 have no need to be solved. In such case, trading
problem is simply a revenue maximization problem.

For a market only one seller and multiple sellers (Figure 1a), like the FCC
Spectrum auction or the airport landing slots allocation problems, one approach
to solve problem could be accomplished by combinatorial auction [5]. As all the
money collected will go directly to the government, the second problem Q2 does
not exist. Similarly, for a market that consists of only one buyer and multiple
suppliers bid for selling their services or product, Figure 1b, the second problem
Q2 does not exist neither. When a market consists of more than one supplier,
as shown in Figure 1c, the solution will no more be easy.

Inthispaper, our focusison the market consists of multiple suppliers and multiple
buyers. The difficulty of using combinatorial auction to price a web service will
be presented. It is shown by example that combinatorial auction in general can
allocate the resource to the buyers and get back the maximum revenue. Solution
obtained by combinatorial auction does not help much in determining the price of

! In this paper, seller, supplier and provider are used interchangeably. All of them
are referred to the one who provide services. Buyer and consumer are also used
interchangeably. They are referred to the one who consume the services.

Pricing Web Services 149

a service being sold. In [5], de Vries & Vohra have described how to use Gomory-
Baumol integer price as a method to set the price of a commodity in combinatorial
auction. Recently, in [16], Xia, Koehler and Whinston have also surveyed different
approaches for setting the clearance price in combinatorial. In this short note, we
would like to argue with example that computing Gomory-Baumol price is not
easy. The so-called free good can be of non-zero price. Besides, we would like to
add that Shapley value can in fact be a simple alternative pricing scheme for a
combinatorial auction and show how Shapley value can be applied even in the case
that the sellers have their own reserve prices.

2 Service Allocation by Combinatorial Auction

Considering the following auction problem with four bidders, B1, B2, B3 and
B4, bidding for three commodities, A, B and C. Their bids and bid prices are
depicted in the following table.

Bidders A B C Bid Price ¢;

B - 3K
B, -VV 3K
By -+ 3K
By VVV 4K

Solving the above allocation problem, one can formulate the problem as the fol-
lowing integer programming problem :

Max. z = 3x1 + 39 + 323 + 424
1 +a3+x4 <1
s.t. 1+ a0 +a4 <1 (1)
To+ a3+ 14 <1
x; € {0,1} Vi =1,2,3,4;

and then solve it by using Chavtal-Gomory Cutting Plane approach. By linear
relaxing, i.e. setting the constraints on z; be 0 < z; < 1, and adding slack
varibles s1,s2 and s3, the IP Problem (1) can be represented by the following
tabular form.

x

—
8
N
8
3
8
EN
Va)
—
¥
N
VA
w

O~ = W
_ = O W
_— O = W
— ==
oo~ O
[l e Ne)
-0 oo
— = = O N

Applying Dantzig’s Simplex method [4], the optimal solution for the linear re-
laxed problem will be given by the following tabular form.

X

8
%

X rg S1 S22 S3 2
-0.5-1.5-1.5-1.54.5

00
0 0 05 0.5 05-050.5
10
01

3]
w

0.5-0.5 0.5 0.5 0.5

0
1
0
0 0.5 0.5-0.5 0.5 0.5

150 K. Ho, J. Sum, and G.S. Young

The optimal z is 4.5 and the solution for (1, 22, z3,24) will be (0.5,0.5,0.5,0).
Since the table consists of non-integer elements, the following artificial con-
straint (considering the second row only) is added to the original problem.

0.5x4 + 0.5s1 + 0.5s82 + 0.5s3 > 0.5. (2)

It can be re-written by adding a slack variable, s4 : 0.524+0.551 +0.5s2+0.555 —
s4 = 0.5. Again, applying Dantzig’s Simplex method, the optimal solution of this
new problem can be given by the following tabular form.

1 X X3 T4 S1 S2 83 S4 %
000O0-1-1-1-14
100000-110
01 00-10010
00100-1010
0001111-21

The optimal z is 4 and the solution for (1, z2,x3,24) will be (0,0,0,1). Since
all the elements in the tabular form are integers, this is the optimal solution for
the IP Problem (1).

That is to say, the auctioneer will allocate all the commodities A, B and C
to bidder By and get the optimal profit 4. Now it comes to another problem.
Suppose commodities A, B and C are from three different suppliers. The auc-
tioneer will need to impute the values of these three commodities and then pay
back the amount to each supplier.

3 Gomory-Baumol Price

Ralph E. Gomory & William J. Baumol have suggested an algorithm for such
imputation. First, the artificial constraint, Equation (2), is re-written by writing
s1, S2 and s3 in terms of x1, x2, x3 and x4, i.e.

0.524 +0.5(1 — 21 — x3 — x4)
+0.5(1 — 21 — 22 — x4)
+0.5(1 —x9 —x3 —x4) > 0.5
T1+xo+ 23 +24 < 1. (3)

Second, adding this artificial constraint to the Problem (1) and treating it as an
artificial goods, the prices for A, B, C and this artificial goods can be obtained
by solution the following constraint minimization problem.

Min. w =7 + 7o + T3 + M4
T+ T+ Ty >3
Ty + T3 + T4 >3 (4)
T +7m3+ 74 >3
m+ 7o+ w3+ >4
m > 0; Vi=1,2,3,4,

s.t.

Pricing Web Services 151

where 71, mo, w3 and w4 are the shadow prices for A, B, C' and the artificial
goods respectively. It is not difficult to solve the above problem by using Simplex
method. The optimal w will be 4 and the solution for (m, s, w3, 74) will be
(1,1,1,1).

Since w4 is the shadow price for an artificial goods, its value has to be re-
distributed to the real goods, i.e. A, B and C. Gomory & Baumol suggested that
the re-distribution can be accomplished by considering the relationship between
the artificial constraint and the original constraints. Considering a general IP
problem defined as follows:

Max. z = cx

ot a1z < byy agr < bay - amr < by (5)
' —x1 <0; —22 <05 -+ —2, <0
where z is a n-vector and a; = (a1, a2, -+, a;) corresponds to the coefficient

vector in the i*" constraint. Suppose there is only one artificial constraint being
added for solving the problem and is denoted as follows : ¢’z < b’. The essential
idea of Gomory-Baumol algorithm is to find out the coefficients ay, ag, - - -, mtn
for the following equation:

d=oar 4+ Anlm + G161+ 0+ Qngnn, (6)

where ey, is an n-vector with the kt* element —1 and other zeros. Let T, Mo
t0 Tm+n+1 be the optimal prices evaluated based on solving the dual of the
following problem.

Max. z = cx

a1z <b, asxr <bo; - amx < by, (7)
s.t. -1 <0; —22<0; -+ —2, <0
ax <t

The price T, +n+1 can thus be distributed to the rest of the other goods by the
following scheme:

_Jammgnr ity =1, ;m+n
67Tj_{0 ifj=m+n+1 (8)

where §7; is the amount to be marked up for the unit price of the j** commodity.
Therefore, the unit prices for the real goods (Alcaly and Klevorick in [1] called
it Baumol-Gomory price), 7T;S, can be defined as follows:

7T; =T+ QjTmtn+1 (9)

forall j=1,---,m+n.
As noted by Alcaly and Klevorick in [1] and O’Neill et al in [11], Gomory-
Baumol algorithm does not always can lead to a solution that the free good is of

152 K. Ho, J. Sum, and G.S. Young

zero value. That is, b17) + - - - b7, # Zopt- Let us consider the auction problem
(1) again. Its corresponding linear problem is given by the following problem.

Max. z = 3x1 + 329 + 323 + 424
1+ w3+ 34 <1
. T+ T+ g <1
5.t To+x3+2x4 <1 (10)
1 +axo+2x3+24 <1
—x; <0Vi=1,2,3,4.

The dual problem will be given by

Min. w = m 4+ w9 + 73 + w4 4+ Oms + Omwg + Oy + Omg

T+ T+ 7Ty — M5 > 3

Ty + T3 + T4 — Mg > 3 (11)
T+ T3+ Ty — M7 >3

m + T+ T3+ My — g > 4.

s.t.

Here 75, g, m7 and mg correspond to the unit price of the artificial goods in the
constraints —x7 < 0; —z2 < 0; —z3 < 0; —z4 < 0. Solving the above problem
using Simplex method, four solutions for 7 can be obtained.

T g T3 T4 T5 T T

\,
3
o)

—_ = O

0
0
0
1

o= OO
o O O O

0
1
0
0

— O = =
O R R
N NN =

In accordance with Gomory-Baumol approach, one possible coefficient vector
of the artificial constraint is expressed as the following equation.

T T T T T

+ 0.5

+
o
o
+
o
o

(12)

—
I
o
ot
—_—_ 0 -
=
—_ == O
O OO

The unit prices, 71, 72, 73, 75, Tg, 77 and 7s.

T Mo T3 T4 T T M7 T8 » ;. Wby
1515150 0 0 0 0.5 4.5

Obviously the total amount that the sellers received is 4.5 which is larger than
the revenue 4. An interesting point is about 7mg. It is the shadow price of the
constraint —z4 < 0. It seems to be meaning something.

As a matter of fact, Equation (12) is only a possible linear expression for
(1,1,1,1). There could be many alternatives. One example is

T T T T T

-1 0
0
0

+

+ +

—
—__ O =
[e R Sy

-1

Pricing Web Services 153

Similarly, there are four solution for the unit prices, 71, 2, 73, 75, 7, 77 and 7g.

1 Mo T3 T4 T5 T T7 T P _j Tk
22101001 5
12101101 4
21101011 4
22002001 4

Therefore, it comes up with a question about which linear expression used for
imputation and which one is the most meaningful.

4 Shapley Value for Pricing

In 1953, Shapley proposed the Shapley value for the computation of the value
of players in a cooperative game [15]. The definition of Shapley value is stated
as follows. For a game with n players and the characteristic function for the
coalition S C N is denoted by v(S), the value of the i*" player, satisfies the
conditions : (i) v(¢) =0, v(S) > 0 for all S C N and (ii) v(SUT) > v(S) +v(T)
for any disjoint subsets S, T C N.

Condition (ii) is normally called superadditivity. The Shapley value is defined
by the following equation.

m= 3 TG s), (14

n!
SCN i€S

where s is the number of elements in the set S. Solution 7 implies the following
properties: [P1] (Group rational) ;" m; = v(N), and [P2] (Individual rational)
m > v({i}) for all i € N.

Bid prices are superadditive. Follow the same example and assume the
revenue has been calculated by the cutting plane approach as before, the profit
sharing problem can be formulated as a 3-persons game. In which N = {4, B, C}.
The characteristic functions are thus be given by

W(ABC) = 4,9(AB) = 3,v(BC) = 3,v(AC) = 3,

v(A) = 0,v(B) =0,v(C) =0,v(¢) =0.

Here ¢ is the empty set. The reason why v(A4) = v(B) = v(C) = 0 can be
explained as no one interests in one single item. Single item values nothing. The
Shapley value of commodity A, B and C' can thus be computed. The price paid
by the bidders and the profit gained by sellers could be defined as

Price(By) = 0 Price(B2) =0 Price(B3z) =0 Price(Bs) =4
Price(A) = 4/3 Price(B) = 4/3 Price(C) = 4/3.

154 K. Ho, J. Sum, and G.S. Young

Bid prices are not superadditive. To apply the Shapley value equation,
the characteristic function must be superadditive. But bid prices are usually not
superadditive, like the example below.

Bidders A B C Bid Price
B - -4 3K
B VvV 4K

To apply Shapley value, one approach to define the characteristic function as
the maximum revenues that can be gained instead of the bid prices. That is, for

all S C N,
v(S) = max {c(S),nj@x{ Z v(S’)}} , (15)

s S'CTs
where T is a partition of S and ¢(S") is the bid price for subset S’ C S. Therefore,
the characteristic function could be defined as follows :

v(ABC) = 4,v(AB) = 0,v(BC) = 3,v(AC) = 3,
v(A4) = 0,v(B) = 0,v(C) = 3,v(¢) = 0.
Here v(S) is the maximum revenue that can be gained whenever the subset S is
allocated and ¢ is the empty set.
Ignoring the computational burden, the Shapley values for the commodities

can thus be computed. Let m, 7o and w3 be the prices for commodities A, B
and C respectively. 1, =1/3, mo = 1/3 and w3 = 10/3.

Auction with reserve prices. As Shapley value is individually rational, it is
able to modify the auction mechanism by allowing sellers to set a reserve price.
In such case, the sellers are also treated as bidders. Suppose the reserve prices
of the items are 1K, 2K and 2K respectively, the bid patterns can be tabulated
as following table.

Bidders A B C Bid Price ¢;

B -- 3K
By VVV 4K
By - - 1K
By -+ - 2K
Bs - -+ 2K

Solving the above combinatorial auction, one will see that the commodities will
eventually be allocated to By, Bs and By. That is to say, commodities A and B
are not sold. Only C will be sold to B; at a price of 3K. To compute the Shapley
values for these commodities after auction, one can tabulate the characteristic
functions as follows :

v(ABC) = 6,v(AB) = 3,v(BC) = 5,v(AC) =4,
v(A) =1,v(B) =2,v(C) = 3,v(¢) =0.

The corresponding Shapley values for A, B and C will be 1,2 and 3 respectively.
As C' is the only one being sold, seller C' can get 3K.

Pricing Web Services 155

Remark on reserve price. It should be noted that the idea of reserve price
cannot be extended by allowing sellers to form coalitions and set reserve price
for the commodities they sell. It is because Shapley value cannot ensure the

condition that
> mi > 0(S).
ies

This situation can be observed from a simple example. Suppose there are two
bidders B; and By bidding for commodities A, B and C.

Bidders A B C Bid Price ¢;

B VY 6K
B, -+ 4K
By V- 7K
Bi -+ - 3K

Sellers A and B form a coalition and set the reserve price for {4, B} to be 7K.
Seller B furthermore set the reserve price for B to be 3K. The characteristic
functions for the above auction will be given by

v(ABC) =T,v(AB) = 7,v(BC) = 3,v(AC) = 4,

v(A) =0,v(B) = 3,v(C) =0,v(¢) =0.

Let m1,7m and w3 be the prices for commodities A, B and C respectively.
m = 8/3, m2 = 11/3 and w5 = 2/3. Obviously, 71 + 72 = 19/3 < 7. That means,
sellers A and B have to pay the auctioneer 2/3 even though their commodities
have not been sold. It seems to be rather odd. Therefore, it is necessary to restrict
the setting of reserve price in order to apply Shapley value. Each seller can only
set the reserve price for his/her own commodity.

5 Conclusion

In this paper, two approaches for pricing web services, namely Gomory-Baumol
price and Shapley value, have been presented, The incapability of determining
Gomory-Baumol price for an web service has been shown by an example. In view
of the limitation of using Gomory-Baumol pricing mechanism, we have suggested
to use Shapley value in return. By slightly modifying the auction mechanism by
allowing providers setting reserved prices, it can ensure that the price for a
service is no less than the reserved price if the service can be sold successfully.
Unfortunately, as the calculation of Shapley values is NP complete [3], Shapley
value approach can only be suitable for a small size problem. Parallel algorithm
for computing Shapley value and establishing rules of making a reserved price
for each web service in a composited web services market seem to be a valuable
future work for further investigation.

156

K. Ho, J. Sum, and G.S. Young

References

1]
2]

3]
[4]
[5]
[6]

[7]

8]
[9]
[10]

[11]

[12]

R.E. Alcaly and A.K. Klevorick, A notes on the dual prices of integer programs,
Econometrica, Vol.34, 206-214, 1966.

S. Bikhchandani, S. de Vries, J. Schummer, and R.V. Vohra. Linear programming
and Vickrey auctions Mathematics of the Internet: E-Auction and Markets, IMA
Volumes in Mathematics and its Apllications Vol. 127, p.75-116, 2001.

V. Conitzer and T. Sandholm, Complexity of determining nonemptiness of the
core. Proceedings 1JCAI-03, pp. 613-618, 2003

G.B. Dantzig, Linear Programming and Extensions, Princeton University Press,
1963.

S. de Vries and R. Vohra, Combinatorial auction: A survey, INFORMS Journal
of Computing, Vol.15, 284-309, 2003.

R.E. Gomory & W.J. Baumol, Integer programming and pricing, Econometrica,
Vol.28, 512-550, 1960.

D. Hausheer, N.C. Liebau, A. Mauthe, R. Steinmetz and B. Stiller, Token-based
accounting and distributed pricing to introduce market mechanisms in a peer-to-
peer file sharing scenario, Proceedings of P2P’03, 2003.

M.N. Huhns and M.P. Singh, Service-oriented computing: Key concepts and prin-
ciples, IEEE Internet Computing, Vol.9(1), 75-81, 2005.

R. Jain, Efficient Market Mechanisms and Simulation-based Learning for Multi-
Agent Systems, UC Berkeley EECS PhD Dissertation, Dec 2004.

R. Jurca and B. Faltings, Reputation-based pricing of P2P services, SIG-
COMM’05, August 22-26, 2005.

R.P. O’Neill, P.M. Totkiewicz, B.F. Hobbs, Michael H. Rothkopf and William
R. Stewart, Jr., Equlibrium prices in markets with nonconvexities, submitted to
American Economic Reivew, 2001.

J. Ostwald and V. Lesser, Combinatorial auctions for resource allocation in a
distributed sensor network, UMass Computer Science Tecchnical Report 04-72,
August 31, 2004.

D.C. Parkes, J. Kalagnanam and M. Eso, Achieving budget-balance with Vickrey-
based payment schemes in exchanges. Proceedings IJCAI-01, 2001.

D.A. Reed, Grids, the TeraGrid and beyond, IEEE Cpmputer, 62-68, Jan. 2003.

L.S. Shapley, A value of n-person games, Contributions to the Theory of Games
11, 307-317, Princeton University Press, 1953.

M. Xia, G.J. Koehler and A.B. Whinston, Pricing combinatorial auctions, Euro-
pean Journal of Operational Research, Vol. 154, 251-270, 2004.

J. Sum, J. Wu and C.S. Leung, On profit density based greedy algorithm for a
resource allocation problem in web services, to appear in International Journal of
Computers € Applications.

A Performance Improvement of Web Service System
Based on the Probability Distribution Characteristics

Il Seok Ko' and Yun Ji Na’

' School of E-Commerce, Chungbuk Provincial University, 40 Gumgu-ri, Okchon-eup,
Okchon-gun, Chungbuk 373-807, South Korea
isko@ctech.ac.kr
% School of Internet Software, Honam University, 59-1 Seobong-dong, Gwangsan-gu,
Gwangju 506-714, South Korea
vjna@honam.ac.kr

Abstract. A web caching technology, which analyzes and reflects the reference
characteristics of users, is required to effectively operate an electronic
commerce system, because the reference characteristics of web objects becomes
a major factor in decreasing the performance of an electronic commerce system.
Therefore, it is necessary to study the increase in the performance of web
caching based on the probability distribution of the object reference
characteristics in order to increase the performance of an electronic commerce
system. This paper proposes a web caching method based on the probability
distribution of the object reference.

Keywords: web object & web caching, probability distribution characteristics.

1 Introduction

Web caching can effectively deal with requirements of the user of an electronic
commerce system, and improve the performance of Internet. The performance of web
caching depends on the effective management of a limited storage scope of the web
cache. In order to achieve this performance, studies on replacement methods to
maintain the frequently used web objects in the storage scope of web cache have been
largely conducted [4, 5]. A replacement method for web cache should reflect the
characteristics of web objects. The user reference characteristics in an electronic
commerce system can be summarized as follows [1, 2, 6].

The referenced web object has a reference locality according to the time and
region. These reference characteristics can be varied according to the passage of time,
and this will be a major factor decreasing the performance of the existing caching
method.

® The user reference characteristics, such as users' age, level of skill in Internet
usage, education level, and various other conditions, affect the reference
characteristics.

® Types and characteristics of web services affect the reference characteristics of
the user.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 157 —164, 2006.
© Springer-Verlag Berlin Heidelberg 2006

158 1.S. Koand Y.J. Na

® The variability of the reference characteristics increases the deviation of the
object-hit ratio.

® The variability of the reference characteristics occur not periodically.

The change in the variable web object reference characteristics of the user of an
electronic commerce decreases the performance of web caching, and that becomes a
major factor decreasing the performance of an electronic commerce system. However,
the existing web caching method fails to effectively reflect the characteristics of the
user of an electronic commerce system. This is because the existing web caching
related studies have been focused mainly on the improvement of the object-hit ratio
and caching costs [2, 3, 7]. Therefore, studies in this field are required.

This study proposes a new web caching method based on the analysis of the
reference probability distribution characteristics of the user of web service system. In
addition, this study increases the performance of web caching through the analysis of
the characteristics of the probability distribution of the reference characteristics and a
structural approach for a caching system, rather than that of the study of caching
itself, such as an object-hit ratio.

2 Related Studies

An effective cache algorithm is used to estimate the reference possibility for the
object existing in the cache, and then stores objects, which have a high possibility of
referencing the near future, in the storage scope of cache. There are two leading
characteristics that affect the predisposition of the reference of web objects: temporal
locality and reference popularity. A replacement algorithm should be decided by
reflecting on the past record of the related object for these two characteristics.

(D Temporal locality

Temporal locality means that a currently referenced object has a high possibility of
being referenced. From the aspect of this temporal locality, most algorithms are used
just before the reference time of objects. However, the LNC-R algorithm uses the past
k, reference time. This algorithm uses the LRU-K algorithm, which is a type of buffer
caching method, to fit a caching method for heterogeneity objects.

(@ Reference popularity

The reference popularity means that an object, which has a large number of
references, has a high possibility to be referenced. From the aspect of this reference
popularity, certain algorithms use a number of object references. In addition to this,
certain methods add an aging mechanism to protect against cache pollution.

(@ Estimation of the reference possibility using a mixed method

The currently used algorithm estimates the reference possibility by considering
both temporal locality and reference popularity. The LRV and MIX algorithms
estimate the reference possibility by considering the prior reference time and
reference numbers of objects. The past k, reference time used in the LNC-R
algorithm is a type of coupled method, which uses both temporal locality and
reference popularity. In addition, there are some studies on the coupling method,
which couples the reference popularity with the GD-SIZE algorithm based on the
temporal locality. In the LUV algorithm, almost all records of the past reference are

A Performance Improvement of Web Service System 159

used to estimate the reference possibility of objects. The LUV algorithm is a type of
generalized method of the LRFU algorithm, which is studied in buffer caching, to fit
it to the characteristics of web cache.

These web caching related studies have only focused on the improvement of the
performance of caching itself, and they don’t reflect the probability distribution
characteristics of the object reference characteristics for the user of web service
system, which is the major focus of this study.

3 Proposed Method

3.1 Changes in Cache-Hit Ratio

Fig. 1 presents the change in cache-hit ratios acquired using a data smoothing method
according to the change of the reference characteristics of the user of an electronic
commerce system. The actual object-hit ration doesn’t appear as a smoothen state as
presented in Fig. 1, but it appears with undulations and outliers. It is necessary to
conduct a preprocess using a certain smoothing process in order to present these data
in a more smooth state as presented in Fig. 1. A smoothing process is a type of data
purification that changes average data into smooth data by removing non-similarity
from an original set. This study applies a smoothing method with bin means, which
replaces data as a mean value of bins. As described in Chapter 1, there are many
changes in the user of an electronic commerce system due to various factors. These
changes also bring changes in cache-hit ratios as illustrated in Fig. 1.

Almost all the existing studies related to the web caching have focused on the
improvement of the performance of caching methods through an increase in
the object-hit ratio of y-axis. However, the objective of this study is to increase the
caching capability by reducing the widths of Atl, At2, Awl, and Aw2, which are
generated from the results as presented in Fig. 1. In order to achieve this objective, it
is necessary to investigate the probability distribution characteristics of the object
reference characteristics, and structural approach for a caching system rather than
conduct an investigation of the caching itself, such as object-hit ratio.

I Cache hit ratio

)

!

r
I awl AWE

At A2 ULE

Cache hit ratio

Time

Fig. 1. Reference characteristics variation graph

160 1.S. Koand Y.J. Na

As shown in Fig. 1, a rapid decrease in the object-hit ratio between t1 and t3 causes
a decrease in the object-hit ratio below the mean value. In addition, a rapid increase in
the object-hit ratio between t2 and t4 maintains the object-hit ratio as the mean value.
These results can be caused largely by the characteristics of changes in the surfing
type noted as follows.

> Changes in the user’s preference

> Changes in the user’s web surfing type

> Changes in the user: terminating the use of the existing user, starting the use of
anew user.

In the graph, using a decrease in the width of Atl between tl and t2, and in the
width of At2 between t3 and t4, the performance of web caching can be increased. It
is evident that the decrease in Atl—Atl', A2—At2', Awl—Awl', and Aw2—Aw2'
increases the performance of web caching.

3.2 Cache Wear Out (CWO)

Definition 1 presents the definition of an OWS (Object Working Set). The item of
OWS (i) is a set of web objects to maintain the object-hit ratio more than a threshold
value in a time period (i) of cache.

<Definition 1> OWS (i)
OWS ()={0,, O,, ..., O, }, where O,, O,, ..., O, is the objects to maintain the
object-hit ratio more than a threshold value in a time period (i).

Fig. 2 presents the OWS in the time period of (i-1), (i), and (i+1).

(Eache hit ratio

WIS (j-1)))
' QWS (1) s i)

Time

Tain T st

T

t t2 13 t4

Fig. 2. Object Working Set

When the cache-hit ratio decreases below a threshold value, which configures an
OWS, a CWO (Cache Wear Out) will occur. As presented in Fig. 3, the time period
between tl and t3 is the CWO point. In an actual situation, the cache-hit ratio
frequently decreases below a threshold value, even in each time period. Thus, the
CWO point can be configured based on the amount of time, which decreases below
the threshold value, and can be configured based on the point where the object-hit

A Performance Improvement of Web Service System 161

ratio decreases a specific object-hit ratio based on the mean object-hit ratio for each
time period. Moreover, this paper configures the CWO point using a probability
distribution function of the object reference. This will be mentioned in Chapter 4.

Cache hit ratio

Cache Wear Out Cache Wear Out
point 1 point 2
Mean
Walug
it
Threshold
“alue al LWE
h
n o TiME
At a2
bl 2 13 t4

Fig. 3. Cache Wear Out

A correspondence cache empties a cache, and stores a new object when the CWO
occurs. Then, the cache will be filled with the new cache until a new OWS, which
reflects the reference characteristics of new objects, is configured in order to increase
the object-hit ratio. In this case, there may occur a sudden decrease in the object-hit
ratio due to the CWO. In order to compensate for this decrease, a double structured
cache, which will be presented in the next chapter, will be used. In the proposed
method, the CWO will occur based on the object reference distribution characteristics,
and this method has an adaptability to changes in the object reference characteristics
due to the configuration of a new OWS. Using this proposed method, it is possible to
decrease the time to manage a cache, object replacement time, object search time, and
verification time. In addition, it is possible to decrease the delay time and costs
according to the increase in the cache-hit ratio.

3.3 Cache Structure

A sudden decrease in the cache-hit ratio before the cache is to be totally empted, and
is fully filled again by new objects can be complemented using a double structured
cache, as illustrated in Fig. 4. In a time period, which has a stable object-hit ratio, one

Client
Cache scope @ | l:”
[|
. iy
(= |
Cache scope @ ‘Z’
./ -5
[|
£l
|

Fig. 4. Cache structure

162 1.S. Koand Y.J. Na

side of the cache scope can be totally empted when CWO occurred, while two caches
are used as a single scope. Then, the empted scope is filled with new incoming
objects. When the empted scope is filled with new objects, and the cache-miss occurs,
a replacement method can be applied as a not empted scope, or a single scope. After
the passage of time, if the CWO occurs again, the other side of the cache scope can be
totally empted, and then the cache operation can be performed again.

3.4 Mean-Life of Object

Web objects have a mean life in cache. Fig. 5 presents an object, which has four
different items based on the size of objects, according to the reference characteristics
of web objects. The section of item 1 can be configured by the object size less than
5K, item 2 can be configured by the object size from more than 5K to less than 100K,
item 3 can be configured by the object size from more than 100K to less than 400K,
and item 4 can be configured by the object size of more than 400K.

Object reference number
A
Item 1 ltem 2! |tem 3! ltem 4

N
_ \\

si s2; s3 s4

>
>

Object size

Fig. 5. Classification for object items

Four items (S1, S2, S3, S4) will be tested simultaneously. Cache-miss frequency in
each division is as follows.

S1=75,123
52 =315,634
S3=67,473
S4 =13,935

This is the number of object-misses for each object period until the object-hit ratio
decrease below 36% from the total of 90% when the object-hit ratio was configured
by 40%. The mean life parameter (@) can be described as follows.

~ T
0=—
¥
T = Total test time accumulated on all items
v = Total number of cache-miss

A Performance Improvement of Web Service System 163

We can get the mean-life through the value of chi-square () 2) distribution as
follow.

2r0
Ple—a/Z,ZrSTSZi/LZr =l-a

We can get Mean-life as follow.
Mean-life = 472,165/4 = 118,041

Getting the 95% two-sided confidence interval on mean-life, we can get the proper
test value of the chi-square as follow.
4

5 20 47165
4

1(3975,8 =2.180
,1’5025’8 =17.535

=118,041

13,464 < 6 <108,295

Therefore, the mean life of objects for the experiment, which has a Chi-square
distribution, presents as the minimum and maximum values of 13,464 and 108,295
times, respectively. This method can be generally used to obtain the mean life of
products [15]. The section between the maximum value and the minimum value can
be recognized as the mean life of products, and the product is to approach the fault
state in this section. When a product reaches the fault state, it can be changed, or
renewed. From the viewpoint of cache, the performance can be improved through this
renewal using the CWO.

3.5 CWO Policy Using Aging Techniques

This paper uses the object reference distribution characteristics for the issue of when a
cache wears out. The CWO adaptively occurs using an aging technique in the range of

the minimum value< & <the maximum value (that is the mean life parameter) based
on the mean life of objects. The CWO policy can be noted as follows.

Policy 1: Wear out based on the maximum value

In the case of frequently used objects, an object-miss will frequently occur. In this
case, the time to approach the fault state will be shortened in each item section of the
object. If the item approaches the fault state in cache, the CWO will frequently occur
when a single CWO policy is used. Therefore, the CWO point can be decided using
the maximum value used in this case.

164 1.S. Koand Y.J. Na

Policy 2: Wear out based on the minimum value
In the case of rarely used objects, a cache-miss will slowly occur. In this case, the
CWO can be generated using the minimum value in the mean life section.

4 Conclusions

If the proposed system applies in an electronic commerce system, which presents a
fast change in the user reference characteristics, this system will satisfy the
customer’s loyalty and satisfaction through an increase in the user response speed. In
addition, this will increase the competitiveness of an e-business company.

Studies on modeling techniques for the reference characteristics in a preprocessing,
which smooth out the reference characteristics of web objects, will be continuously
conducted. In addition, we would like to attempt to increase the performance of a web
caching system through future studies on the reference characteristics using
continuous log analysis materials.

References

[1] 11 Seok Ko, Choon Seong Leem, "An Improvement of Response Time for Electronic
Commerce System," Information Systems Frontiers, vol6, no4, pp.313-323, 2004.

[2] 11 Seok Ko, Yun Ji Na, Choon Seong Leem, "ACASH: An Adaptive Web Caching Method
with Heterogeneity of Web Object and Reference Characteristics," Journal of KISS:
Information networking, vol.31, no.3, pp.305-313, 2004.

[3] Yun Ji Na, Il Seok Ko, Gun Heui Han, "An Adaptive Web Caching Method based on the
Heterogeneity of Web Object,” LNCS3758, pp.853-858, 2005.

[4] L. Rizzo, L. Vicisano, "Replacement Polices for a Proxy Cache," IEEE/ACM Trans.
Networking, vol.8, no.2, pp.158-170, 2000.

[S] H. Bahn, S. Noh, S. L. Min, and K. Koh, "Efficient Replacement of Nonuniform Objects
in Web Caches," IEEE Computer, vol.35, No.6, pp.65-73, June 2002.

[6] Jia Wang, "A Survey of Web Caching Schemes for the Internet,” ACM Computer
Communication Review, 29(5), pp.361146, 1999.

[7]1 S. Williams, M. Abrams, C. R. Standridge, G. Abhulla and E. A. Fox, "Removal Policies
in Network Caches for World Wide Web Objects," Proc. 1996 ACM Sigcomm, pp.293-
304, 1996.

An Optimal Scheduling Algorithm for an
Agent-Based Multicast Strategy on Irregular
Networks

Yi-Fang Lin2, Zhe-Hao Kang!, Pangfeng Liu!, and Jan-Jan Wu?

! Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. This paper describes an agent-based approach for scheduling
multiple multicast on switch-based networks with irregular topologies.
Our approach assigns an agent to each subtree of switches such that the
agents can exchange information efficiently and independently. The en-
tire multicast problem is then recursively solved with each agent sending
message to those switches that it is responsible for. In this way, commu-
nication is localized by the assignment of agents to subtrees. This idea
can be easily generalized to multiple multicast since the order of message
passing among agents can be interleaved for different multicasts. The key
to the performance of this agent-based approach is the message-passing
scheduling between agents and the destination processors. We propose
an optimal scheduling algorithm, called ForwardInSwitch to solve this
problem.

We conduct experiments to demonstrate the efficiency of our approach
by comparing the results with SPCCO, a highly efficient multicast algo-
rithm. We found that SPCCO suffers link contention when the number
of simultaneous multiple multicast becomes large. On the other hand,
our agent-based approach achieves better performance in large cases.

1 Introduction

Multicast/broadcast is commonly used in many scientific, industrial, and com-
mercial applications. Distributed-memory parallel systems, such as cluster sys-
tems, require efficient implementations of multicast and broadcast operations in
order to support various applications. In a multicast, the source node sends the
same data to an arbitrary number of destination nodes. When multiple multi-
cast operations occur at the same time, it is very likely that some messages may
travel through the same network link at the same time and thus content with
each other, if they are not scheduled properly.

Minimizing contention in collective communication has been extensively stud-
ied for systems with regular network topologies, such as mesh, torus and hyper-
cubes [1,2,3,4,5,6,7]. Cluster networks, especially switch-based clusters, on the
other hand, typically have irregular topologies to allow the construction of scal-
able systems with incremental expansion capability. These irregular topologies

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 165-174, 2006.
© Springer-Verlag Berlin Heidelberg 2006

166 Y.-F. Lin et al.

lack many of the attractive mathematical properties of the regular topologies.
This makes routing on such systems quite complicated. In the past few years,
several routing algorithms have been proposed in the literature for irregular net-
works [8,9,10,11]. These routing algorithms are quite complex and thus make
implementation of contention-free multicast operations very difficult.

The goal of this paper is to develop efficient (multiple) multicast algorithms for
irregular switch-based networks. In [12], Fan and King proposed an unicast-based
implementation of single multicast operation based on Fulerian trail routing. In
this paper, we consider the widely used, commercially available routing strategy
called “up-down” routing. The best known results on multicast on irregular net-
works are the Partial-Order-Chain-based algorithms proposed by Kesavan and
Panda [13]. The basic idea is to order the destination processors into a sequence,
then apply a binomial tree-based multicast [14] on these destinations. The chain
concatenation ordering (CCO) algorithm first constructs as many partial order
chains (POC) as possible from the network. A partial order chain is a sequence of
destinations such that we can apply a binomial multicast on it without any con-
tention. The CCO algorithm then concatenates these POCs into sequence where
a binomial multicast is performed [13]. The sequence consists of fragments of
processor sequences in which messages within the same fragment can be sent
independently, therefore congestion is reduced. Based on the CCO algorithm,
the source-partitioned CCO (called SPCCO) performs multiple multicasts si-
multaneously. Each multicast produces its own sequence (consisting of POCs),
and each resulting sequence is shifted until the source appears at the beginning
of the sequence. By shifting these sequence, the communication is “interleaved”
according to the source, and communication hot-spots are avoided. However,
both CCO and SPCCO use the idea of POC to reduce contention. Within a
single POC different messages do not interfere with one another as long as they
are from different sections within a POC. However, this POC structure may not
always be preserved since the later binomial multicast is not aware of it.

To solve this problem, in [15] we proposed an agent-based multicast algo-
rithm, which avoids network contention by localizing and interleaving message
passings in multicast. Our agent-based approach starts with a recursive multi-
cast algorithm. An agent for a multicast is chosen for each subtree of the routing
tree. An agent is responsible for relaying (forwarding) the multicast messages to
all the destinations in that subtree. This task is divided into subtasks for each
subtree, where they are performed recursively. We generalize this algorithm to
multiple multicast by choosing a primary agent for each multicast. The primary
agent are chosen from the subtrees of the root of the routing tree, and are prop-
erly interleaved so that the tasks are distributed evenly. The primary agents for
different multicasts exchange messages and then use the multicast algorithm to
forward messages.

The key to the performance of the agent-based multicast strategy is the
scheduling of message forwarding between agents as well as between an agent
and the destination processors within each subtree. In our previous work we
use a rudimentary scheduling for this purpose. The focus of this paper is an

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 167

optimal scheduling algorithm, called ForwardInSwitch, for message forwarding.
We provide theoretical analysis for the optimality and time complexity of For-
wardInSwitch. Our experimental results also demonstrate significant performance
improvement of our multicast algorithms in comparison with the CCO and
SPCCO multicast algorithms.

The rest of the paper is organized as follows: Section 2 formally describes
the communication model in this paper. Section 3 first describes our multicast
algorithm, and then describes the generalization to multiple multicast. Section
4 presents the ForwardInSwitch optimal scheduling algorithm. Section 5 reports
our experimental results, and finally we conclude with Section 6.

2 Model

We now describe the up-down routing [9] used in our multiple multicast algo-
rithm. The up-down routing mechanism first uses a breadth-first search to build
a spanning tree T for the switch connection graph G = (V, E). Since T is a
spanning tree of GG, E is partitioned into two subsets — T" and F — T'. Those
edges in T are referred to as tree edges and those in E — T as cross edges [13].
Since the tree is built with a BFS, the cross edges can only connect switches
whose levels in the T differ by at most 1. A tree edge going up the tree, or a
cross edge going from a processor with a higher processor id to a processor with
a lower one, are referred to as up links. The communication channels going the
other direction are down links. In up-down routing a message must travel all the
up links before it travels any down links.

We assume that a switch can deliver multiple messages simultaneously from
ports to ports, as long as the messages are delivered from different source and
destination ports. This assumption is consistent with current routing hardware
technology. As a result, congestion on the communication links becomes the
major bottleneck.

We consider three cases where link contention can be avoided. In the first
case, as shown in Figure 1(a), all source/destination processors are connected to
the same switch A. In this case, there will be no contention since the messages
travel through different paths within the switch. In the second case, as shown
in Figure 1(b), both source processors reside on A. In this case, both can send

Fig. 1. Example cases that avoid contention on the inter-switch channels

168 Y.-F. Lin et al.

messages to destinations in different subtrees of A simultaneously. Note that
a destination node could be any processor in these two subtrees. In the third
case two messages travel through four subtrees of switch A, as indicated in
Figure 1 (c). If the two messages both go through switch A, there will be no link
contention between them.

3 Agent-Based Algorithms

3.1 Single Multicast

For a given multicast message m and a switch v we will define two functions
— an agent function A(m,v) that returns a processor within the subtree rooted
at v and will be responsible for relaying multicast message m, and a cost func-
tion C(m,v) that estimates the total cost of sending m to all of its specified
destinations within the subtree rooted at v.

We define these agent and cost functions recursively. Let D(m,v) be the set
of destination processors of message m that are connected to switch v. For a
leaf v, A(m,v) is defined to be an arbitrary destination processor in D(m,v),
and C(m,v) is log|D(m,v)|. For an internal node v, if |[D(m,v)| > 0, we pick
an arbitrary destination of m in D(m,v) to be A(m,v). Otherwise we consider
all the children of v that m must be sent to, and set A(m,v) to be the agent
from these subtrees that has the highest cost. Formally, let S(m,v) be the set
of children of v that have destinations of m in their subtrees, then A(m,v) = w
such that w € S(v) and C(m,w) > w’ for all w’ € S(v). For the cost function
part, if |[D(m,v)| is 0, the agents of tree nodes from S(v) will first perform a
multicast among themselves using a binomial multicast [14], then as soon as an
agent a from S(m,v) finishes receiving m, it recursively performs a multicast
to all the destinations in the subtree where it is defined as the agent. The total
communication cost is then defined as C'(m,v).

When |D(m,v) > 0|, the situation is more complicated since the agent of
v can send m to other destinations in D(m,v), or to the agents of S(m,wv).
We apply a procedure ForwardInSwitch that determines the order for those in
D(m,v) and S(m,v) to receive messages. The algorithm ForwardInSwitch takes
D(m,v) and C(w,m) for all w € S(m,v) as inputs, then computes an optimal
schedule and the total cost. The details of ForwardInSwitch will be given later.

When |D(m,v)| > 0, v does have some destination processors for message m
and one of them is the agent of v. When the agent sends messages to those des-
tinations in D(m,v) (Figure 1 (a)), the messages will not interfere with each
other. Also when the agent of v sends messages to those agents in S(m,v)
(Figure 1 (b)), no contention is possible if no cross edges are involved. In addi-
tion, the message passing from one category (Figure 1 (a)) will not contend with
those in the other category (Figure 1 (b)). When |D(m, v)| = 0, we use a single
multicast to send the messages among all the agents of S(m, v), with one of them
now being assigned as the agent of v. From Figure 1 (c) we conclude that these
messages will not contend with each other unless cross edges are involved, since
the agents of different subtrees in S(m, v) will not be in the same subtree.

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 169

3.2 Multiple Multicast

Let r be the root of the up-down routing tree. The agent-based multiple multicast
is carried out in three steps as described below. First for each message m we
choose a primary agent among the agents of S(m, r) - the set of subtrees of root r.
Each source processor then sends its message to its primary agent. Second, the
primary agent sends its message m to a destination d in D(m,r) if any, and
to the agents of S(m,v). Finally, each agent a of S(m,r) sends messages to
its destinations by calling RAM, and a sends m to D(m,r) with a binomial
multicast.

4 ForwardInSwitch

We have two kinds of nodes in our ForwardInSwitch scheduling. The first is called
local nodes, which are processors within a switch (or a local cluster). Local nodes
can send and receive data among themselves. The second is remote nodes. Each
remote node represents a remote agent that we need to send the message to.
Once a remote agent receives the data from one of the local nodes, it will be
responsible for distributing the data among the processors within that subtree.

Initially we have the agent local node as the source of the broadcast. The
agent needs to send the data to all the other nodes (local and remote nodes) in
the system. We define the finishing time as the time for all nodes in the system
to receive the data, and, we would like to find a broadcast schedule with the
minimum finishing time.

We assume that the local nodes are homogeneous, so that it takes one unit
time for any local node to send a data to any other nodes. However, it takes very
different amount of time for a remote node to receive a data, and this time is at
least 1 time unit. To be more specific, when a local node sends data to another
local node at time ¢, both local nodes can start sending data to another node at
time ¢ + 1. However, if a local node sends data to a remote node at time ¢, the
local node can start sending data to another node at time ¢ + 1, but the remote
node will not complete its operation until C(m,r), which will be determined
recursively from bottom to the top of the routing tree. Recall that C(m,r) is
the cost for an agent r to send messages m to all the destination processors
located in the subtree rooted at r. As a result we define the finishing time of a
remote node 7 to be the ¢t + C(m,r), where ¢ is the time the parent of r starts
sending the data to r. The total time of ForwardInSwitch is then determined by
the maximum of all nodes.

4.1 Scheduling Algorithm

Let n and m be the number of local and remote nodes. The remote nodes are
T1,T2, ..., m With costs c1, ¢, . . ., ¢y . Without lose of generality we assume that
¢i > Cit1, for 1 < i <m — 1. We use [(n) to denote the level number of a node
n. We first observe that the remote nodes should be scheduled according to
non-decreasing order according to their costs. That is, there exists an optimal

170 Y.-F. Lin et al.

ForwardInSwitch schedule in which I(r;) < I(ri41), for 1 < i < m — 1. If we
assume that there exists an optimal ForwardInSwitch schedule in which I(r;) >
I(r;y1) for some i, it is easy to see that by switching r; and r; 1 the finishing
time will not increase.

We use a binary search to determine the optimal ForwardInSwitch finishing
time. If we could determine that, given a target finishing time 7', whether all tree
nodes can finish, we could use at most O(log C') round of testings to determine
the optimal ForwardInSwitch finishing time, where C' is maximum possible finish
time. As a result, the key point of our algorithm is to determine, given a time
constraint 7', whether all nodes can finish in time.

We divide the remote nodes into two groups — critical and non-critical. A
remote node r; is critical at time ¢ if ¢ 4+ ¢; is at least T, where T is the target
finishing time constraint. If a remote node is critical, it should be scheduled
immediately otherwise it will miss the deadline T'. If the node is non-critical,
then it can wait.

We now describe our testing algorithm which determines whether it is possible
to obtain a ForwardInSwitch scheduling within time T'. At every time step, all
the local nodes that have already received the message, select the destinations
according to the following priority. (1) critical remote nodes, (2) local nodes, (3)
non-critical remote nodes.

Theorem 1. There exists an optimal ForwardInSwitch schedule that obeys the
priority.

Proof. Since a critical node must be scheduled immediate to avoid missing its
deadline, it has the highest priority. We only need to show that there exists an
optimal ForwardInSwitch schedule that will schedule non-critical remote nodes
only when there is no local node to send messages to.

We assume that there is an optimal schedule in which a non-critical remote
node r is scheduled at time ¢ and a local node b is scheduled at a later time
t’ > t. Let a be the local node that sends data to r in the optimal schedule. Now
we will do the following changes. We will make a to send data to b instead of r
at time ¢, and make b to send data to r at time t+ 1, then make b to send data to
c at time ¢ + 2, where c is the node b sends data to at time ¢’ + 1 in the optimal
schedule. Since r is not critical at time ¢, delaying it to ¢t + 1 will not miss the
deadline T'. The subtree rooted at ¢ started at time ¢’ + 1 in the original optimal
schedule, and now starts at time ¢ + 2. Since that ¢ > ¢, or t' +1 >t + 2. The
subtree of ¢ will not be delayed either.

We use this checking algorithm to verify whether a finishing time T is feasible.
From Theorem 1 we know that if there exists an optimal schedule for For-
wardInSwitch, the checking algorithm will find it. Now with a binary search on
T, we can easily determine the optimal T, hence the optimal ForwardInSwitch
schedule. It is easy to see that the finish time will not be more than n+ .~ ¢,
so at most O(log(n+ C')) rounds of checking, where C is the summation of costs
from remote nodes, suffice to find the optimal finish time.

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 171

5 Simulation Experiments and Results

In this section, we present results of simulation experiments to compare the algo-
rithms proposed in Section 3 and the two order-chain-based algorithms proposed
in prior works (CCO, SPCCO).

We developed a C++, discrete event-based simulator for our experiments.
The simulator can model wormhole routing switches with arbitrary network
topologies. We chose system parameters as follows. Communication start-up
time was 5.0 microseconds, link transmission time was 10.5 nanoseconds, and
routing delay at switch was 200 nanoseconds. The default buffer size at each
port was assumed to be 1 flit. The default numbers of input ports and output
ports were assumed to be 16. The network topologies were generated randomly.
For each data point, the multicast performance was averaged over 100 different
network topologies.

For all experiments, we assumed a default system configuration of a 512-
processor system interconnected by 64 sixteen-port switches in an irregular topol-
ogy. 50% of the ports on a switch are connected to processors, and the other 50%
of the ports are connected to other switches. Links were not allowed between
ports of the same switch. A random number generator was used to decide the
port and switch or the processing node to which a given switch port should be
connected to.

For our study, we varied each of the following parameters one at a time:
the message length (NBM), the number of destinations in each multicast (ND),
the number of simultaneous multicast operations (NM), the number of switches
(NS), and the number of ports on a switch (HP). Since message length, number
of multicast operations, and system size varied in our experiments, instead of
using latency as the measurement of performance, we use throughput, which is
defined by M/T, where M is the total length of the messages and T is the
parallel completion time of the (multiple)multicast operation.

Effect of Number of Multicast Operations. First we examined the effect of vari-
ation in the number of multicast operations on the performance of the pro-
posed algorithms. Other parameters were assumed to be as follows: number of
switches NS = 64 (and thus 512 processors), number of ports connected to
processors HP = 8,12, and number of destinations in each multicast ND =
153,204,537,716. The destinations were generated randomly. For each data
point, the multicast performance was averaged over 50 different sets of
destinations.

As shown in Figure 2, when there are few (less then eight) multicast op-
erations, ordered-chain-based algorithms perform better than our agent-based
algorithms. This is because when the number of multicast operations is small,
message contention is not significant and thus the importance of reducing number
of communication stages outweighs that of reducing message contention. How-
ever, when the number of multicast operations increases, the impact of message
contention becomes more important and therefore the benefit of agent-based
optimization becomes more significant.

172 Y.-F. Lin et al.

Throughput under different number of multicast operations.

o1 varsans, @ vaiea s, s MO 175, anahp - 16

mbers of destinations.

0 vara WP 16, anans <64

=

Throughput under different numbers of long-message multicasts.

Fig. 2. Simulation result comparison by varying different parameters

Effect of Number of Switches. We studied the scalability of the proposed algo-
rithms on different systems sizes. We varied the number of switches from 16 to
128, with 50% of the ports connected to processors and the other 50% connected
to switches. For each switch size, number of multicast operations NM=32. Num-
ber of multicast destinations ND=134, 179. For each data point, the multicast
performance was averaged over 50 different sets of destinations.

As shown in Figure 2, the throughput of the agent-based algorithms, the
throughput of the ordered-chain-based algorithms, and the improvement ratio of
the agent-based algorithms over the ordered-chain-based algorithms all increase
when the number of switches (and processors) increases. A possible reason is
that when number of switches increases, the level of the up-down routing BFS
tree also increase, hence the number of hops between the sender and the receiver
of a cross-subtree message may increase. Longer path increases the potential of

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 173

contention. Since our agent-based algorithms guarantee the path of each message
be no more than 2 hops, they are scalable with respect to number of switches.

Effect of Number of Destinations. In this experiment, number of switches N.S =
64 and number of ports connected to processors HP = 8. We chose two different
numbers of multicast operations NM = 4,32. We varied the number of desti-
nations for each multicast from 100 to 900. Figure 2 shows the throughput of
these algorithms. As we can see, the throughput of these algorithms increases
when the number of destinations increases, and the improvement ratio of the
agent-based algorithms over the ordered-chain-based algorithms also increases
on size increase in destinations.

Effect of Message Length. We examined the effect of message length on the
performance of proposed algorithms. We chose two message lengths, 128 KB for
short messages and 32M B for long messages, and varied the number of mul-
ticast operations with long messages (NBM). The source and destinations of a
multicast were generated randomly. As shown in Figure 2, when the number
of long-message multicast operations is small, the performance discrepancy be-
tween agent-based algorithms and the ordered-chain-based algorithms is small.
The possible reason is that long messages are likely to increase the chance of
contention, and when the number of long-message multicast operations is small,
they may not be evenly distributed in the BFS tree and thus may cause hot-spots
in communication.

6 Conclusion

This paper describes an agent-based approach for scheduling multiple multicast
on switch-based networks. Our approach assigns an agent to each subtree of
switches such that the agents can exchange information efficiently and indepen-
dently. The entire multicast problem is recursively solved with each agent sending
message to those switches that it is responsible for. Communication is localized
by the assignment of agents to subtrees. In addition, the agent mechanism pro-
vides an easy mechanism in performing multiple multicasts simultaneously, with
very low chances of network contention.

We compare the results with SPCCO [13] and found that SPCCO, a highly
efficient multicast algorithm based on Partial Ordered Chains, incurs high con-
tention in large cases. Our agent-based approach minimizes contention by prop-
erly interleaving multiple multicast and optimally scheduling message passings
between agents and destination processors to avoid hot spots.

References

1. Dally, W.: Deadlock-free message routing in multiprocessor interconnection net-
works. IEEE Trans. Comput. C-36(5) (1987) 547-553

2. Duato, J.: On the design of deadlock-free adaptive routing algorithms for multi-
computers. In: Proceedings of Parallel Architectures and Languages Europe 91.
(1991)

174

3.

10.

11.

12.

13.

14.

15.

Y.-F. Lin et al.

Duato, J.: A necessary and sufficient condition for deadlock-free adaptive routing
in wormhole networks. In: Proceedings of the 1994 International Conference on
Parallel Proceeding. (1994)

. Glass, C., Ni, L.: The turn model for adaptive routing. J. ACM 41 (1994) 847-902
. Gaughan, P.T., Yalamanchili, S.: Adaptive routing protocols for hypercube inter-

connection networks. IEEE Computer 26(5) (1993) 12-23

. Gravano, G., Pifarre, G.D., Berman, P.E., Sanz, J.L.C.: Adaptive deadlock- and

livelock-free routing with all minimal paths in torus networks. IEEE Trans. Parallel
and Distributed Systems 5(12) (1994) 1233-1251

. P.K. McKinley, H. Xu, A.H.E., Ni, L.: Unicast-based multicast communication in

wormhole-routed networks. IEEE Transactions on Parallel and Distributed Sys-
tems 5(12) (1994) 1252-1265

. Boden, N.J., Cohen, D., Felderman, R.F., Kulawik, A.E., Seitz, C.L., Seizovic, J.,

Su, W.: Myrinet - a gigabit per second local area network. TEEE Micro (1995)
29-36

. et. al., M.D.S.: Autonet: A high-speed, self-configuring local area network using

point-to-point links. Technical Report SRC research report 59, DEC (1990)
Horst, R.: Servernet deadlock avoidance and fractahedral topologies. In: Proceed-
ings of the International Parallel Processing Symposium. (1996) 274-280

Qiao, W., Ni, L.: Adaptive routing in irregular networks using cut-through
switches. In: Proceedings of the 1996 International Conference on Parallel Pro-
ceeding. (1996) 1:52-60

Fan, K.P., King, C.T.: Efficient multicast on wormhole switch-based irregular
networks of workstations and processor clusters. In: Proceedings of the Internationl
Conference on High Performance Computing Systems. (1997)

Kesavan, R., Panda, D.K.: Efficient multicast on irregular switch-based cut-
through networks with up-down routing. In: IEEE Trans. Parallel and Distributed
Systems. Volume 12. (2001)

Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, hypercubes. (Morgan Kaufmann)

Lin, Y.F., Liu, P., Wu, J.J.: Efficient agent-based multicast on wormhole switch-
based irregular networks. In: International Parallel and Distributed Processing
Symposium. (2003)

Methods for Partitioning Data to Improve
Parallel Execution Time for Sorting on
Heterogeneous Clusters*

Christophe Cérin', Jean-Christophe Dubacq!, and Jean-Louis Roch?

! Université de Paris Nord, LIPN, CNRS UMR 7030,
99 avenue J.B. Clément, 93430 Villetaneuse - France
{cerin, jcdubacq}@lipn.univ-parisi3.fr
2 ID-IMAG, CNRS - INRIA - INPG - UJF, Projet MOAIS,
51 Av. J. Kuntzmann, 38330 Montbonnot-Saint-Martin - France
Jean-Louis.Roch@imag.fr

Abstract. The aim of the paper is to introduce general techniques in
order to optimize the parallel execution time of sorting on a distributed
architectures with processors of various speeds. Such an application re-
quires a partitioning step. For uniformly related processors (processors
speeds are related by a constant factor), we develop a constant time
technique for mastering processor load and execution time in an het-
erogeneous environment and also a technique to deal with unknown cost
functions. For non uniformly related processors, we use a technique based
on dynamic programming. Most of the time, the solutions are in O(p)
(p is the number of processors), independent of the problem size n. Con-
sequently, there is a small overhead regarding the problem we deal with
but it is inherently limited by the knowing of time complexity of the
portion of code following the partitioning.

Keywords: parallel in-core sorting, heterogeneous computing, complex-
ity of parallel algorithms, data distribution.

The advent of parallel processing, in particular in the context of cluster com-
puting is of particular interest with the available technology. A special class of
non homogeneous clustersis under concern in the paper. We mean clusters whose
global performances are correlated by a multiplicative factor. We depict a cluster
by the mean of a vector set by the relative speeds of each processor.

In this paper we develop general techniques in order to control the execu-
tion time and the load balancing of each node for applications running in such
environment. What is important over the application we consider here, is the
meta-partitioning schema which is the key of success. All the approaches we de-
velop can be considered as static methods: we predetermine the size of data that

* Work supported in part by France Agence Nationale de la Recherche under grants
ANR-05-SSTA-0005-01 and ANR-05-SSIA-0005-05, programme ARA sécurité.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 175-186, 2006.
© Springer-Verlag Berlin Heidelberg 2006

176 C. Cérin, J.-C. Dubacq, and J.-L. Roch

we have to exchange between processors in order to guarantee that all the pro-
cessors end at the same time before we start the execution. So, this work can be
considered in the domain of placement of tasks in an heterogeneous environment.

Many works have been done in data partitioning on heterogeneous platforms,
among them Lastovetsky’s and Reddy’s work [1] that introduces a scheme for
data partitioning when memory hierarchies from one CPU to another are differ-
ent. There, the heterogeneity notion is related to the heterogeneity of the memory
structure. Under the model, the speed of each processor is represented by a func-
tion of the size of the problem. The authors solve the problem of partitioning n
elements over p heterogeneous processors in O(p? x logy n) time complexity.

Drozdowski and Lawenda in [2] propose two algorithms that gear the load
chunk sizes to different communication and computation speeds of applications
under the principle of divisible loads (computations which can be divided into
parts of arbitrary sizes; for instance painting with black pixels a whole image).
The problem is formalized as a linear problem solved either by branch and bound
technique or a genetic algorithm. Despite the fact that the architecture is large
enough (authors consider heterogeneous CPU and heterogeneous links), we can
not apply it here because our problem cannot be expressed under the frame-
work of ’divisible loads’: in our case, we need to merge sorted chunks after the
partitioning step and the cost is not a linear one. ..thus our new technique.

The organization of our paper is the following. In section 1 we introduce the
problem of sorting in order to characterize the difficulties of partitioning data
in an heterogeneous environment. The section motivates the work. In section 2
we recall our previous techniques and results. Section 3 is devoted to a new
constant time solution and deals also with unknown cost functions. In section 4
we introduce a dynamic programming approach and we recall a technique that
do not assume a model of processors related by constant integers but in this
case the processor speed may be “unrelated”. Section 5 is about experiments
and section 6 concludes the paper.

1 Target Applications and Implementation on
Heterogeneous Clusters

Assume that you have a set of p processors with different speeds, interconnected
by a crossbar. Initially, the data is distributed across the p processors and ac-
cording to the speeds: the slowest processor has less data than the quickest.
This assumption describes the initial condition of the problem. In this section
we detail our sorting application for which performance are directly related to
this initial partitioning.

1.1 Parallel Sort

Efficient parallel sorting on clusters (see [3,4,5, 6, 7, 8] for the homogeneous case
and [9,10,11,12,13] for the heterogeneous case) can be implemented in the fol-
lowing ways:

Methods for Partitioning Data to Improve Parallel Execution Time 177

1. Each processor sorts locally its portion and picks up representative values in
the sorted list. It sends the representative values to a dedicated node.

2. This node sorts what it receives from the processors and it keeps p—1 pivots;
it distributes the pivots to all the processors.

3. Each processor partitions its sorted input according to the pivots and it
sends p — 1 portions to the others.

4. Each processor merges what it received from the others.

Note that the sorting in step 1 can be bypassed but in this case the last step is
a sort not a merge. Moreover note that there is only one communication step:
the representative values can be selected by sampling few candidates at a cost
much lower than the exchange of values. In other words, when a value moves, it
goes to the final destination node in one step.

2 Previous Results and Parallel Execution Time

Consider the simple problem of local sorting, such as presented in [10] (and our
previous comments). The sizes n; of data chunks on each node is assumed to be
proportional to the speed of processors.

Let us now examine the impact on the parallel execution time of sorting of
the initial distribution or, more precisely, the impact of the redistribution of
data. We determine the impact in terms of the way of restructuring the code
of the meta partitioning scheme that we have introduced above. In the previous
section, when we had N data to sort on p processors depicted by their respective
speeds k1,--- , kp, we had needed to distribute to processor p; an amount n; of
data such that:

nl/k‘lzng/k‘gz :np/kp (1)

and
ni+ne+...+n,=N (2)

The solution is:
Vi,n; =N X k;/(k1 + k2 + ... +kp)

Now, since the sequential sorts are executed on n; data at a cost propor-
tional n; lnn; time cost (approximatively since there is a constant in front of
this term), there is no reason that the nodes terminate at the same time since
ni/kilnng # no/kolnng # -+ # np/kyInn, in this case. The main idea that
we have developed in [14] is to send to each processor an amount of data to be
treated by the sequential sorts proportional to n; Inn;. The goal is to minimize
the global computation time T' = min(max;—1 ., n; Inn;) under the constraints
> n; =N and n; > 0.

It is straightforward to see that an optimal solution is obtained if the com-
putation time is the same for all processors (if a processor ends its computation
before another one, it could have been assigned more work thus shortening the
computation time of the busiest processor). The problem becomes to compute
the data sizes nf,--- ,n;, such that:

178 C. Cérin, J.-C. Dubacq, and J.-L. Roch

ny+nh+--4n, =N 3)
and such that

(1t /o) Wy = (/o) Iy = -+ = (k) I)

We have shown that this new distribution converges to the initial distribution
when N tends to infinity. We have also proved in [14] that a constant time
solution based on Taylor developments leads to the following solution:

ni:KN+€i’ (1§Z§p)Where€i:1nN KQjZ_;kjhl(ki))

and where K is simply the sum of the k;. These equations give the sizes that we
must have to install initially on each processors to guaranty that the processors
will terminate at the same time. The time cost of computing one k; is O(p) and
is independent of n which is an adequate property for the implementations since
p is much lower and not of the same order than n.

One limitation of above the technique is that we assume that the cost time
of the code following the partitioning step should admit a Taylor development.
We introduce now a more general approach to solve the problem of partitioning
data in an heterogeneous context. It is the central part of the work. We consider
an analytic description of the partitioning when the processors are uniformly
related: processor ¢ has an intrinsic relative speed k;.

3 General Exact Analytic Approach on Uniformly
Related Processors

The problem we solved in past sections is to distribute batches of size N accord-
ing to (4). We will first replace the execution time of the sorting function by a
generic term f(n) (which would be f(n) = nlnn for a sorting function, but could
also be f(n) = n? for other sorting algorithms, or any function corresponding
to different algorithms). We assume that f is a strictly increasing monotonous
integer function. We can with this consider a more general approach to task
distribution in parallel algorithms. Since our processors have an intrinsic rela-
tive speed k;, the computation time of a task of size n; will be f(n;)/k;. This
(discrete) function can be extended to a (real) function f by interpolation. We
can try to solve this equation exactly through analytical computation. We define
the common execution time 7" through the following equation:

_ Jlm) _ fn2) __ (ny)
T Tk T Tk, (©)

and equation
ny+ng+...+n,=N (7)

Methods for Partitioning Data to Improve Parallel Execution Time 179

Let us recall that monotonous increasing functions can have an inverse function.
Therefore, for all 4, we have f(n;) = Tk;, and thus:

ni = [(Tk:) (8)

Therefore, we can rewrite (7) as:

P
S N Th) =N 9)
i=1

If we take our initial problem, we have only one unknown term in this equation

which is 7. The sum Y ?_, f~1(Tk;) is a strictly increasing function of T'. If we

suppose N large enough, there is a unique solution for 7'. The condition of N

being large enough is not a rough constraint. f~1(T) is the number of data that

can be treated in time T' by a processor speed equals to 1. If we consider that
f71(0) = 0 (which is reasonable enough), we obtain that > -_, f~(Tk;) = 0 for

T =0.

Having T, it is easy to compute all the values of n; = f~*(Tk;). We shall show
later on how this can be used in several contexts. Note also that the computed
values have to be rounded to fit in the integer numbers. If the numbers are
rounded down, at most p elements will be left unassigned to a processor. The
processors will therefore receive a batch of size n; = {f‘l(Tki)J + 6, to process.

6; can be computed with the following (greedy) algorithm:

1. Compute initial affectations n; = Vﬁl(Tki)J and set 6; = 0;

2. For each unassigned item of the batch of size N (at most p elements) do:
(a) Choose i such that (72; + 6; + 1)/k; is the smallest;
(b) Set 6; =6; + 1.

The running time of this algorithm is O(plogp) at most, so independant of
the size of the data N.

3.1 Multiplicative Cost Functions

Let us consider now yet another cost function. f is a multiplicative function if it
verifies f(zy) = f(x)f(y). If f is multiplicative and admits an inverse function
g, its inverse is also multiplicative:

g(ab) = g(f(g(a))f(g(b))) = g(f(g9(a)g(b))) = g(a)g(b)

If f is such a function (e.g. f(n) = n*), we can solve equation (9) as follows:

FHOF k) = FHD) Y f (k) (10)

1 i=1

=, (1)

180 C. Cérin, J.-C. Dubacq, and J.-L. Roch

Combining it with (8) we obtain:
- - - F=1(k;
no= k) = ey = BN (12)

Hence the following result:

Theorem 1. If f is a cost function with the multiplicative property f(ab) = f(a)f(b),
then the size of the assigned sets is proportional to the size of the global batch with
a coefficient that depends on the relative speed of the processor k;:

n; = f~_1~<k2)
f:l 1K)

This results is compatible with the usual method for linear functions (split ac-
cording to the relative speeds), and gives a nice generalization of the formula.

3.2 Sorting: The Polylogarithmic Function Case

Many algorithms have cost functions that are not multiplicative. This is the case
for the cost @(nlogn) of the previous sequential part of our sorting algorithm,
and more generally for polylogarithmic functions. However, in this case equation
9 can be solved numerically. Simple results show that polylogarithmic functions
do not yield a proportionality constant independent of N.

Mathematical resolution for the case nlnn. In the case f(n) = nlnn,
the inverse function can be computed. It makes use of the Lambert W function
W (x), defined as being the inverse function of ze*. The inverse of f : n+— nlnn
is therefore g : © — x/W(x).

The function W(x) can be approached by well-known formulas, including
the ones given in [15]. A development to the second order of the formula yields
W(z) =Inz — Inln(x) + o(1), and also:

T x 1

_ oz Inln(x) Inln(z)\>
W(z) ~In(z) 1 — (Inln(z)/In(z)) +o(1) _ In(z) (H in(z) T © ((In(z))))

This approximation leads us to the following first-order approximation that can
be used to numerically compute in O(p) the value of T":

Theorem 2. Initial values of n; can be asymptotically computed by

Z Tk; + Tk;Inln(Tk;) N and s — Tk; + Tk; Inln(Tk;)
(In(Tk))2 0 "MT (n(Tky))?

3.3 Unknown Cost Functions

Our previous method also claims an approach to unknown cost functions. The
general outline of the method is laid out, but needs refinement according to

Methods for Partitioning Data to Improve Parallel Execution Time 181

the specific needs of the software platform. When dealing with unknown cost
functions, we assume no former knowledge of the local sorting algorithm, just
linear speed adjustments (the collection of k;). We assume however that the
algorithm has a cost function, i.e. a monotonous increasing function of the size
of the data C.' Several batch of data are submitted to our software. Our method
builds an incremental model of the cost function. At first, data is given in chunks
of size proportionnal to each node’s k;. The computation time on node i has a
duration of T;,, and thus a basic complexity of C(n;) = T),,k;. We can thus build
a piecewise affine function (or more complex interpolated function, if heuristics
require that) that represents the current knowledge of the system about the time
cost n — C(n). Other values will be computed by interpolation. The list of all
known points can be sorted, to compute f efficiently.

The following algorithm is executed for each task:

1. For each node i, precompute the mapping (7,7) — n; as previously, using
interpolated values for f if necessary (see below). Deduce a mapping 7' +— n
by summing the mappings over all 7.

2. Use a dichotomic search through T — n mapping to find the ideal value of
T (and thus of all the n;) and assign chunks of data to node 4;

3. When chunk ¢ of size n; is being treated:

(a) Record the cost C = T, k; of the computation for size n;.

(b) If n; already had a non-interpolated value, choose a new value C’ accord-
ing to whatever strategy it fits for the precise platform and desired effect
(e.g. mean value weighted by the occurrences of the various C' found for
n;, mean value weighted by the complexity of the itemset, max value).
Some strategies may require storing more informations than just the
mapping n — C(n).

(c) If n; was not a known point, set ¢/ = C.

(d) Ensure that the mapping as defined by n # n; — C(n) and the new
value n; — C’ is still monotonous increasing. If not, raise or lower values
of neighboring known points (this is simple enough to do if the strategy
is to represent the cost with a piecewise function). Various heuristics can
be applied, such as using the weighted mean value of conflicting points
for both points.

4. At this point, the precomputation of the mappings will yield consistent re-
sults for the dichotomic search. A new batch can begin.

The initial extrapolation needs care. An idea of the infinite behavior of the
cost function toward infinity is a plus. In absence of any idea, the assumption
that the cost is linear can be a starting point (a “linear guess”). All “linear
guesses” will yield chunks of data of the same size (as in equation (4)). Once at
least one point has been computed, the “linear guess” should use a ratio based
on the complexity for the largest chunk size ever treated (e.g. if size 1,000 yields
a cost of 10,000, the linear ratio should be at least 10).

L If some chunks are treated faster than smaller ones, their complexity will be falsely
exaggerated by our approach and lead to discrepancies in the expected running time.

182 C. Cérin, J.-C. Dubacq, and J.-L. Roch

4 A Dynamic Programming Technique for Non-uniformly
Related Processors

In the previous sections we have developed new constant time solution to esti-
mate the amount of data that each processor should have in its local memory in
order to ensure that the parallel sorts end at the same time. The complexity of
the method is the same than the complexity of the method introduced in [14].

The class of functions that can be used according to the new method intro-
duced in the paper is large enough to be useful in practical cases. In [14], the
class of functions captured by the method is the class of functions that admit a
Taylor development. It could be a limitation of the use of the two methods.

Moreover, the approach of [14] considers that the processor speeds are uni-
formly related, i.e. proportional to a given constant. This is a restriction in the
framework of heterogeneous computers since the time to perform a computation
on a given processor depends not only on the clock frequency but also on various
complex factors (memory hierarchy, coprocessors for some operations).

In this section we provide a general method that provides an optimal parti-
tioning n; in the more general case. This method is based on dynamic program-
ming strategy similar to the one used in FFTW to find the optimal split factor
to compute the FFT of a vector [16].

Let us give some details of the dynamic approach. Let f;(m) be the computa-
tional cost of a problem of size m on machine i. Note that two distinct machines
may implement different algorithms (e.g. quicksort or radix sort) or even the
same generic algorithm but with specific threshold (e.g. Musser sort algorithm
with processor specific algorithm to switch from quicksort to merge sort and
insertion sort). Also, in the sequel the f; are not assumed proportional.

Given N, an optimal partitioning (n1,...,n,) with Y .©_ n; = N is defined
as one that minimizes the parallel computation time T(N, p);

T(N,p) = max{fi(ni);} = min max{ fi(z;); }

i=1,...,p (@1,05mp) ENPIE T =N i=1,...,p

A dynamic programming approach leads to the following inductive character-
ization of the solution:¥V(m,i) with0 < m < Nand1 < i < p : T(m,i) =
ming,; —g..m max(f;(n;), C(m —n;, i — 1)).

Then, the computation of the optimal time T'(N, p) and of a related partition
(ni)i=1,..p is obtained iteratively in O(N2.p) time and O(N.p) memory space.

The main advantage of the method is that it makes no assumption on the
functions f; that are non uniformly related in the general case. Yet, the potential
drawback is the computational overhead for computing the n; which may be
larger than the cost of the parallel computation itself since T'(N,p) = o(N?p).
However, it can be noticed, as in [16], that this overhead can be amortized if
various input data are used with a same size N. Moreover, some values T'(m, p)
for m < K may be precomputed and stored. Than in this case, the overhead

decreases to O (p. (%)2) Sampling few values for each n; enables to reduce the

overhead as desired, at the price of a loss of optimality.

Methods for Partitioning Data to Improve Parallel Execution Time 183

5 Experiments

We have conducted experiments on the Grid-Explorer platform in order to com-
pare our approach for partitioning with partitioning based only on the relative
speeds. Grid-Explorer? is a project devoted to build a large scale experimental
grid. The Grid-Explorer platform is connected also to the nation wide project
Grid5000® which is the largest Grid project in France. We consider here only the
Grid-Explorer platform which is built with bi-Opteron processors (2Ghz, model
246), 80GB of IDE disks (one per node). The interconnection network is made
of Cisco switches allowing a bandwidth of 1Gb/s full-duplex between any two
nodes. Currently, the Grid-Explorer platform has 216 computation nodes (432
CPU) and 32 network nodes (used for network emulation - not usefull in our
case). So, the platform is an homogeneous platform.

For emulating heterogeneous CPU, two techniques can be used. One can
use the CPUfreq driver available with Linux kernels (2.6 and above) and if the
processor supports it; the other one is CPU burning. In this case, a thread with
high priority is started on each node and consumes Mhz while another process
is started for the main program. In our case, since we have bi-opteron processors
we have chosen to run 2 processes per node and doing CPU burning, letting
Linux to run them one per CPU. Feedback and experience running the CPUfreq
driver on a bi-processor node, if it exists, is not frequent. This explain why we
use the CPU burning technique.

Figure 1 shows the methodology of running experiments on the Grid-Explorer
or Grid5000 platforms. Experimenters take care of deploying codes and reserve
nodes. After that, they configure an environment (select specific packages and a
Linux kernel, install them) and reboot the nodes according to the environment.
The experiments take place only after installing this “software stack” and at
a cost which is significant in term of time. We have implemented the sorting
algorithm depicted in subsection 1.1 and according to Theorem 2 for the com-
putation of the initial amount of data on each node for minimizing the total
execution time. Note that each node generates its local portion on the local disk
first, then we start to measure the time. It includes the time for reading from
disk, the time to select and to exchange the pivots, the time for partitioning data
according to the pivots, the time for redistributing (in memory) the partitions,
the time for sorting and finally the time to write the result on the local disks.

We sort records and each record is 100 bytes long. The first 10 bytes is a
random key of 10 printable characters. We are compliant with the requirements
of Minute Sort* as much as possible in order to beat the record in a couple of
weeks.

We proceed with 50 runs per experiment. We only consider here experiments
with a ratio of 1.5 between processor speeds. This is a strong constraint: the
more the ratio is high the more the difference in execution time is important
and in favor of our algorithm. So we have two classes of processor but the choice

2 See: http://www.lri.fr/~fci/GdX
3 See: http://www.grids5000. fr
4 See: http://research.microsoft.com/barc/SortBenchmark/

184 C. Cérin, J.-C. Dubacq, and J.-L. Roch

S A
" Log into Grid’5000 |
\Import data/codes/

yes T
BUJ|‘C| an env. ?
i —§— no
e N e . N
Reserve 1 ‘ Reserve nodes corresponding
node L to the experiment

N |
Reboot node =
(existing env.)

— %

\: Adapt env.
e

\\Transfer params + Run the experimentJ

\' Reboot node \ - '
; g \ Collect experiment results]
) I

~E . (O o |
Env. 0K oS Exit Grid’5000

Fig. 1. Methodology of experiments on the Grid-Explorer platform

between the performance (1 or 1/1.5) is made at random. We set half of the
processors with a performance of 1 and the remainder with a performance of
1/1.5. We recall that the emulation technique is ‘CPU burning’.

Since we have observed that the communication time has a significant impact
on the total execution time, we have developed two strategies and among them,
one for using the second processor of the nodes. In the first implementation
communication take place in a single thread that is to say in the thread also
doing computation. In the second implementation we have created a thread for
sending and a thread for receiving the partitions. We guess that the operating
system allocates them on the ‘second’ processor of our bi-opteron cards equiped
with a single Gigabit card for communication.

The input size is 541623000 records (54GB) because it provides about an
execution time of one minute in the case of an homogeneous run using the entire
2Ghz. Note that it corresponds approximatively to 47% of the size of the 2005
Minute Sort record.

We run 3 experiments. Only experiments A.2 et A.3 use our technique to par-
tition the data whereas experiment A.1 corresponds to a partitioning according
to the relative speed only. In other words, experiment A.1 corresponds to the case
where the CPU burns X.Mhz (where X is either 1Ghz or 1/1.5 GHz) but the per-
formance vector is set according to an homogeneous cluster, we mean without us-
ing our method for re-balancing the work. Experiment A.2 also corresponds to
the case where communication are not done in separate threads (and thus they
are done on the same processor). Experiment A.3 corresponds to the case where
the CPU burns X Mhz (also with X is either 1Ghz or 1/1.5 GHz) and communica-
tion are done in separate threads (and thus they are done on separate processors
among the two available on a node). We use the pthread library and LAM-MPI
7.1.1 which is a safe-thread implementation of MPI. sorting 54GB on 96 nodes

Methods for Partitioning Data to Improve Parallel Execution Time 185

A1 experiment A2 experiment A3 experiment
125.4s 112.7s 69.4s

Fig. 2. Summary of experiments

is depicted in Figure 2. We observe that the multithreaded code (A.3) for imple-
mentating the communication step is more efficient than the code using a single
thread (A.2). This observation confirms that the utilization of the second proces-
sor is benefit for the execution time. Concerning the data partitioning strategy
introduced in the paper, we observe a benefit of about 10% in using it (A.2) com-
paring to A.1. Moreover, A.3 and A.2 use the same partitioning step but they differ
in the communication step. The typical cost of the communication step is about
33% of the execution time for A.3 and about 60% for A.2.

6 Conclusion

In this paper we address the problem of data partitioning in heterogeneous en-
vironments when relative speeds of processors are related by constant integers.
We have introduced the sorting problem in order to exhibit inherent difficulties
of the general problem.

We have proposed new O(p) solutions for a large class of time complexity
functions. We have also mentioned how dynamic programming can find solu-
tions in the case where cost functions are “unrelated” (we cannot depict the
cpu performance by the mean of integers) and we have reminded a recent and
promising result of Lastovetsky and Reddy related to a geometrical interpreta-
tion of the solution. We have also described methods to deal with unknown cost
functions. Experiments based on heteroneous processors correlated by a factor
of 1.5 and on a cluster of 96 nodes (192 AMD Opteron 246) show better perfor-
mance with our technique compared to the case where processors are supposed
to be homogeneous. The performance of our algorithm is even better if we con-
sider higher factor for the heterogeneity notion, demonstrating the validity of
our approach.

In any case, communication costs are not yet taken into account. It is an
important challenge but the effort in modeling seems important. In fact you
cannot mix, for instance, information before the partitioning with information
after the partitioning in the same equation. Moreover, communications are diffi-
cult to precisely modelize in a complex grid archtitecture, where various network
layers are involved (Internet/ADSL, high speed networks,...). In this context,
a perspective is to adapt the static partitioning, such as proposed in this paper,
by a dynamic on-line redistribution of some parts of the pre-allocated chunks
in reaction to network overloads and resources idleness (e.g. distributed work
stealing).

186 C. Cérin, J.-C. Dubacq, and J.-L. Roch
References
1. Lastovetsky, A., Reddy, R.: Data partitioning with a realistic performance model

10.

11.

12.

13.

14.

15.

16.

of networks of heterogenenous computers. In: Proc. 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), Santa-Fe, New-Mexico. (2004)
CD-ROM publication

Drozdowski, M., Lawenda, M.: On optimun multi-installment divisible load pro-
cessing in heterogeneous distributed systems. In 3648, L., ed.: Proc. 11th Interna-
tional Euro-Par Conference, Lisbon, Portugal. (2005) 231-240

Li, H., Sevcik, K.C.: Parallel sorting by overpartitioning. In: Proceedings of the
6th Annual Symposium on Parallel Algorithms and Architectures, New York, NY,
USA, ACM Press (1994) 46-56

Reif, J.H., Valiant, L.G.: A Logarithmic time Sort for Linear Size Networks. Journal
of the ACM 34(1) (1987) 60-76

Reif, J.H., Valiant, L.G.: A logarithmic time sort for linear size networks. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
Boston, Massachusetts (1983) 10-16

Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing 14(4) (1992) 361-372

Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H.: On the versatility
of parallel sorting by regular sampling. Parallel Computing 19 (1993) 1079-1103
Helman, D.R., JaJ4, J., Bader, D.A.: A new deterministic parallel sorting algorithm
with an experimental evaluation. Tech. Rep. CS-TR-3670 and UMIACS-TR-96-54,
Institute for Advanced Computer Studies, Univ. of Maryland (1996)

Cérin, C., Gaudiot, J.L.: Evaluation of two BSP libraries through parallel sorting
on clusters. In: Proceedings of WCBC’00 (Workshop on Cluster-Based Computing)
in conjunction with ICS’00 (International Conference on Supercomputing), Santa
Fe, New Mexico (2000) pp 21-26

Cérin, C., Gaudiot, J.L.: An over-partitioning scheme for parallel sorting on clusters
running at different speeds. In: Cluster 2000. IEEE International Conference on
Cluster Computing. T.U. Chemnitz, Saxony, Germany. (Poster). (2000)

Cérin, C., Gaudiot, J.L.: Parallel sorting algorithms with sampling techniques on
clusters with processors running at different speeds. In: HiPC’2000. 7th Inter-
national Conference on High Performance Computing. Bangalore, India. Lecture
Notes in Computer Science, Springer-Verlag (2000)

Cérin, C., Gaudiot, J.L.: On a scheme for parallel sorting on heterogeneous clusters.
FGCS (Future Generation Computer Systems 18(issue 4) (2002) The special issue
is preliminary scheduled for publication in future vol.

Cérin, C.: An out-of-core sorting algorithm for clusters with processors at differ-
ent speed. In: 16th International Parallel and Distributed Processing Symposium
(IPDPS), Ft Lauderdale, Florida, USA. (2002) Available on CDROM from IEEE
Computer Society

Cérin, C., Koskas, M., Jemni, M., Fkaier, H.: Improving parallel execution time of
sorting on heterogeneous clusters. In: Proc. 16th Int. Symp. on Comp. Architecture
and High Performance Computing (SBAC’04), Foz-do-Iguazu, Brazil. (2004)
Corless, R., Jeffrey, D., Knuth, D.: A sequence of series for the lambert w function.
In: Proc. of ISSAC’97, Maui, Hawaii. W.W. Kuechlin (ed.). New York, ACM. (1997)
197-204

Frigo, M., Johnson, S.G.: The design and implementation of fftw3. In: Proceedings
of the IEEE, Special issue on Program Generation, Optimization, and Platform
Adaptation. (2005) 216-231

Detecting Unaffected Message Races in Parallel
Programs*

Mi-Young Park and Yong-Kee Jun**

Computer Science, Gyeongsang National University,
Jinju, 660-701, South Korea
{park, jun}@race.gnu.ac.kr

Abstract. Detecting unaffected race conditions is important to debug-
ging message-passing programs effectively, because such a message race
can affect other races to occur or not. Unfortunately, the previous tech-
nique to efficiently detect unaffected races does not guarantee that all of
the detected races are unaffected. This paper presents a novel technique
that manages the states of the detected races by examining if every re-
ceived message is affected until the execution terminates. Our technique
guarantees to efficiently detect unaffected races, because it maintains
affects-relations of the races all along the execution of program.

1 Introduction

In message-passing programs, a message race [4,11,17] occurs in a receive event,
if two or more messages are sent over communication channels on which the re-
ceive listens and they are simultaneously in transit without guaranteeing the
order of arrival of them. Message races should be detected for effectively debug-
ging a large class of parallel or grid programs [7, 10, 23], because nondeterminis-
tic order of arrival of the racing messages causes unintended nondeterminism of
programs. Especially, it is important to efficiently detect unaffected races before
which no other races happened, because such races may make other affected
races appeared or make them hidden.

Previous methods to detect races dynamically can be classified with the point
of detection time into two classes: on-the-fly detection [1,2,3,4,11,17,18,12,21]
and post-mortem analysis [14, 19,22, 24]. On-the-fly detection detects partial in-
formation or only a subset of races appeared in an execution of program without
requiring as much space as post-mortem analysis does for a trace file. Some on-
the-fly techniques [1, 2, 12, 18] just verifies the existence of race, but the other set
[3,4,11,17,21] can detect unaffected races. The most efficient technique [17] to
detect unaffected races detects racing messages by halting at the located receive

* This work was supported in part by Grant No. R05-2003-000-12345-0 from the Basic
Research Program of the Korea Science and Engineering Foundation.

** Corresponding author. Also involved in Research Institute of Computer and Infor-
mation Communication (RICIC) as a research professor in Gyeongsang National
University.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 187-196, 2006.
© Springer-Verlag Berlin Heidelberg 2006

188 M.-Y. Park and Y.-K. Jun

event of the first race to occur in each process. However, this technique does not
guarantee that all of the detected races are unaffected.

This paper presents a novel technique which guarantees to detect efficiently
all unaffected races, because it maintains affects-relations of the races all along
the execution of program. We tested our technique in MPI [23] using MPICH
implementation [8] on a Linux cluster system which consists of four Compaq-
Alpha processor nodes. We implemented our technique as a C-library using MPI
Profiling Interface to make it transparent to user programs, and justified its
efficiency and accuracy using a set of published benchmark programs [15, 9, 20].

The experimentation results show that the technique incurs overhead only
about 1% more in its slowdown than the previous technique, but detects all of
unaffected races which is a subset of races reported by the previous technique.
This small overhead of detecting unaffected races is still important for debugging
large-scale scientific programs which run on computational grids [6], because
debugging such grid applications [10] is often a much more exhausting task than
sequential or even parallel programs [25].

The following section explains the significance of detecting unaffected races
and the serious problems of previous techniques in detecting such a kind of races.
We present a novel solution in section 3 which captures affects-relations among
processes and efficiently maintains the state transitions of the detected race to
determine if it is an unaffected race. Section 4 shows the results of experimenta-
tion justifying that our technique is reasonable in its efficiency and is accurate
enough using a set of published benchmarks. The final section summarizes our
technique, and argues its significance with some future work.

2 Background

Message-passing programs [7, 10, 23] consists of a set of parallel processes that
communicate with each other. We model a message-passing between processes
as occurring over logical channels [17], and assume that each send or receive
specifies a set of logical channels over which it operates to send copies of one
message or to receive one message from the channels. If more than one chan-
nel has a message available, the receive nondeterministically chooses a channel
among them to receive one message. We assume that any message sent over a
channel is received by exactly one receive event, and all messages sent are even-
tually received at the corresponding receive. This model with logical channel is
general, because most message-passing schemes can be represented.

A message race [4,11,18] occurs toward a receive event, if two or more mes-
sages are sent over communication channels on which the receive listens and that
they are simultaneously in transit without guaranteeing the order of arrival of
them. A message race is represented as (r, M), where r is a receive event and
M is a set of racing messages toward r. Thus, r receives the message delivered
first in M, and the send event s which sent a message in M does not satisfy
r — s. Here, r — s denotes a happened-before relation [13] which means r al-
ways occurs before s in all executions of the program. We denote a message

Detecting Unaffected Message Races in Parallel Programs 189

Py P P3 Py Ps P, P, Ps3 Py Ps

)

Initial Initial Initial Initial Initial

S "
—1" \]
/ w w2
Un- /
/ a X1 affected] / Xy
| &
Affected Un.
7 x s affected
\ “ [~ AN

Affected BN Affected

N

X2

SN
§ N ([P
/ // 2

i

Fig. 1. Message Races

sent by a send event s as msg(s). Figure 1(a) shows a partial order of events
that occurred during an execution of message-passing program. A vertical arc
in the figure represents an event stream executed by each process along with
time; and a slanting arc between any two vertexes optionally labelled with their
identifiers represents a delivery of message between a pair of send and receive
operations.

Suppose that there exist any two message races {(m, M), (n,N)} in an exe-
cution of a program, and they satisfy (m — s V m — n) where the message
msg(s) € N. Then the message msg(s) is an affected message by (m, M) because
m — s; and the race (n, N) is an affected race by (m, M) because m — n. And
we say that (m, M) is an unaffected race, if there does not exist any message
such that msg(t) € M satisfying (n — t) and there exists no such event that
satisfies (n — m). For example, figure 1.b shows one unaffected race (w, W)
where W = {msg(w1), msg(w2)} and two affected races {(x, X), (y,Y)} where
X = {msg(z1),msg(xz2)} and Y = {msg(y1), msg(y2)}; six affected messages
by the unaffected race are represented with dotted arcs. {(z, X), (y,Y)} are af-
fected by (w, W), because msg(xs) € X satisfies w — x9 and (y,Y) satisfies
w — y. Unaffected races such like (w, W) is important to debugging message
passing programs effectively, because those races occurs always in all execution
instances with the same input and may make other affected races appeared or
make them hidden. A locally-unaffected race is the first race to occur in a pro-
cess. Although the locally-unaffected race of a process is unaffected by any other
race occurred in the local process, it is not guaranteed to be unaffected from
another race occurred in the other processes. For example, figure 1 shows that
all of the races appeared in the figure are locally-unaffected races, two of which
{{z, X), (y,Y)} are affected by another locally-unaffected race (w, W).

190 M.-Y. Park and Y.-K. Jun

To dynamically detect races, the previous methods may be either on-the-
fly detection [1,2,3,4,11,17,18,12,21] or post-mortem analysis [14,19,22,24].
An on-the-fly techniques can be either one [1,2,12,18] to verify the race exis-
tence or the other [3,4,11,17,21] to detect unaffected races. With respect to
the degree of monitoring parallelism, unaffected races can be detected either in
One-thread-at-One-time (OtOt) [3, 4, 21] for detecting locally-affected races or in
Multi-threads-at-One-time (MtOt) [11,17] for detecting globally-affected races.
MtOt techniques are classified into two classes with respect to the required
number of monitored executions: one-pass [11] and two-pass [17] technique. The
one-pass technique shows impractical space complexity which is dependent on
the number of messages, because it checks all of the previous receive events at
each receive event to detect all of the races related to every previous receive
event. On the other hand, the two-pass technique finds some information in the
first execution to detect a locally-unaffected race of each process, and then try
to detect globally-unaffected races by halting each process at every first racing
receive in the second execution. This technique consumes space and time which
are independent of the number of messages.

Although the two-pass technique is the most efficient to detect unaffected
races, it can not guarantee that all of the detected races are globally-unaffected.
It is because a process which is halted at its first racing receive cannot send
messages to notify other processes of their being affected, and then such pro-
cesses which can not receive such messages will report their affected races as
unaffected erroneously. For example, consider the two-pass technique for an ex-
ecution instance shown in figure 1. In the first execution, each process writes
some information into a trace file to locate its locally-unaffected races {w €
Ps,x € Py,y € Pa}. In the second execution, it halts the three processes at
the location {w,z,y}, and then receives the racing messages into their receive
buffers. This results in the three receive buffers of (P, P3, Py) to contain three
sets of messages (0, W, a) respectively, where W = {msg(w1), msg(w2)} and
a = {msg(x1)} C X. Consequently, this two-pass technique reports two races
{{w, W), (x, X)} as unaffected, but actually (x, X) is affected by (w, W) as shown
in figure 1.b. This kind of erroneous reports is resulted from halting at w of Pj,
and then not delivering msg(z2) € X at Py to capture affects-relation.

3 Detecting Unaffected Races

Figure 2 shows our pass-1 algorithm. To decide if the current receive event is
involved in the locally-unaffected race, it is necessary to determine if the receive
event is involved in a race and if the race occurs first in the current process.
The first line of pass-1 stores into preRecv the location of the previous receive
event which received a message over the current channel. This is because that
location makes it determine if the current receive is involved in a race in line
2 by examining the mutual concurrency between the previous receive and the
send event which sent the current message. A vector timestamp [5, 16] is used for
the concurrency information to check the happened-before [13] relation between

Detecting Unaffected Message Races in Parallel Programs 191

CheckReceivePass1(Send)

prevRecv := PrevBuf[thisChan];

if (prevRecv - Send) A (Send[me] — cutoff) then
cutoff := Send[me];
firstChan := thisChan;

endif

for all i in Channels do
PrevBuf[i] :== Recv|[me]

endfor

O~ O ULk W~ O

Fig. 2. Pass-1 Algorithm

every two events. Secondly, it determines if the detected race is the first to occur
in the current process by comparing cutoff, which represents the location of the
current locally-unaffected race, with Send[me] which is the current process in-
formation in the received vector timestamp. If Send[me] happened before cutoff,
the currently detected race is the first race to occur until now in the process. For
example, when msg(yz) is received in figure 1, cutoff of (y,Y) is b, because it is
the most recent send event which happened before ys in P». Lastly, the current
receive event Recv[me] is stored into PrevBuf which has entries as many as the
number of channels associated with the current receive event. This is because
the current receive event will be the previous receive event prevRecv at the next
receive event to detect races.

Figure 3 shows the pass-2 algorithm which uses cutoff and firstChan gener-
ated by the pass-1. This algorithm run at every receive event detects the first
racing receive and the messages involved in the locally-unaffected race, and then
calls an algorithm to manage the state of the detected race. The line 1 and 2
check the happened-before relation between cutoff and the current receive event,
examine if firstChan is included in Channels which is a set of logical channels
associated with the current receive event, and check if the receive is affected.
This is because the current receive event is involved in the locally-unaffected
race occurred in the process, if the receive is an unaffected event occurred first
after cutoff and associated with firstChan. To produce affects-relation informa-
tion that will be attached to messages to notify other processes of their being
affected, the line 7 evaluates a disjunction of affecting and Msg(affecting). It is
because messages sent by the current process can affect other processes, if either
a race occurred or affected messages were received from other process. The line
8 checks if the received message is racing toward the first racing receive denoted
firstRecv in the process. The firstRecv that is not null means that there exists
the first racing receive in the process, and the firstRecv that does not happen
before send means that the received message is racing toward the first racing
receive.

The line 12 passes three values to the state transition algorithm: Msg(affecting)
indicating affects-relation information included in the received message, state in-
dicating the current state of the race, and racing indicating if the received message
races. First, the affects-relation information included in a received message is im-
portant to capture if a locally-unaffected race is affected via an affected message

192 M.-Y. Park and Y.-K. Jun

CheckReceivePass2(Send, recv, Msg, cutoff, firstChan)
for all i in Channels do
if (cutoff — recv) A (firstChan = i) A = affecting) then
firstRecv := recv;
affecting := true;
endif
endfor
affecting := affecting V. Msg|affecting];
if (firstRecv = — null A firstRecv - send) then
racingMsg := racingMsg U Msg;
racing := true
endif
state := CheckRace(state, Msglaffecting|], racing);

O~ O UL W~ O

—_ =
N = O ©

13 CheckRace(state, affected, racing)
14 if (state = Initial A = affected A racing) then

15 return Unaffected;

16 endif

17 if (state = Initial A affected) then

18 return Affected;

19 endif

20 if (state = Unaffected A affected A racing) then
21 return Affected;

22 endif

Fig. 3. Pass-2 Algorithm

sent by other processes. In its initial state, for example, if a process receives an
affected message before its locally-unaffected race occurs, then the race becomes
affected then; if a process receives an affected message after its unaffected locally-
unaffected race occurred, then the unaffected race becomes affected. Second, the
existence of the first receive event toward which the currently received message
races is important, because a race (r, M) is affected if there exists an affected mes-
sage in M. For example, although a received message is affected, the state of (r, M)
should not be changed if the message is not included in M. It is because the message
can not affect the occurrence of (r, M).

There are three states of the detected race in each process: Initial, Unaffected,
and Affected. Figure 3 shows our algorithm to manage race state transition.
Figure 1(b) illustrates the states of the locally-unaffected races and the affected
messages, when we apply this algorithm to figure 1(a). In the figure, a dotted
line represents affected messages.

Given c is the number of logical channels and p is the number of processes,
this technique requires O(c¢)-space for keeping information to locate the first race
to occur in all the channels associated with every current receive, and O(p)-space
for maintaining a vector timestamp used to check concurrency between any pair
of send and receive events. Therefore the space complexity of this technique is
O(c + p) in both of the Pass-1 and Pass-2. In the time complexity, it requires
O(c)-time to compare the location information in every channel at a receive,

Detecting Unaffected Message Races in Parallel Programs 193

and O(p)-time to update the vector timestamp at each send or receive event.
Therefore the time complexity of this technique is O(c+ p) in both of the Pass-1
and Pass-2.

4 Experimentation

Our cluster system consists of four Compag-Alpha processor nodes, each of which
is equipped with a mother-board specifically designed for the Alpha-21264 pro-
cessor with 600 MHz clocks speed. Each main memory is 256 MB ECC RAM
with the capability of 1-bit error compensation, and the capacity of each cache
memory is 2MB. Each hard disk stores up to 40GB via IDE interface. These
nodes are connected via 100Mbps Fast Ethernet; a switching hub connected to
each node through a 3Com Ethernet Network Interface Card. We installed Linux
under kernel version 2.2.14-6 on the cluster system, and tested our technique in
the non-overtaking MPI programs [23] for which we installed MPICH [8].

In addition to the algorithms introduced in the section 3, we implemented
three additional functions to produce a vector timestamp [5] in each send or
receive, to determine and write down { cutoff, firstChan} to a trace file in Pass-1,
and to read cutoff and firstChan from the trace file for our Pass-2 algorithm. We
implemented these functions using MPI Profiling Interface to make it transparent
to user programs, so that users apply the library to their programs without
modifying them. MPI Profiling Interface included in MPI specification allows
anyone to intercept calls to the MPI library and perform arbitrary actions.

Actually, the number of the wrapped MPI functions are five synchronous
functions but can be extended to asynchronous functions with ease: MPI Comm-
size(), MPI Comm rank(), MPI Send(), MPI Recv(), and MPI Finalize(). We
implemented two different wrapped functions for each of Pass-1 and Pass-2, be-
cause our technique requires the different wrapped functions to be performed
in the two passes of monitored executions. Consider the functions for Pass-1.
MPI Comm size() and MPI Comm rank() initialize all data structures for de-
tecting races. MPI Send() produces a vector timestamp and attach it to messages
to be sent to other processes. MPI Recv() produces a vector timestamp using
the sender’s timestamp received, and determine {cutoff, firstChan} to find the
first racing receive. MPI Finalize() stores to a trace file { cutoff, firstChan} which
are detected for a racing receive of locally-unaffected race. Consider the func-
tions for Pass-2. MPI Comm size() and MPI Comm rank() initialize all data
structures and read {cutoff, firstChan} from the trace file. MPI Send produces
a vector timestamp and attach it to messages with the boolean value of affecting
to be sent to other processes. MPI Finalize() reports the state of the detected
locally-unaffected race in each process.

The benchmark programs are three MPI applications written in C language:
Broadcast in MPBench [15], Stress in mpptest [9], and Ezchange in PMB [20].
We measured the time overhead using MPI Wtime() at each process invoked
by each technique in the three benchmark programs. We measured three kinds
of time: the time to run the original benchmark programs, the time to monitor

194 M.-Y. Park and Y.-K. Jun

Table 1. Race Detected in the Modified Stress

loc. of Netzer’s Report Our Report
pid first racing locally-unaffected # of racing locally-unaffected f of racing
receive races messages races messages
0 4 Affected 1 Affected 3
1 5 Affected 0 Affected 3
2 1 Unaffected 2 Unaffected 2
3 1 Unaffected 2 Affected 3

the programs with the previous technique, and the time with our technique.
We measured each kind of time in 10 times, and acquired the average time. For
Stress and Fzchange that shows no races, the two techniques showed very similar
slowdowns; the worst case of our technique incurs overhead at most 1% more
than the previous technique. Especially, the slowdowns of Fzchange is smaller
than those of Stress, although Ezchange generates more messages than Stress.
This shows that the overhead of message-passing is larger than the overhead of
monitoring a program to detect races.

To evaluate accuracies of the two techniques, we modified Stress and com-
pared those results of race detection with the analysis of trace files generated
just for this job. We modified one static receive call in Stress source code to re-
ceive tagged messages with MPI ANY TAG to intentionally make races as bugs.
Table 1 shows the results of the two techniques applied to the modified Stress.
The two techniques are same in the reported location of the first racing receives,
but are different in the views of the numbers of unaffected races and racing mes-
sages. The previous technique reported two unaffected races, and the other two
races occurred in Py and P; are reported as races affected. On the other hand,
our technique reported only one unaffected race occurred in P, in the modified
program. The number of racing messages detected in the previous technique is
less than ours. This is because the message to be sent after the point that a race
occurs can not be sent to other processes by halting an execution of the process.
Therefore, the previous technique is less accurate than our technique.

5 Conclusion

We presented a novel technique to efficiently maintain the state transition of the
detected races, and to report all unaffected races. We justified our technique in
the aspects of efficiency and accuracy using a set of published benchmark pro-
grams. From the results of the experimentation, we found that the two techniques
have very similar slowdowns in the aspect of efficiency, and only our technique
reports all unaffected races in the aspect of accuracy. This small overhead of
detecting unaffected races is still important for debugging large-scale scientific
programs which run on computational grids, because debugging such grid ap-
plications is often a much more exhausting task than sequential or even parallel
programs.

Detecting Unaffected Message Races in Parallel Programs 195

When a programmer can set the value of { cutoff, firstChan}, our technique can

be used in a stand-alone mode without running Pass-1. This technique therefore
helps programmers avoid detecting intended races, and discriminate unaffected
or affected races from unintended races. And, if programmers repetitively debug
the detected races by applying the gradually increased value of cutoff, all of
the races existed in each process can be detected. Future work includes the
development of effective techniques to visualize the states of the detected races
in various levels of visual abstractions.

References

10.

11.

12.

13.

. Claudio, A. P., and J. D. Cunha, “A Race Detection Mechanism Embedded in a

Conceptual Model for the Debugging of Message-Passing Distributed Programs,”
Int’l Conf. on Parallel and Distributed Computing (Euro-Par), Klagenfurt, Austria,
LNCS, 2790: 57-65, Springer-Verlag, August 2003.

. Cypher, R., and E. Leu, “Efficient Race Detection for Message-Passing Programs

with Nonblocking Sends and Receives,” 7th Symp. on Parallel and Distributed
Processing, pp. 534-541, IEEE, Oct. 1995.

Damodaran-Kamal, S. K., and J. M. Francioni, “Nondeterminacy: Testing and De-
bugging in Message Passing Parallel Programs,” ACM/ONR Workshop on Parallel
and Distributed Debugging, Sigplan Notices, 28(12): 118-128, ACM, Dec. 1993.
Damodaran-Kamal, S. K., and J. M. Francioni, “Testing Races in Parallel Pro-
grams with an OtOt Strategy,” Int’l Symp. on Software Testing and Analysis, pp.
216-227, ACM, August 1994.

Fidge, C. J., “Partial Orders for Parallel Debugging,” SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, pp. 183-194, ACM, May 1988.
Foster,I., and C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan-Kaufmann, 1999.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
“PVM: Parallel Virtual Machine,” A Users Guide and Tutorial for Networked Par-
allel Computing, Cambridge, MIT Press, 1994.

Gropp, W., and E. Lusk, User’s Guide for Mpich, A Portable Implementation of
MPI, TR-ANL-96/6, Argonne National Laboratory, 1996.

Gropp, W., and E. Lusk, “Reproducible Measurements of MPI Performance Char-
acteristics,” 6th European PVM/MPI Users’ Group Conf., LNCS, 1697:11-18,
Springer-Verlag, Sept. 1999.

Karonis, N., B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled Implementa-
tion of the Message Passing Interface,” J. of Parallel and Distributed Computing,
63(5): 551-563, Academic Press, May 2003.

Kilgore, R., and C. Chase, “Re-execution of Distributed Programs to Detect Bugs
Hidden by Racing Messages,” 30th Annual Hawaii Int’l. Conf. on System Sciences,
Vol. 1, pp. 423-432, Jan. 1997.

Krammer, M. S. Miiller, and M. M. Resch, “MPI Application Development Using
the Analysis Tool MARMOT,” 4th Int’l Conf. on Computational Science (ICCS),
LNCS, 3038: 464-471, Springer-Verlag, June 2004.

Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, 21(7): 558-565, ACM, July 1978.

196

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M.-Y. Park and Y.-K. Jun

Lei, Y., and K. Tai, “Efficient Reachability Testing of Asynchronous Message-
Passing Programs,” 8th Int’l Conf. on Engineering of Complex Computer Systems
pp. 35-44, IEEE, Dec. 2002.

Mucci, P. J., and K. London, The MPBench Report, CEWES MSRC/PET TR-
98-26, Nichols Research, Programming Environment Training (PET), Major Shred
Res. Center (MSRC), DoD HPC Modernization Program CEWES, March 1998.
Mattern, F., “Virtual Time and Global States of Distributed Systems,” Parallel
and Distributed Algorithms, pp. 215-226, Elsevier Science, North holland, 1989.
Netzer, R. H. B., T. W. Brennan, and S. K. Damodaran-Kamal, “Debugging Race
Conditions in Message-Passing Programs,” ACM Sigmetrics Symp. on Parallel and
Distributed Tools (SPDT), pp. 31-40, ACM, May 1996.

Netzer, R. H. B., and B. P. Miller, “Optimal Tracing and Replay for Debugging
Message-Passing Parallel Programs,” Int’l Conf. on High Perf. Networking and
Computing, pp. 502-511, ACM/IEEE, Minneapolis, Minn., Nov. 1992.

Park, M., and Y. Jun, “Detecting Unaffected Race Conditions in Message-Passing
Programs,” 11th European PVM/MPI User’s Group Meeting (EuroPVM/MPI),
Budapest, Hungary, LNCS, 3241: 268-276, Springer-Verlag, Sept. 2004.

Pallas GmbH, Pallas MPI Benchmarks - PMB, Pallas GmbH, Hermuelheimer
Street 10, 50321 Bruehl, Germany, March 2000.

Park, M., Y. Kim, M. Kang, and Y. Jun, “Improving On-the-fly Race Detection
for Message-Passing Programs,” Int’l Conf. of Computational Methods in Sciences
and Engineering (ICCMSE), Korinthos, Greece, Lecture Series on Computer and
Computational Science, 4: 449-454, Brill Academic, Oct. 2005.

Park, M., S. Park, S. Bae, and Y. Jun, “Scalable Race Visualization for Debugging
Message-Passing Programs,” Workshop on State-of-the-Art in Scientific Comput-
ing (PARA), pp. 179-188, Copenhagen, Denmark, June 2004.

Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Com-
plete Reference, MIT Press, 1996.

Tai, K. C., “Race Analysis of Traces of Asynchronous Message-Passing Programs,”
Int’l. Conf. on Dist. Computing Systems (ICDCS), pp. 261-268, IEEE, May 1997.
Wang, W., B. Fang, H. Zhang, and Y. Yao, “Ad Hoc Debugging Environment for
Grid Applications,” 3rd Int’l Conf. on Grid and Cooperative Computing (GCC),
Wuhan, China, Oct. 2004. LNCS, 3251: 113-120, Springer-Verlag, Sept. 2004.

A Combined Technique of Non-uniform Loops

Sam Jin Jeong, Kun Hee Han, and Young Chul Park

Division of Information and Communication Engineering, Cheonan University,
Anseo-dong 115, Cheonan City, Korea 330-704
{sjjeong, hankh, ycpark}@cheonan.ac.kr

Abstract. This paper proposes efficient methods such as Improved Tiling
Method for non-uniform dependence loops with only flow dependences and
Improved Region Partitioning Method for loops with both flow and anti de-
pendences. In the Improved Tiling Method, we propose our incrementing
minimum dependence distance technique and loop interchanging technique. In
Improved Region Partitioning Method, we eliminate anti dependences from the
nested loop by variable renaming. After variable renaming, this method can di-
vide the iteration space into two parallel regions as large as possible and one or
less serial region as small as possible. By combination of existing methods and
our proposed methods, it exposes more parallelism.

1 Introduction

The execution of DO loops spends most of time in computationally expensive pro-
grams. Therefore, an efficient approach for exploiting potential parallelism is to con-
centrate on the parallelism available in loops in ordinary programs [1].

Some parallelization techniques, based on Convex Hull theory [2] which has been
proved to have enough information to handle non-uniform dependences, are minimum
dependence distance tiling method [3], the unique set oriented partitioning method [4]
and three region partitioning method [5], [6].

This paper will focus on parallelization of flow and anti dependence loops with
non-uniform dependences.

Example 1. Example 2. Example 3.
doi=1,10 doi=1,10 doi=1,50
doj=1,10 doj=1,10 doj=1,50
AQ*iH3, j+1) = .. AQHH3, i+j+5) = . .. AG*it], 4*i42%+1) = . .
. SAH 3, 1+2%)+1) ... =AQ2*itj-1, 3*%-1) .. = A2%i-4, i+-4)
enddo enddo enddo
enddo enddo enddo

Example 1 illustrates a non-uniform dependence loop. Fig. 1(a) shows the de-
pendence patterns of Example 1 in the iteration space.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 197 -206, 2006.
© Springer-Verlag Berlin Heidelberg 2006

198 S.J. Jeong, K.H. Han, and Y.C. Park

(@) (b)

Fig. 1. (a) Iteration spaces with Non-uniform dependencies (b) CDCH of Example 1

2 Program Model and Dependence Analysis

The loop model has the form in Fig. 2, where f;(I, J), f>(I, J), f5(I, J), and f,(I, J) are
linear functions of loop variables. The loop in Fig. 2 carries cross iteration dependences
if and only if there exist four integers (i, j;, i, j») satisfying the system of linear dio-
phantine equations given by (1) and the system of inequalities given by (2). The general
solution to these equations can be computed by the extended GCD and forms a DCH
(Dependence Convex Hull).

dOI:ll,MI
dOlez,uz
AL D). LALI))= . . .
- =AU D, fALL)
enddo
enddo

Fig. 2. A doubly nested loop model

JiGiz o) =130z, j2) and f2(i;, j1) = fuiz, j2) (D
l]Si],izSM] and lz Sj]’jzguz (2)
From (1), (i;, j;, i2, j») can be represented as

(i1, J1, 12, J2) = (8i(12, J2), 82(12, J2) 83(11, 1) 84(i1, J1))

where g; are linear functions.
From (2), two sets of inequalities can be written as

l]Si]SM] andlZSjISuzand (3)
[y <8507 jr) Suyand [< gy(iy ji) < up
l]SizSu] and 12 Sngugand (4)

[< g2, j2) Supand [, < g5(iz, j2) S up

A Combined Technique of Non-uniform Loops 199

And, (3) and (4) form DCHs denoted by DCH1 and DCH2, respectively [4]. The
union of DCH1 and DCH2 is called Complete DCH (CDCH), and all dependences lie
within the CDCH. Fig. 1(b) shows the CDCH of Example 1, which is given in [6].

If iteration (i, j,) is dependent on iteration (i; j;), then we have a dependence vector
d(iz, D= (di(il, Jn» dj(i], Jn) = (iZ‘iI’jZ‘jI)

So, for DCH1, we have

di;, j) = g5 j) - 1= (o1 - Dij+ Biyji + %1 and (%)

diiy, j) =84 j1) - ji = Gl + (B2 - Dji + %z
For DCH2, we have

d(iz, o) = i>-8,(i, j2) = (1 - 061)iz— Bhyj> - %1 and (6)
dis, j2) = j2- 82(ia, j2) = -Omiz + (1 - Br)jz - 12

The properties of DCH1 and DCH2 can be found in [4].

The dependence distance function d(i; j;) in flow dependence loops gives the de-
pendence distances d(i;, j;) and dj(i; j;) in dimensions i and j, respectively. We can
write these dependence distance functions in a general form as

di(iy, j)) = pr¥i; + Q¥ + 1 (7

di(iz, jo) = p3*i; + Q%2 + 13
where p;, q;, and 1; are real values and i; and j; are integer variables of the iteration
space.

3 Improved Tiling Method for Flow Dependence Loops

The minimum dependence distance tiling method [3] presents an algorithm to convert
the extreme points with real coordinates to the extreme points with integer coordinates.
The method obtains an IDCH from a DCH. It can compute d;;, and dj,,;,, the minimum
value of the dependence distance function dy(i; j;) and di(i; j;) from the extreme points of
the IDCH, respectively.

The properties for tiling of nested loops with flow dependence can be described as
follows.

Property 1. If there is only flow dependence in the loop, DCHI contains flow de-
pendence tails and DCH?2 contains flow dependence heads.

Property 2. If there is only flow dependence in the loop, then d(x, y) = 0 or di(x, y) = 0
does not pass through any DCH.

Property 3. If there is only flow dependence in the loop, the minimum and maximum
values of the dependence distance function d(x;, y;) appear on the extreme points.
Property 4. If there is only flow dependence in the loop, the minimum dependence
distance value d,,;, is equal or greater than zero.

Property 5. If there is only flow dependence in the loop, the difference between the
distance of a dependence and that of the next dependence, d,,, is equal to or greater
than zero.

200 S.J. Jeong, K.H. Han, and Y.C. Park

From property 5, when p; > 0 and q; = 0, we know that d,,. is equal to or greater than
zero. For each i;, d;,,;, is incremented as the value of i; is incremented. So, the second
d;in 18 equal to or greater than the first one, and the third one is greater than the second
one, and so on.

The improved tiling method for doubly nested loops with non-uniform and flow
dependence is described as Algorithm Tiling_Method, which is the algorithm of tiling
loop by the incrementing minimum dependence distance as shown in Fig. 3.

This algorithm computes the incrementing minimum dependence distance, tiles the
iteration space efficiently according to the incrementing minimum dependence dis-
tance, and transforms it into parallel loops.

Algorithm Tiling Method (i, 7,, 1,, 1,, u,, u,, di(il' 7,))

i,, j,: 1 and j value for the source of the first minimum
dependence in the loop computed by the extreme points of the
IDCH
1,, u,, u,: the lower and upper bounds of outer loop and inner
loop, respectively
d, (i, 7j,): the dependence distance function of the IDCH
begin

Step 1: when the first source point, (i,, j,), is given, the

first minimum dependence distance d, , and first tile size
are computed.

Step 2: Next d,_ . is computed.

If (next sink point is greater than bound), Goto Step 4.

Step 3: Next tile size is computed, and Goto Step 2.

Step 4: the original loop is transformed into nparallel tiles.
end Tiling Method.

1

17

Fig. 3. Algorithm of tiling loop by the incrementing minimum dependence distance

An example given in Example 3 illustrates the case that there is non-uniform and
flow dependence. Fig. 4(a) shows CDCH(Complete Dependence Convex Hull) of
Example 3. As the example, we can obtain the following results using the improved
tiling method proposed in this section.

50

22 22

Dcm
1 1

1 18 i 1410 19 50 |1
(a) (b)

Fig. 4. (a) CDCH, (b) Tiling by minimum dependence distance in Example 3

The i value for the source of the first dependence in the second tile is 4. The i value in
the third tile is 10, and next values are 19, 31, and 49. Then, we can divide the iteration
space by four tiles as shown in Fig. 4(b).

A Combined Technique of Non-uniform Loops 201

4 Region Partitioning Method

In this section, we present an improved method to partition doubly nested loops with
flow and anti dependence sets.

If the line d(i, j) = O passes through the CDCH, then it divides a DCH into DCH1
and DCH2 as shown in Fig. 5(a).

Anti Dep. Head

—— dfi.i;) — difivis)
FoT Y

Flow Dep. Tail

;7
Antl Dep. Tall AV

d/(l’zll'z) /j_,-"l

P
A /
- Flow Dep. Head VSN
v ,
N ,
pa

dfizfs)

FDH

(a) (b)

Fig. 5. (a) Dependence and Anti Dependence unique set, (b) FDT and FDH of Example 1

We define FDT and FDH, and four lines such as LMLH, RMLH, LMLT and RMLT
as follows.

Definition 1. If line dyi,, j;) = 0 intersects DCH1I, the flow dependence tail set of the
DCHI is called as FDT.

Definition 2. If line d(i,, j;) = 0 intersects DCH?2, the flow dependence head set of the
DCH?2 is called as FDH.

Definition 3. The line that can be formed by the two left most extreme points in FDT is
called the LMLT (dl(i,, j;) = 0). And the line by the two left most extreme points in FDT
is called RMLT (dr(i,, j;) = 0).

Definition 4. The line that can be formed by the two left most extreme points in FDH is
called the LMLH (dl{(i,, j,) = 0). And the line by the two left most extreme points in
FDH is called RMLH (dr (i, j,) = 0).

Property 6. Suppose line dg(i, j) = p*i+q*j+r passes through CDCH. If q > 0,
FDT(FDH) is on the side of di(i;, j;) 2 0 (d(iy, j») = 0), otherwise, FDT(FDH) is on the
side of di(iy, j1) < 0 (di, j2) £ 0).

Fig. 5(b) shows FDH and FDT of the loop in Example 1 after variable renaming.

4.1 Two Parallel Region Partitioning Method

If intersection of FDT and FDH is empty, FDT does not overlap FDH and the iteration
space is divided into two parallel regions, AREA1 and AREA2, by the line d,(i;, j,) =0
as shown in Fig. 5(b). From (6), we can get d,(i,, j,) = i,/2 - j,/2, and the equation is j = i.
So, the iteration space is divided into two parallel regions, AREA1 and AREA2, by the
line j =i.

202 S.J. Jeong, K.H. Han, and Y.C. Park

The execution order is AREA1 — AREA?2. Transformed loops are given as follows.

/* AREA1 */ /* AREA2 */
d0i=11,u1 dOi:lj,MI
do j =max(l,, [1), u; do j = I,, min(us, [i)
AQ*i+3,j+1)=. .. AQ*i+3,j+1) =. ..
..o =AQRFF, iH3) ... =AQHFFL iH3)
enddo enddo
enddo enddo

Fig. 6. Transformation of the loop by two parallel region partitioning method in Example 1

4.2 Improved Region Partitioning Method

The three region partitioning method [5], [6] divides the iteration space into two par-
allel regions and one serial region by the line d,(i;, j;) = 0 and the line d,(i,, j;) = 0.

In our proposed method, the Improved Region Partitioning Method, we select one or
two appropriate lines among four lines such as LMLH, RMLH, LMLT and RMLT, as
given in Definition 3 and 4. One or two selected lines divide the iteration space into two
parallel regions and/or less than one serial region.

To partition the iteration space, we use the Algorithm Region_Partition, which is the
algorithm of selecting the bounds in the transformed loop in two-dimensional solution
space as shown in Fig. 7. The main functionality of this algorithm is to select one or two
appropriate lines among four lines by position of two given lines di(i;, j;) = 0 and d,(i,,
J2) =0, and two real values q; and g3 given in (7). From property 6, we know that the real
value q;(q;) determines whether the position of FDT(FDH) is on side of d,(i;, j;) =

0(di(iz, j») =2 0) or not. These two (or one) selected lines are the bounds of three (or two)
loops.

Algorithm Region Partition
INPUT: four lines (LMLT, RMLT, LMLH, RMLH)
OUTPUT: two parallel regions and/or less than one serial region
BEGIN
IF (line d,(i,, 7,)= 0 is on the left side of line d,(i,, 7,) = 0)
Switch (q,, g,) BEGIN
CASE 1: g, > 0 and g, > 0
Select dI,(i,, 7,) = 0 (= LMLH) and d,(i,, 7,) = 0 (= RMLT) ;
Call Transformationll(dI,(i,, 7,), d,(i,, 7,)):
CASE 2: g, > 0 and g, < 0
/* FDH does not overlap FDT */
Call Transformationl2(d,(i,, 7,));
CASE 3: g, < 0 and g, > 0
Select d,(i,, 7,) = 0 (= LMLT) and d,(i,, 7,) = 0 (= RMLH);
Call Transformationl3(d,(i,, 7,), d,(i,, 7,));
CASE 4: g, < 0 and g, < 0
Select d,(i,, j,) = 0 (= LMLH) and dr,(i,, 7,) = 0 (= RMLT) ;
Call Transformationld (d, (i,, J,), dr,(i,, 7,)):
End Switch
ELSE IF (d,(i,, 7,) = 0 is on the right side of d,(i,, j,) = 0)
Switch (q,, g,) BEGIN
CASE 1: q, > 0 and g, > O

A Combined Technique of Non-uniform Loops 203

Select di1,(i,, 7,) = 0 (=LMLT) and d,(i,, j,) = 0 (=RMLH);
Call Transformation2l (dI,(i,, J,), d,(i,, 7,);
CASE 2: q, > 0 and g, < O
Select d,(i,, j,) = 0 (=LMLH) and d,(i,, 7,) = 0 (= RMLT)
Call Transformation22(d, (i,, 7,), d,(i,, J7,));:
CASE 3: g, < 0 and g, > 0
/* FDH does not overlap FDT */
Call Transformation23(d,(i,, 7,));
CASE 4: g, < 0 and g, < 0
Select d,(i,, 7,) = 0 (=LMLT) and dr,(i,, j,) = 0 (=RMLH) ;
Call Transformation24(d, (i,, 7,), dr,(i,, 7,));
End Switch
ELSE /* the line d,(i,, j,) intersects the line d,(i,, 7, */
Select d,(i,, 7,) = 0 and d,(i,, 7,) = 0;
Call Transformationl3(d,(i,, 7,), d,(i,, 7,));
END Region_Partition

Fig. 7. Algorithm of selecting the bounds of the transformed loop

After selecting one or two appropriate lines, Algorithm Region_Partition executes
one among eight procedures, i.e., Transformationl1 ~ Transformation24, which are
algorithms of transforming the original loop as shown in [7]. In this algorithm, the
expressions j = Ai+B; and j = A»i+B, used in the index bounds correspond to the first
and the second input parameter in each procedure, respectively. We know that two
input parameters can be the upper or lower bound in the transformed loops based on the
corresponding region of the loop.

j "
d;(i,)=0 AREA2 L diij,)=0
J=4"110 v jfi*iz-m AREA3 .
</ { div})=0
' Ji=2'16
ll ’
AREA2
(a) (b)

Fig. 8. Regions of the loop partitioned by (a) the improved region partitioning, (b) the unique set
oriented partitioning in Example 2

Fig. 8(a) shows regions of the loop partitioned by our proposed technique in Ex-
ample 2. In this case, the iteration space is divided into two parallel regions, AREA1
and AREA2, and one serial region, AREA3, by the two selected lines j = 4i,- 10 and j =

2i;— 6 as shown in Fig 6(a). The execution order is AREA1 — AREA3 — AREA2.

S Combining Technique for Loop Parallelization

We consider these cases separately and propose suitable loop tiling and partitioning
method as follows.

204 S.J. Jeong, K.H. Han, and Y.C. Park

Case 1. DCH1 does not overlap DCH2.
In this case, we can find two parallel regions, DCH1 and DCH2, by the algorithm of
finding DCH1 or DCH2 in two-dimensional solution space [2].

Case 2. There is only flow dependence and DCH1 overlaps DCH2.

When there is only flow dependence in the loop, we proposed the Improved Tiling
Method in section 3. Our proposed method tiles the iteration space by the incrementing
minimum dependence distance.

Case 3. FDT does not overlap with FDH.

When there are both flow and anti dependence sets, we eliminate anti dependence from
the doubly nested loop by variable renaming. After variable renaming, if there remains
only flow dependence in the nested loop and FDT does not overlap with FDH, the it-
erations within each area can be fully executed in parallel by the Two Parallel Region
Partitioning Method in section 4.1.

And in our another proposed method - the Improved Region Partitioning Method in
section 4.2, we can determine whether the intersection of FDT and FDH is empty by
position of two given lines d(i;, j;) = 0 and d(i, j;) = 0, and two real values. If the
intersection of FDT and FDH is empty, we divide the iteration space into two parallel
regions by the line d;(i;, j;) = 0 or di(is, j,) = 0.

Case 4. FDT overlaps with FDH and di(i;, j;)=0 does not intersect d;(i,, j,)=0.

In this case, we proposed the Improved Region Partitioning Method in section 4.2.
When FDT overlaps FDH, two selected lines among our defined four lines divide the
iteration space into two parallel regions as large as possible and one serial region as
small as possible.

Case 5. d(i;, j)=0 intersects d,(iy, j»)=0.
In this complicated case, Pean and Chen [8] presented the Optimized Dependence
Convex Hull Partitioning Method (ODCHP), which divides the iteration space into
many and variable sized parallel region.

6 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. The total
time of execution is equal to the number of parallel regions, N,, plus the number of
sequential iterations, N,. Generally, speedup is represented by the ratio of total se-
quential execution time to the execution time on parallel computer system as follows:

Speedup = (N; * N))/(N, + N,)

where N, N; are the size of loop i, j, respectively.

In Example 1, the three region partitioning method [5], [6] and the unique set ori-
ented partitioning method [4] divide the iteration space into one parallel region,
AREA2, and one serial region, AREA1, as shown in Fig. 9(a). So, the speedup that can
be achieved by this method is (10*10)/(1+45) = 2.2.

A Combined Technique of Non-uniform Loops 205

] /7 i
‘[_ aliniy) [~ AREAT

/i A AREA1

AREA4 /
[AREA2
P AREA2 ><H AREA3
------- ,
i 1 18 i
(a) (b)

Fig. 9. Regions of the loop partitioned by (a) the three region partitioning in Example 1, (b) the
unique sets oriented partitioning in Example 3

By the minimum dependence distance tiling method [3], the minimum value of
dj(i,), djmin, occurs at the extreme point (1, 1) and d;,,;, = 2. The space can be tiled with
width = 1 and height = 2, thus 50 tiles are obtained. The speedup for this method is
(10*10)/(50) =2.

Applying our proposed method to this loop is the case which FDT does not overlap
the FDH as shown in Fig. 5(b). The speedup for this method is (10*10)/2 =50.

Fig. 4(a) shows original partitioning of Example 3. Applying the unique set oriented
partitioning to this loop illustrates case 2 of [4]. This method can divides the iteration
space into three parallel regions, and one serial region, AREA 3, as shown in Fig. 9(b).
The speedup for this method is (50*50)/(3+44) = 53.2.

By the minimum dependence distance tiling method, d;,;, occurs at the extreme
point (1, 1) and d;,;, = 3. The space can be tiled with width = 3, thus 17 tiles are ob-
tained. The speedup for this method is (50*50)/17 = 147.

By our proposed method, the Improved Tiling Method, this loop is tiled by four
parallel areas as shown in Fig. 4(b). The speedup for this method is (50%50)/4 = 625.

diissj;)=0

Fig. 10. Regions of the loop partitioned by (a) the improved region partitioning method, (b) the
three region partitioning method in Example 2

In Example 2, the improved three region partitioning [6] can divide the iteration
space into two parallel regions, AREA1 and AREA2, and one serial region, AREA3, by
line d,(i3, j») = 0 and line di(i;, j;) = 0 as shown in Fig. 10(a). The speedup can be
computed as (10¥10)/(2+55) = 1.75.

206 S.J. Jeong, K.H. Han, and Y.C. Park

The three region partitioning [5] divides the iteration space into one parallel region,
AREAI, and one serial region, AREA3, by line d,(i3, j») = 0 (j, = 2i, - 8) as shown in
Fig. 10(b). The speedup can be computed as (10¥10)/(2+66) = 1.47.

Applying the unique set oriented partitioning divides the iteration space into one
parallel region, AREA1, and one serial region, AREA2, by line j, = 4i, - 10 as shown in
Fig. 8(b). AREAZ2 is tiled into 34 tiles with width = 1 and height = 2, thus the speedup
for this method is (10¥10)/(14+34) =2.9.

Applying the proposed method to this loop is the case that FDT overlaps with FDH.
Two lines j, = 4i, - 10 and j; = 2i; - 6 divide the iteration space into two parallel regions,
AREALI and AREA?2, and a serial region, AREA3, as shown in Fig. 8(a). The speedup
for this method is (10¥10)/(2+18) = 5.

In the above comparisons, our proposed partitioning method exploits more paral-
lelism than the other related methods.

7 Conclusions

In this paper, we studied the problem of transforming nested loops with non-uniform
dependences, and proposed efficient methods such as improved loop tiling method and
region partitioning method to maximize parallelism.

In comparison with some previous partitioning methods, such as minimum de-
pendence distance tiling, unique sets oriented partitioning and three region partitioning,
our combination technique gives much better speedup and extracts more parallelism
than other existing methods.

Our future research work is to improve parallelization for non-perfectly nested loop.

References

—_

D. J. Lilja, "Exploiting the parallelism available in loop," IEEE Computer, (1994). 13-26

2. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE
Trans. Parallel and Distributed Systems, vol. 4, no. 5, (1993) 547-558

3. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proc. Symp. Parallel and Distributed Processing, (1994)
74-81

4. J. Ju and V. Chaudhary, "Unique sets oriented Partitioning of nested loops with non-uniform
dependences," in Proc. Int. Conf. Parallel Processing, vol. III, (1996) 45-52

5. A.Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependencies," in
Proc. Int. Conf. Parallel Processing, vol. II, (1994) 11-19

6. C.K.Cho and M. H. Lee, "A Loop Parallization Method for Nested Loops with Non-uniform
Dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, (1997) 314-321

7. S.J. Jeong, "Maximizing Parallelism for Nested Loops with Non-uniform Dependences"”, in
Lecture Notes in Computer Science 3046, Part IV, Springer-Verlag, (2004) 213-222

8. D. -L. Pean and C. Chen, "CDCHP: a new effective mechanism to maximize parallelism of

nested loops with non-uniform dependences”, The Journal of Systems and Software, vol. 56,

(2001) 279-297

Neighbor-Aided Multicast Protocol
for Streaming Transmission on MANETs*

Min-Ping Lin, Chung-Ta King, and Ming-Tsung Sun

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
g924309@oz.nthu.edu.tw, king@cs.nthu.edu.tw,
g934344@oz.nthu.edu.tw

Abstract. Streaming transmission on MANETSs requires a high data delivery
rate, few jitters and short delay, while consuming little network bandwidth. This
paper presents the Neighbor-Aided Multicast Protocol for Streaming
transmission on MANET (NAMPS). NAMPS is an on-demand, mesh-based
protocol which provides multiple paths for data transmission. The key issue in
mesh-based streaming transmission is the maintenance of the mesh structure.
This involves the detection of the change to the mesh and restructuring of the
mesh. In this paper, we take advantage of the continuous streaming packets and
broadcast signals in wireless radio to detect the changes in link states. For the
restructuring problem, we propose to use mesh neighbor to maintain group
information, which facilitates route recovery and optimization. The simulation
results show that NAMPS has both high effectiveness and efficiency.

1 Introduction

Mobile ad-hoc networks (MANETS) are a kind of wireless networks that have no
fixed infrastructure. The nodes in the network may move around and thus the network
topology is dynamic. MANETS typically have high packet loss rate, low bandwidth,
limited power, and high node failure rate. These characteristics make it challenging to
design applications on MANETS.

There are many applications on MANETSs that require communication between
members of a group, i.e. group communication. Consider a group of tourists visiting a
historical site. The guide can use a microphone attached to a mobile device, such as a
PDA, to inform the members of the historical significances of that site. The messages
of the voice stream are broadcasted to the group and the members can listen using the
earphone of their mobile device. Since the group members may move around, we thus
have a MANET.

Multimedia streaming applications require real-time transmission. They typically
induce heavier traffic than normal data transmission. They are sensitive to delay,

This work was supported in part by the National Science Council, R.O.C., under Grant NSC
93-2752-E-007-004-PAE, by the Advanced Mobile Context Aware Application & Service
Technology Development Project of the Institute for Information Industry, and by the
MOEA, R.O.C.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 207 -216, 2006.
© Springer-Verlag Berlin Heidelberg 2006

208 M.-P. Lin, C.-T. King, and M.-T. Sun

particularly delay variance (jitter). Excessive delay impairs human interaction. On the
other hand, multimedia streaming can tolerate some amount of data losses. Packet
losses may cause minor glitches, but they can be concealed if only a few. Finally,
multimedia streaming transmits data continuously. Packets should be received in time
and in order for “smooth” playback. Late arriving data is useless and may generate
playback delay.

Many multicast protocols on MANETSs have been proposed [5], but they do not
address media streaming. The goal of this paper is to design a multicast protocol,
called Neighbor-Aided Multicast Protocol for Streaming (NAMPS), to support
streaming transmissions on MANETs. NAMPS is mesh-based and does not require
periodic transmission of control packets, which results in low communication
overhead. It supports multiple multicast operations simultaneously, with sources
creating the mesh structure “on-demand” when they have streaming data to send.
NAMPS uses mesh neighbors to facilitate route recovery and optimization on node
mobility and topology change. Disconnected nodes could quickly find a new route to
the group mesh using few control packets with the assistance of the closest mesh
neighbors. In this way, NAMPS tries to minimize network cost while reducing
network delay in streaming multicast.

The rest of this paper is organized as follows. Section 2 reviews existing multicast
protocols on MANETS. Section 3 describes our NAMPS multicast protocol for data
streaming. Section 4 evaluates the performance of NAMPS in simulation. Finally,
conclusion of this work is presented in Section 5.

2 Related Works

A straightforward way to perform multicast on MANETS is flooding [7]. It works
well for highly mobile ad hoc networks. However, blind flooding causes serious
redundancy, contention, and collision. Multicast protocols to alleviate the problem on
MANETSs have been proposed, including: tree-based approaches ([13], [16]), mesh-
based approaches ([4], [6], [9]), stateless approaches ([3], [8]), and hybrid
approaches ([1], [14]).

It has been shown that ODMRP outperforms some of the other protocols [1] [6]
[16] in presence of high mobility [10]. Its simplicity and exploitation of the broadcast
nature of the wireless radio contribute to high data delivery rate for highly mobile ad
hoc networks. Its use of up-to-date shortest routes may reduce the delay for packet
delivery. However, each source in ODMRP has to flood control packets to the entire
network periodically. Thus, as the number of multicast groups (sources) increases in
the network, the control overhead also increases, causing congestion and reducing the
data delivery ratio. There are many proposals [11] [12] to reduce the control overhead
of ODMRP.

We can say that a protocol is effective if it has high data delivery ratio, low latency,
and few playback delays. On the other hand, we can say that a protocol is efficient if it
requires low control and data packet overhead. Most of the protocols mentioned

Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETSs 209

above do not address both issues at the same time. In this paper, we try to address
both issues and design a protocol having high effectiveness and high efficiency.

3 Protocol Description

Unlike other multicast protocols [9] that require periodic flooding of control packets
to maintain the group membership and the mesh topology, NAMPS performs on-
demand mesh creation and route recovery. Under the assumptions that all links in the
wireless networks are symmetric and streaming packets are continuous during the
transmission period, NAMPS takes the advantage of the continuous streaming data
and the broadcast natural of wireless radio to detect link breakage. Forwarding nodes
maintain the mesh by overhearing continuous streaming data packets sent by other
downstream forwarding nodes. A forwarding node stops forwarding data packets
when it does not hear data packets from its downstream nodes. In other words,
useless routes will be “self-pruned” gradually without any control packet. Route
recovery is initiated when a downstream node detects that its upstream node stops
forwarding data packets. Note that we do not consider network partition in this
work.

Some terminologies and notations used in this paper are listed below. Figure 1
illustrates an example. Let the total number of nodes in the network be N.

e Group Members (G): the nodes that are willing to receive the multicast data

e Forwarding Nodes (F): the nodes, perhaps non-members, that relay data packets
for the members

e Group Mesh (M): consisting of forwarding nodes and group members, where the
leaf nodes are group members, where M =G U F

e Mesh Neighbors (B): the nodes that are one-hop away from the group mesh except
those already belonging to the group mesh, where B < (N - M)

Nodes near the group mesh are called mesh neighbors. Since most link failure
recoveries can be localized to a small region [11], charging mesh neighbors to keep
the group information facilitates route recovery and route optimization. The route
recovery process initiated by a forwarding node requires less overhead, because it can
find the mesh neighbors in fewer hops with a high probability. It follows that
disconnected nodes can quickly find a new route to the group mesh with the
assistance of the closest mesh neighbors. In addition, mesh neighbors can help route
optimization when there is a better route via a mesh neighbor.

3.1 Packet Formats and Data Structures

There are seven types of packets in NAMPS, classified as control and data packets.
The control packets have the same header format and the data packet header has one
extra field “UpstreamNode”. We use the IP option field to attach all the above
headers.

210 M.-P. Lin, C.-T. King, and M.-T. Sun

Control Packets

JoinQuery a flooding packet sent by a source to create a mesh

JoinReply a reply packet to a JoinQuery packet

RecoveryQuery | aroute recovery packet broadcasted by a disconnected node
RecoveryReply a reply packet to a RecoveryQuery packet

Optimization a packet sent when a node detects a shorter route via itself
Ack a packet sent after receiving a RecoveryReply or Optimizaiton
packet for acknowledgement

Data Packets
Data | a streaming data packet

In NAMPS, each node maintains the following data structures.

e Routing Table: A Routing Table is created on demand for each multicast group.
When a new JoinQuery or RecoveryQuery packet is received, an entry is inserted
in the Routing Table containing information as follows: The “UpstreamNode”
column shows the next node when transmitting JoinReply or RecoveryReply. The
“HopCount” value records the number of hops to the multicast source. The
“Timestamp” value indicates the time when the upstream nodes were refreshed.

e Member Table and Mesh Neighbor Table: When a node joins a group, it inserts
an entry to Member Table. Likewise, while a node becomes a neighbor of the
group mesh, it inserts an entry to Mesh Neighbor Table.

e Forwarding Node Table: While a node becomes a forwarding node, it inserts an
entry to its Forwarding Node Table for that group. Note that each forwarding node
has only one upstream node but can have several downstream nodes.

e Message Cache: The message cache is used to detect duplicate Data packets,
JoinQuery packets, or RecoveryQuery packets.

3.2 Multicast Mesh Creation

In NAMPS, group membership and multicast mesh are established by the source “on-
demand”. The mesh creation process is similar to ODMRP [9]. When a multicast
source wants to start a session, it floods a JoinQuery packet to the entire network with
a unique GroupID. On receiving a JoinQuery message, nodes willing to participate in
the multicast group respond by broadcasting a JoinReply packet and fill the
“NextHop” field of the packet with its upstream node. On receipt of a JoinReply
message, each node checks whether the next hop address matches its own node ID. If
it does, this node becomes a forwarding node. It then broadcasts its own JoinReply
based on the match in its Routing Table. The JoinReply message gets propagated to
the multicast source via the shortest path. These forwarding nodes are connected as a
mesh joining all the group members. Each forwarding node and group member knows
its corresponding upstream node and downstream node.

After establishing the multicast mesh, the source can multicast streaming data
packets to the receivers. A multicast data packet contains a sequence number and a hop
count value in addition to data payload. The sequence number is used for duplicate
detection. When a forwarding node receives a new data packet, it rebroadcasts the
packet. Since data packets are broadcasted by forwarding nodes to all their one-hop

Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETSs 211

neighbors, a forwarding node or group member may receive redundant data packets
which improve robustness.

3.3 Multicast Mesh Maintenance

Link breakage detection and self-pruning

NAMPS is a “soft-state” protocol which takes the advantage of broadcast natural of
ad hoc networks. After the multicast mesh is created, non-forwarding-node group
member periodically broadcasts the JoinReply packet containing its upstream node
ID. Since streaming data packet is continuous, data packets and periodically
broadcasted JoinReply packets can be used by the forwarding nodes to detect link
breakage. This is done by “overhearing” the continuous data packets re-broadcasted
by the downstream node. If the downstream forwarding node has not broadcasted data
packets for a while or the “UpstreamNode” field of the data packets does not match
its own node ID, the upstream node assumes that the link is broken.

Similarly, the upstream node of a non-forwarding-node group member insures the
link connectivity according to the periodically broadcasted JoinReply packet sent by
the group member. If an upstream node detects the link breakage and this node has no
other downstream nodes, it changes itself to a non-forwarding node. Therefore, group
members can leave the multicast group at any time without informing other nodes.
Furthermore, while a downstream node detects that its upstream node stops
forwarding data packets, it starts to recover the path.

Mesh neighbors

In general, most link failure recoveries can be localized to a small region along a
previous route [11]. Mesh neighbors are used in NAMPS to assist route recovery and
optimization. Since a packet is broadcasted to all neighboring nodes in a radio-based
wireless network, a node can determine whether it is a mesh neighbor of the group by
eavesdropping. Nodes which do not belong to the group mesh but detect the Data or
JoinReply packet become a mesh neighbor. Because the header of data packets and
JoinReply packets contain “HopCount”, each mesh neighbor can calculate its own
hop count in the Mesh Neighbor Table. These mesh neighbors keep additional
information and behave as good neighbors to help its neighbor mesh. The
neighborhood relationship is removed as the mesh neighbor no longer hears the data
packet or JoinReply packet from the group mesh nodes of that group.

Route recovery

A route recovery process is invoked when a downstream node is disconnected from
its upstream node because of node mobility. If a forwarding node A is disconnected
from its upstream node B but can still receive data packets from another upstream
node C due to the mesh topology, node A will then view node C as its new upstream
node. Node C detects the new downstream node A by overhearing the data packet and
then adds A to its Forwarding Node Table.

212 M.-P. Lin, C.-T. King, and M.-T. Sun

Group O

Group O member

mrmbel

C Source

- ©

C Source

B @ Forwarding node

B

@ Forwarding node h
(@ Group member G @ Group member
sroup o
Group Mesh neighbor member O Mesh neighbor
member©)
(a) Link breakage (b) Route recovery

Fig. 1. Route recovery with the help of a mesh neighbor

If a node does not receive any data packet from its upstream node for a time
interval, it assumes that the link between itself and its upstream node is broken. The
timer interval of each node is related to its hop count. The larger the hop count, the
longer the time interval. In Figure 1(a), if a node A is disconnected from its upstream
node B, and if it has no other forwarding node in its one-hop range, it starts the route
recovery process by broadcasting a RecoveryQuery with TTL=1. When a mesh
neighbor D receives the RecoveryQuery packet, it broadcasts a RecoveryReply packet
with node A in the “NextHop” field. After node A receives the RecoveryReply packet,
it adds node D into the “UpstreamNode” column of its Forwarding Node Table and
sends an Ack packet to Node D. Node D becomes a forwarding node after receiving
the Ack packet. Node C detects the new downstream node D by overhearing the data
packet sent by node D and then puts node D into its Forwarding Node Table. In this
way, a new route is constructed. Node B will be pruned away from the group mesh. If
more than one route is recovered, the node can choose one of them as its new route.
The resulting graph is shown in Figure 1(b).

If the time of a route recovery process expires, the node will increase the TTL
value of the RecoveryQuery packet and broadcast it again. In Figure 2(a), node A
moves outside the range of its upstream node B and there is no mesh neighbor node

Group O
memberg O
Source
Y Source
J — 0

C

O

@ Forwarding node
(@) (© Group member @ Forwarding node
‘\ Mesh neighbor @ Group member
A O Mesh neighbor
(a) Link breakage (b) Route recovery

Fig. 2. Route recovery with the help of non-neighbor and neighbor nodes

Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETSs 213

beside it. Node A broadcasts a RecoveryQuery packet with TTL = 2 after its previous
route process (with TTL = 1) expires. The intermediate node C records the group
information in its Routing Table and rebroadcasts the packet. When the
RecoveryQuery packet reaches the mesh neighbor node D, node D then sends
RecoveryReply packet along the reverse path back to the disconnected node A. Upon
receiving the RecoveryReply packet, node A sends an Ack packet along the new route
to inform node C and node D. Node C and D then become forwarding nodes. A new
route is thus re-built. Node E adds node D into its Forwarding Node Table after
hearing the data packet from node D. Node B and its upstream node will be pruned
away from the forwarding mesh, since it has no other downstream node. The resulting
graph is shown in Figure 2(b).

4 Performance Evaluation

The simulation is based on the GloMoSim simulator [15]. In our experiments, the
radio propagation range for each node was set to 250 meters and channel capacity to 2
Mbits/sec. IEEE 802.11 was used as the MAC protocol. We considered 100 wireless
mobile nodes in the simulation. At the beginning of the simulation, nodes were
uniformly placed in a 1200m x 1200m area. Node movements used the random way-
point model [2] with no pausing. Each simulation was executed for 300 seconds of the
simulation time.

There is one source for each multicast group. The group source and group
members were randomly selected. All members joined the multicast group at the
beginning of the simulation and remained members till the end of the simulation. The
source node sent data in constant bit rate into the network. The data payload was set
to 512 bytes. Data packets were generated at each source at a rate of 16 packets per
second.

We compared NAMPS with Flooding [7] and ODMRP [9]. We assumed that no
node was equipped with GPS, so a multicast source in ODMRP should periodically
broadcast the “JoinQuery” packet. Parameters used for ODMRP are as follows:
JoinQuery refresh interval is 3 seconds, JoinReply acknowledgment timeout is 75 ms,
maximum JoinReply retransmissions is 3 times, and Fg_FLAG timeout is 6 seconds.
Parameters for NAMPS are as follows: JoinReply broadcast interval is 3 seconds,
route broken timeout is 1 second, recovery retransmission is 3 times, and self-prune
timeout is 6 seconds.

To evaluate the performance of the proposed protocol, we use two metrics in this
paper. The average data delivery ratio is defined as

K
(Q n)IN*K),
i=1
where n; is the number of packets received by each group member, and N and K are
the total number of packets sent from the source and the number of group members,
respectively. The second metric is the average end-to-end delay, which is defined as

K n;
OO, —t,)In*K),

=l j=1

214 M.-P. Lin, C.-T. King, and M.-T. Sun

where t;; is the time a packet is sent from the source and ty; is the time the packet is
received by a particular group member. The parameters, n; and K, are the same as the
previous metric.

Mobility v s Data Delivery Ratio Mobility v s Delay
lVAE?_VA‘,—-(A‘-——-,A__E,A‘ 8
208 L0 ---0--- 0 -
= = =0= ={looding 2 6
506 -— El
S -_ ODMRP
5 . z 4 - e~ - floadi
£ 04 +—— NAMPS = ooding
ERTH G A (I S =2 R UDVRP
———NAMPS
0 0/\ n/\ /\o 2/ A
0 5 10 15 20 0 5 10 15 20
Mobility speed (m/s) Mobility speed (m/s)
(a) Mobility v.s. data delivery ratio (b) Mobility v.s. delay

Fig. 3. Effects of node mobility on system performance

We first examine the effects of node mobility on the system performance. From
Figure 3, we see that both ODMRP and NAMPS can tolerate mobility change well.
As the mobility increases, NAMPS slightly outperforms ODMRP. This is because
ODMREP floods JoinQuery by piggybacking data packet requests, which results in
more contention of the radio channel. In NAMPS, only leaf member nodes
periodically broadcast control packets and nodes invoke the route recovery process
on-demand. The mesh neighbors reduce the ReocveryQeury packets used in the route
recovery process. Flooding shows a low data delivery ratio and long delays even with
slow mobility. The results above show that NAMPS is more robust than ODMRP and
Flooding in high mobility situations.

Group Size v s Data Delivery Ratio g Group Size v s Delay
@ -n-@---"@--- @ -
2 6 .
E = =®= = [looding /E\ 5
= — £
z - ODMRI,D 4 = == «flooding
g NAMPS K3 —— ODVRP
= @ - - @~ - @- - 2 ——NauPS
A 1
‘ om N\ - =2
5 10 15 20 25 5 10 15 20 25
Number of members Number of members
a) Group size v.s. data delivery ratio roup size v.s. dela
Group data delivery rat b) Group delay

Fig. 4. Effects of group size on system performance

We next examine the effects of group size. In Figure 4(a), we can see that, as the
group size increases, NAMPS shows a high data delivery ratio compared to that of
ODMRP. In ODMRP, when group members increase, the periodically flooded
JoinQuery packets build more redundant routes to each group member. In NAMPS,

Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETSs 215

useless routes are soon self-pruned. Flooding shows poor performance in this kind of
traffic load. Figure 4(b) shows the average delay each data packet takes to reach the
group members. ODMRP has too many forwarding nodes to relay the data packets in
a large group size. This incurs more contention and collision, which in turn increases
the delay time. NAMPS usually takes a shorter delay time to transmit data packets
owing to the route optimization process and the assistance of mesh neighbors. The
simulation result shows that NAMPS outperforms ODMRP since it uses an on-
demand route recovery process and also takes the advantage of the mesh neighbors to
reduce the control packet transmissions. These results also show that NAMPS is less
affected by the group size than ODMRP.

5 Conclusion

In this paper, we propose NAMPS -- a robust, scalable, efficient, on-demand protocol
for streaming data multicast in mobile ad hoc networks. It takes advantage of the
broadcast natural of radio-based ad hoc networks and collects information from the
packets that its one-hop neighbors broadcast to reduce the control packet overhead.
We use the mesh neighbors to maintain group information to facilitate route recovery
and optimization. Our simulation results show that NAMPS has better performance
than Flooding and ODMRP under different mobility condition and group size.
NAMPS achieves a higher data delivery ratio with a shorter end-to-end delay. For
future works, we want to evaluate the performance of the protocol under multiple
sources for a multicast group. We also want to modify and evaluate the performance
of our protocol for other applications as well.

References

1. E. Bommaiah, M. Liu, A. McAuley, and R. Talpade, “AMRoute: Adhoc Multicast
Routing Protocol,” Internet-Draft, draft-talpade-manetamroute-00.txt, Aug. 1998, Work in
progress.

2. J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance Comparison of
Multi-hop Wireless Ad Hoc Network Routing Protocols,” Proc. of ACM/IEEE MOBICOM ,
pp. 85-97, October 1998.

3. K. Chen and K. Nahrstedt, “Effective Location-Guided Tree Construction Algorithms for
Small Group Multicast in MANET,” Proc. INFOCOM, 2002, pp. 1180-89.

4. C.-C. Chiang, M. Gerla, and L. Zhang, “Forwarding Group Multicast Protocol (FGMP) for
Multihop, Mobile Wireless Networks,” Journal of Cluster Computing, Special Issue on
Mobile Computing, vol. 1, no. 2, 1998, pp. 187-96.

5. C. Cordeiro, H. Gossain, and D. Agrawal, “Multicast over Wireless Mobile Ad Hoc
Networks: Present and Future Directions,” IEEE Network Magazine, vol. 17, no. 1, pp. 52-
59, January/February 2003.

6. J.J. Garcia-Luna-Aceves and E.L. Madruga, “The Core-Assisted Mesh Protocol,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 8, Aug. 1999, pp. 1380-1394.

7. C. Ho, K. Obraczka, G.. Tsudik, K. Viswanath, “Flooding for Reliable Multicast in Multi-
hop Ad Hoc Networks,” Proc. of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, p.64-71, August 20-20, 1999,
Seattle, Washington, United States.

216

8.

9.

10.

15.

16.

M.-P. Lin, C.-T. King, and M.-T. Sun

L. Ji, and M. S. Corson, “Differential Destination Multicast — A MANET Multicast
Routing Protocol for Small Groups,” Proc. INFOCOM, pp. 1192-02.

S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-Demand Multicast Routing Protocol,” Proc. of
IEEE WCNC, New Orleans, LA, Sep. 1999, pp. 1298-1304.

S.-J. Lee et al.,, “A Performance Comparison Study of Ad Hoc Wireless Multicast
Protocols,” Proc. INFOCOM, Mar. 2000, pp. 565-74.

. S. Lee and C. Kim, “Neighbor Supporting Ad Hoc Multicast Routing Protocol,” Proc.

ACM MobiHOC, Aug 2000.
S. Park, D. Park, “Adaptive Core Multicast Routing Protocol,” Wireless Networks, vol.
10(1), 2004, pp. 53-60.

. E. M. Royer and C. E. Perkins, “Multicast Operation of the Ad Hoc On-Demand Distance

Vector Routing Protocol,” Proc. ACM MOBICOM, Aug. 1999, pp. 207-18.

. P. Sinha, R. Sivakumar, V. Bharghavan, “MCEDAR: Multicast Core-Extraction

Distributed Ad hoc Routing,” Proc. IEEE Wireless Communication and Network Conf.,
1999.

GloMoSim: A Scalable Simulation Environment for Wireless and Wired Network Systems,
Computer Science Dept, UCLA, http://pcl.cs.ucla.edu/projects/domains/glomosim.html
C.W. Wu, Y.C. Tay, and C.-K. Toh, “Ad hoc Multicast Routing Protocol Utilizing
Increasing id-Numbers (AMRIS) Functional Specification,” Internet-Draft, draft-ietf-
manet-amris-spec-00.txt, Nov. 1998, Work in progress.

An Entropy-Based Stability QoS Multicast
Routing Protocol in Ad Hoc Network

Baolin Sun''3, Layuan Li', Qiu Yang?, and Yang Xiang?

1 School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, 430063, P.R. China
blsun@163.com
2 School of Mathematics and Physics,

China University of Geosciences, Wuhan, 430074, P.R. China
3 Department of Mathematics and Physics,

Wuhan University of Science and Engineering,
Wuhan, 430073, P.R. China

Abstract. Due to the dynamic nature of the network topology and
restricted resources, quality of service (QoS) and multicast routing in
MANET is a challenging task. This paper discusses the multicast routing
problem with multiple QoS constraints, which may deal with the delay,
bandwidth and cost metrics, and describes a network model for research-
ing the Ad Hoc network QoS multicast routing problem. It presents an
Entropy-based stability QoS Multicast Routing protocol in ad hoc net-
work (EQMR). The key idea of EQMR algorithm is to construct the new
metric-entropy and select the stability path with the help of entropy met-
ric to reduce the number of route reconstruction so as to provide QoS
guarantee in the ad hoc network. In this paper, the proof of correctness
and complexity analysis of the EQMR are also given. The simulation re-
sults show that the proposed approach and parameters provide an accu-
rate and efficient method of estimating and evaluating the route stability
in dynamic mobile networks.

1 Introduction

Mobile ad hoc network (MANET) is a multi-hop wireless network formed by
a collection of mobile nodes without the intervention of fixed infrastructure.
They are autonomously formed without any pre-configured infrastructure or
centralized control. Since nodes are mobile, the network topology changes at
any time whenever a wireless link is broken or reestablished due to a pair of
nodes moving toward or away from each other[1-7]. Moreover, they are usually
deployed in an unattended environment, such as battlefields or disaster areas,
and have to rely on battery power. These characteristics demand a new way of
designing and operating this type of networks. For such networks, an effective
routing protocol is critical for adapting to node mobility as well as possible
channel error to provide a feasible path for data transmission.

The use of multicasting with the network has many benefits. Multicasting
reduces the communication cost for applications that send the same data to

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 217-226, 2006.
© Springer-Verlag Berlin Heidelberg 2006

218 B. Sun et al.

many recipients. Instead of sending via multiple unicast, multicast reduces the
channel bandwidth, sender and router processing and delivery delay. In addi-
tion, multicast gives robust communication whereby the receiver address is un-
known or modifiable without the knowledge of the source within the wireless
environment[1-6,10]. Due to the wireless ad hoc networks’ features and the en-
larging of it’s application area, the research on the designing theory and method
of wireless ad hoc networks QoS multicast routing protocol has become an im-
portant research topic in network area. Recently, quite a few scholars proposed
some impacting QoS algorithms of ad hoc networks|7-11].

Entropy[12,13,14] presents the uncertanity and a measure of the disorder in
a system. There are some common characteristics among self-organization, en-
tropy, and the location uncertainty in mobile ad hoc wireless networks. The
corresponding methodology, results and observations can be used by the routing
protocols to select the most stable route between a source and a destination, in
an environment where multiple paths are available, as well as to create a con-
venient performance measure to be used for the evaluation of the stability and
connectivity in mobile ad hoc networks.

In this paper, we designed an Entropy-based stability QoS Multicast Routing
protocol in ad hoc network (EQMR). The key idea of EQMR, protocol is to
construct the new metric-entropy and select the stability path with the help of
entropy metric to reduce the number of route reconstruction so as to provide
QoS guarantee in the ad hoc network. The goal of this paper is to develop a
protocol to find out QoS-based multicast routing provisioning for guaranteed
QoS, and to reduce the protocol’s complexity through the local broadcasting
feature in the ad hoc networks.

The rest of the paper is organized as follows: In section 2, we present entropy
metric in ad hoc network. Section 3 introduces the ad hoc network model and
routing issues. Section 4 describes the EQMR protocol. Section 5 deals with
proofs of correctness and complexity analysis of the EQMR. Some simulating
results are provided in section 6. Finally, the paper concludes in section 7.

2 Entropy Metric

We also associate each node m with a set of variable features denoted by am, n
where node n is a neighbour of node m. In this paper, two nodes are considered
neighbours if they can reach each other in one hop (e.g. direct communication).
These variable features a,, , represent a measure of the relative speed among two
nodes and are defined rigorously later in this section[12,13,14]. Any change of
the system can be described as a change of variable values a,,. , in the course of
time ¢ such as G, (t) — Gm,n(t+A¢). Let us also denote by v(m,t) the velocity
vector of node m and by v(n,t) the velocity vector of node n at time ¢. Please
note that velocity vectors v(m,t) and v(n,t) have two parameters, namely speed
and direction. The relative velocity v(m,n,t) between nodes m and n at time ¢
is defined as:

v(m,n,t) = v(m,t) — v(n,t)

An Entropy-Based Stability QoS Multicast Routing Protocol 219

Let us also denote by p(m,t) the position vector of node m and by p(n,t) the
position vector of node n at time ¢. Please note that position vectors p(m,t) and
p(n,t) have two parameters, namely position. The relative position p(m,n,t) be-
tween nodes m and n at time ¢ is defined as:

p(m,n,t) = p(mat) B p(nat)

Then, the relative mobility between any pair (m, n) of nodes during some
time interval is defined as their absolute relative speed and position averaged
over time. Therefore, we have:

N
- 1 Z Ip(m,n,t;) + v(m,n,t;) x Ay, | — |p(m,n, tiy1)]
m,n N

i=1 R

where N is the number of discrete times t; that velocity information can be
calculated and disseminated to other neighbouring nodes within time interval A;.
R is radio range of nodes. Based on this, we can define the entropy H,,(t, A;)
at mobile during time interval A;. The entropy can be defined either within the
whole neighbouring range of node (e.g., within set S,,), or for any subset of
neighbouring nodes of interest. In general the entropy H,,(t, A;) at mobile is
calculated as follows:

— kZF Pk(t, At) lOg Pk(t, At)

€Fm
Hnlt Ae) = log C(Fyr)
where Py (t, At) = (amr / ZieFm i)-

In this relation by F,, we denote the set of the neighbouring nodes of node
m, and by C(F,) the degree of set F,,. If we want to calculate the local network
stability (with reference to node m), then F,, refers to the set that includes
all the neighbouring nodes of mobile node m (e.g., F,,, = Sy,), while if we are
interested in the stability of a part of a specific route then F), represents the
two neighbouring nodes of mobile node m over that route. As can be observed
from the previous relation the entropy H,, (t,4;) is normalized so that 0< H,, (¢,
A;) <1. It should be noted that the entropy, as defined here, is small when the
change of the variable values in the given region is severe and large when the
change of the values is small [12,13,14]. Let us present the route stability (RS)
between two nodes s and v € U during some interval A; as RS. We also define
and evaluate two different measures to estimate and quantify end to end route
stability, denoted by F'(s, u) and F(s, u) and defined as follows respectively:

N,
F(s,u) = H H;(t, Ay)

where N,.denotes the number of intermediate mobile nodes over a route between
the two end nodes (s, u).

N,
F(s,u) = —InF'(s,u) = — Y InH(t, A)
i=1

220 B. Sun et al.

3 Network Model and Routing Issues

A network is usually represented as a weighted digraph G = (N, E), where N
denotes the set of nodes and E denotes the set of communication links connect-
ing the nodes. |[N| and |E| denote the number of nodes and links in the network
respectively[2-6,9-11]. In G(N, E), considering a QoS constrained multicast rout-
ing problem from a source node to multi-destination nodes, namely given a non-
empty set M={s, u1,uz, ..., um}, M C N, sissource node, U={uy, uz, ..., un}
be a set of destination nodes. In multicast tree T= (Np, Er), whereNy C N,
Epr C E. If C(T) is the cost of T, Pr(s,u) is the path from source node s to
destination u € U in T, Br(s, u) is the usable bandwidth of Pr(s,u).

Definition 1: The cost of multicast tree T is:
C(Te) = cep, Cle), e€ Er.

Definition 2: The bandwidth, delay and stability route of multicast tree T is
the value of link bandwidth, delay, and entropy metric in the path from source
node s to each destination node u € U. i.e.

Br(s, u)= min(B(e), e € Er).
D (s, d)= max(}_ cp,(ny.a) P(€), d€U).
Fr(s, d)= min (F'(¢), e € Er).

Definition 3: Assume the minimum bandwidth constraint of multicast tree is B,
the maximum delay constraint is D, the minimum entropy metric constraint of
multicast tree is F', given a multicast demand R, then, the problem of bandwidth,
delay, and entropy metric constrained multicast routing is to find a multicast
tree T, satisfying:

(1) Bandwidth constraint: Br(s, d) > B, d € U.
(2) Delay constraint: Dy (s,d)< D,d € U.
(3) Entropy metric constraint: Fr(s,d)< F, d € U.

Suppose S(R) is the set, S(R) satisfies the conditions above, then, the multicast
tree T' which we find is:

C(T) = min (C(T5), Ts € S(R))

Definition 4: In G(N, E), for any V(i,j) € E, P(i,j) is the link from node ¢ to
node j, if P(i,j) satisfying:

P(i,j) = (B(i,j) > B)A(D(i,j) < D) A (F'(i,5) < F)
Then we call P(i,7) a feasible path.

Definition 5: In G(N, E), for a source node s, destination node j € U, the feasi-
ble path with minimum cost from s to j is called the optimal path, respresented
as P;.

An Entropy-Based Stability QoS Multicast Routing Protocol 221
4 EQMR Protocol

We are considering a full-connected, single source, flat network. The cost is dif-
ferent for different links between the nodes in the network. As mobile multimedia
applications and group communication become more and more popular for wire-
less users, ad hoc networks have to support QoS for multicasting. In EQMR,
the multicast tree is formed incrementally, and source node s is an initiate’s
multicast tree, namely:

Multicast route discovery begins either when a node wishes to join a multicast
group or when it has data to send to a multicast group and does not have a
current route to it.

(1) Source node s constructs a explorer frame p and diffuses it to node s’
neighboring node with limitation, in other words, node s sends a explorer frame
to every neighboring node ¢ with feasible path from node s, frame p records every
intermediate nodes it passes, including source s. Table 1 shows the structure of
a explorer frame packet.

Table 1. Explorer frame packet format

Multicast source address Multicast group ID QoS parameters

Hop-count List of forwarding nodes

(2) If neighboring node ¢ receives the explorer frame from s with constrained
time window, then it transfers this frame to all its neighboring nodes with feasible
path except source node, discarding any frame it receives over the time limit,
and at the same time, node j will remember the originating node of frame p. we
called the originating node the previous node of node j.

(3) Because every explorer frame p moves only along feasible path, and every
intermediate node points to its previously node, any destination node u(u € U)
receives an explorer frame p, and P(s,u) is feasible path (if there are more than
one feasible paths from s to u, then choosing the path with minimum cost), and
the optimal path is found, the node u will discard all frames received over limited
time. At the same time, node u reverse-sends a resource reserves information and
acknowledge reply to source node s, add u into the multicast tree, then u keeps
all other feasible paths recorded by other explorer frame as backup paths.

(4) For any node g receiving resource reserves request, if g not in P(s,u), then
g discards the information, otherwise it reserves the resource and then executes
one or two of the following:

a. If g already is a node of T', then it discards the resource reserves information,
continuously transfers acknowledgement reply.

b. If g is not a node of T', then ¢ transfers the resource reserves information.

(5) Acknowledge reply finds the path to the source node s through the pre-
vious node’s information kept among the intermediate nods, meanwhile, the

222 B. Sun et al.

Source node {1Q)

Pt

)fgq::l:;::QZl
% AN — Tirst amrival ol explorer frame

) [e ¢ _
O‘q._ ./ P \lG) --—-» Re-arrival of explorer frame

“@4-_ T _b@" ---® End of explorer frame
Fig. 1. The QoS multicast explorer frame initiation process

intermediate nodes update their previously node’s information through the source
of the acknowledge reply information.

(6) When resource reserves information or acknowledge reply information
finally reaches source node, the destination nodes are added into the multicast
tree successfully.

Fig. 1 shows the QoS multicast explorer frame initiation process.

In our protocol, the multicast tree’s development process is the asymptotic
process in which all destination nodes are added into the multicast tree. For any
multicast task in networks, every time in the process to construct the multicast
tree, any node in the network originates and sends one explorer frame at most.
Because only optimal paths are recorded in the explorer frame, any explorer
frame which reachs destination node and not be discarded records a feasible path
from source node to destination node. When node s receives resource reservation
request or acknowledge reply information, the node is added into the multicast
tree successfully. Additionally, in protocol, the node s will set a time limit to deal
with the problems, such as discarding information or finding no feasible path.

5 Proofs of Correctness and Complexity Analysis of the
EQMR

5.1 Proof of Correctness

Theorem 1: The feasible path searched by EQMR is loop-free.

Proof: For Vu € U, if p is a explorer frame with destination node w, P(s,)
is a path recorded by the frame, then u will choose P(s,j) plus link (j,u) as
path P(s,u). If there is a loop in P(s,u), then there must be a node a (a£u)
choosing two optimal explorer frames or sending out two explorer frames along
path P(s,j). This contradicts with our assumed that each node can only send
out an explorer frame at most. So P(s,u) is loop-free.

Theorem 2: Whenever during EQMR’s routing searching process, all paths
searched construct a multicast tree T'.

Proof: Every searched path will be identified by the explorer frames. In EQMR,
any nodes can only send out one explorer frame, and receive one or multi-frames.
So all these nodes will construct a searching tree structure, namely multicast
tree T'.

An Entropy-Based Stability QoS Multicast Routing Protocol 223

Theorem 3: If a feasible path exists, it must be searched by EQMR.

Proof: We can prove with counterevidence method. If a feasible path exists, but
EQMR fails to find it, then assign P(i,j) be the first link along the path, but
EQMR fails to find it. Because P(i, j) is a link unfound along the path, and u;
must be one destination node, u; is not in initial state. According to theorem 2,
u; is in state of failure state, then u; must search all out links including P(i, j),
which is contradiction with our assumption. Thus, the theorem holds.

5.2 The Complexity Analysis

We can analyze the complex feature of QoS multicast routing protocol through
the calculation complex of derived multicast tree and needed message. The for-
mer mainly concerns the cost required for the derived multicast tree’s message
exchange. In EQMR, we can calculate path through nodes. For any node in the
networks, if there are k nodes within its transmission range, namely k neighbors,
then the node can receive k explorer frames at most. If it needs a unit time to
deal a frame for a node, then the node will take up k£ time units at most. So at
the worst case, the complex is O(k) for node’s calculation time, in EQMR, every
node sends out an explorer frame at most, so when EQMR searches a multicast
tree, the message complex is O(|N|) at most worst case.

6 Simulation Experiments

6.1 Simulation Model

To effectively evaluate EQMR’s performance, we compare it with other famous
multicast routing protocols MAODV/[10] for cost to control information, average
link-connect time, the success rate to find the path and the feature of data trans-
mission. Our simulation modeled a network of mobile nodes placed randomly
within 1000m x 1000m area[15]. There were no network partitions throughout
the simulation. Each simulation is executed for 600 seconds of simulation time.
Multiple runs with different seed values were conducted for each scenario and
collected data was averaged over those runs. Table 2 lists the simulation param-
eters which are used as default values unless otherwise specified.

6.2 Simulation Results

The results of the simulation are positive with respect to performance. We use
the NS-2 simulator[16] to evaluate the EQMR protocol.

Fig.2 depicts a comparison of cost to control information two protocols. We
can see that EQMR’s cost is smaller than that of MAODV with the increase
of the scale of the network, the extend QoS constraints into MAODYV, the cost
to control information also increases; but for EQMR, with its feasible path and
QoS restrictive diffuse scheme, the growth of cost to control information is lower,
so EQMR will not incur the flooding storm. Due to the scarcity of wireless Ad

224 B. Sun et al.

Table 2. Simulation parameters

Number of nodes 100
Terrain range 1000m x 1000m
Transmission range 250 m

seconds Node’s mobility speed 0-10 m/s

Mobility model Random way point
Channel bandwidth 3 Mbps
Links delay 20-200 ms
Traffic type CBR
Data payload 512 bytes/packet
Node pause time 0-10 seconds
Examined routing protocol MAODV
g 09 - = L0 — =
E 06 ~] Z 06
5 i B It
é 20716 20 30 40 50 60 70 50 50100 & 00 5555 50 169 130 190180185 200

Total of network nodes Delay constraints

Fig. 2. Cost-Comparison with control in- Fig. 3. Comparison of success rate to find

formation the path
1.0 25
E s | | = MaoDv
E 0.8 --——L_,_-_::__.___‘-%‘ 2 20 —— EOMR
2 —— B
Z 0.6 \‘*—‘—-:":_-—_. g 15 /
Z o4l 22 1w /,-—../’
S gz [~ MaoDV E | o R
5 %I = momR S e
0.0 o —— L s L L
01 2 3 4 5 6 7 & 9 10 0 1 2 3 4 5 6 7 8 910
Node s mohility speed (m/s) Noude's mohility speed (m/s)

Fig. 4. Comparison of data transmission Fig.5. Number of route reconstructions
rate against mobility

Hoc network resource, to ad hoc network multicast routing problems, EQMR
has apparent advantages.

Fig.3 depicts a comparison among success rate to find the path through
MAODV, EQMR protocols. With the relaxation of delay constraints, the success
rate becomes larger for MAODV, EQMR protocols, and EQMR, success rate is
still higher than that of MAODYV, which mean EQMR is more suitable for the

An Entropy-Based Stability QoS Multicast Routing Protocol 225

routing choosing under timely data transmission application and dynamic net-
work structure.

Fig. 4 depicts the comparison of data transmission rate under nodes’ changing
movement speed for these three protocols: the faster the node’s movement speed,
the smaller the protocol’s data transmission rate, due to the fact that when
the movement speed increase for the nodes, the network’s topology structure
changes faster. From the Fig. 4 we can see that when the node’s movement
speed increases, EQMR data transmission rate is higher than that of MAODYV.
When the node movement speed is control with a range, the network’s topology
structure will not change fast, the link’s break rate of the multicast tree is low,
make EQMR, QoS constraints assured within most of user’s movement speed
range, so EQMR has a good performance within the network node’s constrained
movement speed scope.

Fig. 5 depicts a comparison of number of route reconstructions against mobil-
ity through MAODV, EQMR protocols. Whenever path error occurs, it needs to
reconstruct, and route number of reconstructions characterize the route’s stabil-
ity to some extent. From Fig. 5 we can see that the times of route reconstructions
for EQMR is superior and more stable.

7 Conclusion

This paper discusses the multicast routing problem with multiple QoS constraints,
which may deal with the delay, bandwidth and cost metrics, and describes a net-
work model for researching the Ad Hoc network QoS multicast routing problem.
It presents an Entropy-based stability QoS Multicast Routing protocol in ad hoc
network (EQMR). The key idea of EQMR protocol is to construct the new metric-
entropy and select the stability path with the help of entropy metric to reduce the
number of route reconstruction so as to provide QoS guarantee in the ad hoc net-
work. In this paper, the proof of correctness and complexity analysis of the EQMR,
are also given. The simulation results show that the proposed approach and pa-
rameters provide an accurate and efficient method of estimating and evaluating
the route stability in dynamic mobile networks.

Acknowledgement

This work is supported by National Natural Science Foundation of China (No.
60172035, 90304018), NSF of Hubei Province of China (No. 2005ABA231).

References

1. Li, L. Y., Li, C. L.: A QoS-guaranteed multicast routing protocol. Computer Com-
munications, Vol. 27, No. 1, (2004) 59-69

2. Li, L. Y., Li, C. L.: A distributed QoS-aware multicast routing protocol. ACTA
INFORMATICA, Vol. 40, No. 3, (2003) 211-233

226

10.

11.

12.

13.

14.

15.

16.

B. Sun et al.

. Li, L. Y., Li, C. L.: A QoS multicast routing protocol for dynamic group topology.

EOROPAR 2003 Parallel Processing, LNCS 2790, Springer Verlag, (2003) 980-988

. Li, C. L., Lu, Z. D., Li, L. Y.: Design and implementation of a distributed com-

puting environment model for object-oriented networks programming. Computer
Communications, Vol. 25, No. 5, (2002) 516-521

. Sun, B.L.,, Li, L.Y.: A QoS Based Multicast Routing Protocol in Ad Hoc Networks.

Chinese Journal of Computers, Vol. 27, No.10, (2004) 1402-1407 (in Chinese)

. Sun, B.L., Yang, Q., et al.: Fuzzy QoS Controllers in Diff-Serv Scheduler using

Genetic Algorithms. Computational Intelligence and Security (CIS 2005), LNAI
3801, Springer-Verlag, (2005) 101-106

. Wang, H.T., Zheng, S.R., Song, L.H.: The Researches on Guarantee Mechanisms

of QoS in Ad Hoc network. Journal of China Institute of Communications, Vol.
23, No. 10, (2002) 114-120 (in Chinese)

. Shen, H., Shi, B.X., Zou, L., et al.: The Location-Based QoS Routing Algorithm

in Ad Hoc Network. Journal of China Institute of Communications, Vol. 24, No. 9,
(2003) 27-34 (in Chinese)

. Chen, S., Nahrstedt, K.: Distributed Quality-of-Service Routing in Ad Hoc Net-

works. IEEE Journal on Selected Areas in Communications, Vol. 17, No. 8, (1999)
1488-1505

Royer, E.M., Perkins, C.E.: Multicast Operation of the Ad Hoc On-Demand Dis-
tance Vector Routing Protocol. ACM MOBICOM, August, (1999) 207-218

Lin, C.-R.: On-demand QoS Routing in Multihop Mobile Networks. In Proc. of
IEEE INFOCOM 2001, (2001) 1735-1744

An,B., Papavassiliou, S.: An Entropy-Based Model for Supporting and Evaluat-
ing Route Stability in Mobile Ad hoc Wireless Networks, IEEE Communications
Letters, Vol. 6, No. 8, (2002) 328-330

Shiozaki, A.: Edge extraction using entropy operator, Comp. Vis., Graphics, Image
Processing, Vol. 36, (1986) 1-9

Bush, S.F., Smith, N.: The Limits of Motion Prediction Support for Ad Hoc Wire-
less Network Performance. The International Conference on Wireless Networks,
Vegas, Nevada, June 27-30, (2005)

Waxman, B.: Routing of Multipoint Connections. IEEE Journal on Selected Areas
in Communications, No. 6, (1988) 1617-1622

The Network Simulator - ns-2,: http://www.isi.edu/nsnam/ns/.

On the Performance of a Hybrid Routing Protocol for
Blueweb: A Bluetooth-Based Multihop Ad Hoc Network

Chih-Min Yu and Chia-Chi Huang

Dept. of Communication Engineering, National Chiao Tung University,
Hsinchu, Taiwan 300, Republic of China
hankycm@ms47.hinet.net, huangcc@cc.nctu.edu.tw

Abstract. Blueweb is a self-organizing Bluetooth-based multihop network with
an efficient scatternet formation algorithm. Blueweb’s scatternet formation uses
two mechanisms. One is the role exchange mechanism in which only slave
nodes serve as relays throughout the whole scatternet. The other one is the
return connection mechanism in which we convert the scatternet from a tree-
shaped to a web-shaped topology. In this paper, a modified source routing pro-
tocol is proposed for Blueweb in which we combine the proactive method
locally with the reactive method globally to discover the optimal path for packet
transmission. In addition, we use computer simulations to evaluate the routing
performance of Blueweb with a uniform end-to-end traffic model. Our simula-
tion results show that Blueweb can achieve good system performance with the
modified source routing protocol.

1 Introduction

Bluetooth is emerging as a potential technology for short-range wireless ad hoc net-
work [1]. This technology enables the design of low power, low cost, and short-range
radio [2] that can be embedded in existing portable devices. Initially, Bluetooth tech-
nology is designed as a cable replacement solution among portable and fixed elec-
tronic devices. Today, people tend to use a number of mobile devices such as cellular
phones, PDA’s, digital cameras, laptop computers, and so on. Consequently, there
exists a strong demand for connecting these devices into networks. As a result, Blue-
tooth becomes an ideal candidate for the construction of ad hoc personal area net-
works.

A Bluetooth-based multihop ad hoc network brings some challenges. Besides the
methods of device discovery for a node to participate in multiple piconets, the scatter-
net formation algorithm and the routing protocol are two major technical issues. The
scatternet formation algorithm [3]-[6] deals with the problem of how to construct
individual piconets and connect them together into a scatternet. On the other hand, the
routing protocol deals with the problem of delivering messages efficiently in such a
scatternet.

Until now, a number of routing protocols have been proposed for Bluetooth multi-
hop networks [6]-[9]. In the proactive approach, such as in the Bluetree [6], each
master node maintains a routing table. The main problem here is the overhead in rout-
ing information exchanges, although little delay is involved in determining a route. In

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 227236, 2006.
© Springer-Verlag Berlin Heidelberg 2006

228 C.-M. Yu and C.-C. Huang

the reactive approach [7][8], a flooding method is usually used to search for the opti-
mal path from a source node to a destination node and this will incur a certain amount
of delay. However, the reactive approach provides better network scalability. In [9],
the performance of a hybrid routing protocol is presented for Bluetooth scatternets
and it consumes small amount of storage, low routing overhead, and low route dis-
covery latency. Nevertheless, the paper did not try to combine this hybrid routing
protocol with a scatternet formation algorithm for Bluetooth scatternet to achieve its
excellent routing performance.

In this paper, a modified source routing protocol for Blueweb [10] is proposed to
provide the shortest path routing among nodes. The routing information is collected at
each master node during the scatternet formation. This is a hybrid routing protocol in
which we use the proactive approach locally and the reactive approach globally to
discover the optimal path for source routing. In addition, a uniform end-to-end traffic
model [11] is used to simulate and demonstrate the routing performance of Blueweb.

The rest of this paper is organized as follows: In Section 2, we describe the scatter-
net formation algorithm of Blueweb. In Section 3, a modified source routing protocol
for the Blueweb architecture is proposed. In Section 4, computer simulations are used
to evaluate the system performance of Blueweb. Finally, a conclusion is stated in
Section 5.

2 Blueweb Scatternet Formation Algorithm

The scatternet formation of Blueweb is executed in two phases. In the first phase, a
coordinator called the route master initiates the scatternet formation procedure by
paging up to 7 neighboring slave nodes, and forms the first piconet. The slave nodes
then switch their roles to masters (called S/M nodes). Each S/M node only pages one
additional neighboring slave node. After each S/M node connects to its slave, a role
exchange mechanism is executed to make the S/M node function as a relay and make
the slave node function as a master. Then the new master node begins to page up to 7
neighboring slave nodes. This procedure is iterated until the leaf nodes of the tree are
reached and a tree-shaped topology is created.

In the second phase, a return connection mechanism is used to generate more con-
nection paths among nodes and the tree-shaped topology is converted into a web-
shaped topology. Fig. 1 illustrates a simple Blueweb topology example.

3 Blueweb Routing Protocol

In the Blueweb scatternet formation period, some routing information can be ex-
changed among masters. In the first phase of scatternet formation, each master keeps a
record of its directly connected upstream master. As a result, a query path can be easily
formed by connecting all the masters in the upstream direction to the route master.

In the second phase of scatternet formation, each returning master will pass its own
piconet information together with a list of its directly connected masters to the route
master via its upstream masters. At the same time, each returning master including the
route master will pass its own piconet information to its directly connected masters.

On the Performance of a Hybrid Routing Protocol for Blueweb 229

Here, we define the directly connected neighboring piconets within its neighboring N
tiers of a master as the N-tier piconets of the master. The associated N-tier piconet
information will be stored in the master’s N-tier piconet table. In addition, those mas-
ters affected by the return connection mechanism will update their N-tier piconet table
via relays. As a result, each master will keep its own piconet information and its
N-tier piconet information. This information is used locally when a node inquires the
master for a path to deliver packets.

After finishing the second phase of scatternet formation, the route master will have
the routing information of all nodes and store it in a piconet list table. This table con-
tains a list of all the masters and their associated slaves. Meanwhile, the route master
will compute the shortest path for any two-piconet pair using the all-pairs shortest
path algorithm [12]. This shortest path information is stored in a scatternet routing
table and is used when any node inquires the route master for routing information to
deliver packets.

In order to implement this routing protocol, a piconet-layer addressing scheme can
be used. This scheme combines the Bluetooth active member address (AM_ADDR)
with piconet identification (PID) to address each Bluetooth device throughout the
whole scatternet. In a piconet, each slave is assigned a 3-bit AM_ADDR by its mas-
ter. In addition, the PID is used to distinguish different piconets in the scatternet.

The PID’s are assigned on a layer-by-layer basis in the downstream direction dur-
ing the first phase of scatternet formation. For example, the route master is the only
layer 1 node and uses 1 as its PID. Its first attached master is assigned 1.1 as its PID,
the second attached master is assigned 1.2 as its PID, and so on. In this way, a layer 3
master will be assigned a PID of I.ay.a;. We refer this addressing method as a pi-
conet-layer addressing scheme. This addressing scheme can be applied to Blueweb
architecture directly. An example of this scatternet addressing scheme for Blueweb is
shown in Fig. 1.

Based on the routing information collected by all the masters including the route
master, a modified source routing protocol is developed. This is a hybrid routing pro-
tocol and operates in two phases. In the first phase, an optimal path from source to
destination is searched. In the second phase, the optimal path is used to transmit the
packets.

Besides, a packet format is also designed for implementing our routing protocol.
This packet format is similar to RVM (Routing Vector Method) [7] and is shown in
Fig. 2. The SRC field contains the address of the source node according to the pi-
conet-layer addressing scheme. The DST field contains either the 48-bit Bluetooth
address for a query packet or the address of the destination node for a reply packet or
a data packet. The PATH field contains either the address of the route master for a
query packet or a sequence of PID’s according to the piconet-layer addressing scheme
for a reply packet or a data packet.

For example in Fig. 1, when the node S with address 1.1.1.1 sends a packet to the
destination node D, the node S will query its affiliated master with a query packet for
routing information. If the master node has the node D information in its N-tier pi-
conet table, the master will reply the routing path to the slave node directly. Then, the
source node will embed the routing path in the PATH field and transmit the packet.
Otherwise, the queried master 1.1.1 will forward this query message directly to the

230 C.-M. Yu and C.-C. Huang

Route master

Master
Slave/Slave
node as relay
Slave

Connection formed in the
return connection process

Fig. 1. An example of a connected Blueweb topology

Layer 2
< — >
< header > Layer 2 payload
SRC DST PATH Layer 3 payload

<« Layer 3 header —»

Fig. 2. Blueweb packet format

route master 1 via its upstream master 1.1. In this scenario, the header fields for a
sequence of query packets are shown in Table 1.

When the route master receives the query packet, it will first look up in its piconet
list table for the associated piconet addresses and then look up in the scatternet rout-
ing table for the optimal path. The route master then sends back the optimal routing
path to the source node via the downstream master nodes according to the piconet
address of SRC field. The optimal path contains a sequence of PID’s in the PATH
field. The header fields for a sequence of reply packets are shown in Table 2.

In the packet transmission phase, when a master receives a packet from another
node, it strips off its PID in the PATH field and forwards this packet to the next pi-
conet according to the next PID in the PATH field. In this way, the packet will finally
reach the destination node D. The header fields for a sequence of data packets are
listed in Table 3. Overall, the detailed Blueweb routing algorithm is described by the
pseudo code listed in Fig. 3.

Table 1. Header fields for a sequence of query packets

Query packet sequence SRC DST PATH
Node S queries its master 1.1.1.1 D’s Bluetooth address 1
Queried master forwards to 1.1.1.1 D’s Bluetooth address 1
its upstream master

Upstream master forwards to 1.1.1.1 D’s Bluetooth address 1
the route master

On the Performance of a Hybrid Routing Protocol for Blueweb 231

Table 2. Header fields for a sequence of reply packets

Reply packet sequence SRC DST PATH

Route master sends routing path to| 1.1.1.1 1.3.0.2 1.1.1;1.2;1.3
downstream master

Downstream master passes this informa-| 1.1.1.1 1.3.0.2 1.1.1;1.2;1.3
tion to the queried master

The queried master passes this informa-| 1.1.1.1 1.3.0.2 1.1.1;1.2;1.3
tion to the query node S

Table 3. Header fields for a sequence of data packets

Reply transmission sequence SRC DST PATH

Node S sends packet to destination node D 1.1.1.1 1.3.0.2| 1.1.1;1.2;1.3

The master of node S forwards to the next 1.1.1.1 1.3.02] 1.2;1.3
piconet

The immediate master forwards this data 1.1.1.1} 1.3.02| 1.3
packet to the master node of destination

The packet reaches the destination node D 1.1.1.1] 1.3.02] O

4

Routing algorithm () {
If the source node is a master
It checks whether it has its destination's routing information
If this master has destination's routing information
The source node transmits its packets directly
Else it forwards the query message to the route master
The route master replies the routing path to the source node
The source node transmits its packets by source routing
End
Elseif this node is a relay or slave
The source node queries its immediate upstream master
If this master has its destination's routing information
It replies the routing path to the source node
The source node transmits its packets using the routing path
Else it forwards the query message to the route master and
The route master replies the routing path to the source node
The source node transmits its packets using the routing path
End
End

Fig. 3. Blueweb routing algorithm

System Performance Simulation

In our simulation scenario, the scatternet topologies simulated were constructed by
using the scatternet formation algorithms as described in Section 2. Overall, we simu-

lated ten topologies each with 20, 30, and 40 nodes randomly distributed in the same
geographical area.

232 C.-M. Yu and C.-C. Huang

For data transmission, packets were generated in each node according to a Poisson
arrival pattern. Here, we assumed only a single packet was sent in each routing ses-
sion. Each data packet was assumed to last five time slots. Each route query packet
and each route reply packet were assumed to last one time slot. Each node was pro-
vided a FIFO queue with a length of 80 packets. The source-destination pair in each
routing session was selected randomly and packets were forwarded by using the
Blueweb routing protocol. To evaluate the system performance, we calculated some
selected performance metrics over twenty seconds of simulation time for each topol-
ogy. Table 4 summarized the simulation parameters.

Table 4. The simulation parameters

Simulation time (seconds) 20

Number of nodes 20, 30, 40

Traffic pattern Poisson arrival
Scheduling scheme Round robin

Routing protocols Modified source routing
FIFO buffer size 80 packets
Source-destination pair Randomly selected
Query or reply packet 1 time slot

Data packet (for each routing session) 5 time slots

4.1 System Performance

In this section, several performance metrics are evaluated by computer simulation to
demonstrate the system performance of the Blueweb scatternet. These performance
metrics include average packet throughput, average packet delay, packet dropping
probability, and so on.

4.1.1 Average Packet Throughput

The average packet throughput is defined as the ratio of the total number of success-
fully finished routing packets over the total simulation time in second. This parameter
reflects the system capacity of a scatternet.

The simulation results for average packet throughput of Blueweb are presented in
Fig. 4. The average packet throughput increases continuously as the routing packet
generation rate increases. This is because the modified source routing protocol to-
gether with the web-shaped architecture greatly enhances the system performance.
Nevertheless, the throughput performance will finally become saturated. Fig. 4 also
shows the performance of all the two-tier cases achieve better throughput perform-
ance than the corresponding one-tier simulated cases of Blueweb.

4.1.2 Average Packet Delay

The average packet delay metric is defined as the average packet transmission time
from the first transmitted bit at the source node to the last received bit at the destina-
tion node for every routing packet. In addition, our simulation adopts the Poisson
arrival traffic pattern, the round robin scheduling algorithm, and the modified source
routing protocol to evaluate this performance metric in a uniform traffic model.

On the Performance of a Hybrid Routing Protocol for Blueweb 233

400 — 1

Throughput performance Delay performance
20 nodes first tier —+—— 20 nodes firsttier
——<—— 30 nodes first tier 3000 | —<—— 30 nodes firsttier
——A—— 40 nodes first tier —A— 40nodesfrsttier
——+—— 20 nodes second tier o —+—— 20 nodes second tier
30 nodes second tier S ——— 30 nodes second fier
40 nodes second tier © 9 || ——&—— 40nodes second tier

2000 —

g
<
E]
g
s
)
g
g
2

Average packet throughput (packets/sec)

1000 —

0 4 8 12 16 0 4 8 12 16
Packet generation rate (packets/node/sec) Packet generation rate (packets/sec)

Fig. 4. Average packet throughput Fig. 5. Average packet delay

Fig. 5 shows the average packet delay performance of Blueweb. The average
packet delay increases as the packet generation rate increases. In addition, the 20-
node cases generate the smallest average delay since it produces the smallest average
path length out of all simulated cases. Clearly, the two-tier cases achieve better delay
performance than the one-tier cases of Blueweb. We observed that the delay perform-
ance deteriorated very quickly when the traffic load begins to saturate the network.
This happens when the route master and other masters eventually become bottlenecks
and cause network saturation.

Due to the fact that a smaller packet incurs larger system overhead, the average
packet delay in Fig. 5 can be reduced further when more than one packet are transmit-
ted in each packet.

4.1.3 Packet Dropping Probability

A packet dropping probability metric is used to evaluate the effect of scatternet con-
gestion caused by the buffer overflow phenomenon in some nodes. When the FIFO
buffer in a node overflows, the affected routing packets including both the newly
generated and currently active routing packets were dropped. The packet dropping
probability is defined as the ratio of the total number of dropped packets over the total
number of generated packets in all nodes.

Fig. 6 shows the packet dropping probability of Blueweb. Clearly, the 20-node
cases achieve the best performance on the packet dropping probability. In addition,
the two-tier cases also have better dropping probability performance than the one-tier
cases. As observed from our simulation, the route master and all other masters will
start to drop packets when network saturation happened.

4.1.4 Average Packet Query Time

The average route query time is defined as the average transmission time of query
packet to discover a path from either the piconet master or the route master. The
query time to the piconet master is defined as the local query time, and the query time
to the route master is defined as the global query time.

234 C.-M. Yu and C.-C. Huang

Fig. 7 shows the average route query time performance (including both the local
and global query time) represents about two third of the overall average packet delay
time. In addition, the query performance of the two-tier cases is reduced significantly
from the one-tier cases. Because the local query with a larger local routing table effec-
tively shares the working load of global query.

2500 —

Query time performance
20 nodes first tier
—O—— 30nodes first ier
—A— 40 nodes firstier
2000 —|| —+—— 20nodes second tier
——0—— 30 nodes second fier
|| —~— 40nodes second ter

06 — Packet dropping performance
——+—— 20 nodes first tier

——<—— 30 nodes first tier

——A—— 40 nodes first tier

7 ——+—— 20 nodes second tier

——<—— 30 nodes second tier

40 nodes second tier

0.4 —

Pakcet dropping probability
Average packet query time (slots)

02 —|

0 4 8 12 16 0 4 8 12 16
Packet generation rate (packets/node/sec) Packet generation rate (packetsinode/sec)

Fig. 6. Packet dropping probability Fig. 7. Average packet query time

4.1.5 Probability of Querying the Route Master

The probability of querying the route master is defined as the ratio of the total number
of queries to the route master over the total number of queries (including both the
local and global queries). Fig. 8 shows the two-tier approach can reduce 20% in the
probability of querying the route master as compared with one-tier approach. We also
observed that most of the path queries are done at the route master instead of local
masters in the one-tier cases. This phenomenon may cause the route master to saturate
easily and become the bottleneck of packet transmission in Blueweb. Nevertheless,

Query probabilly
08— ——+—" 20 nodes fstter
——©—— 30 nodes first tier
——A—— 40 nodes first tier
— 3 20nodes second tler

——©—— 30n0des second tier
——4&—— 40 nodes second tier

Probability of querying route master

02 —
| | | |

0 4 8 12 16
Packet generation rate (packets/node/sec)

Fig. 8. Probability of querying the route master

On the Performance of a Hybrid Routing Protocol for Blueweb 235

Fig. 7 and Fig. 8 show that the two-tier approach of the modified source routing pro-
tocol can improve the routing performance significantly.

5 Conclusions

In this paper, a modified source routing protocol is proposed for Blueweb. During the
scatternet formation process, the routing information is exchanged among masters and
the routing tables needed for the modified source routing protocol is established at the
same time. Using computer simulations, we simulate and demonstrate the system
performance of Blueweb with a uniform end-to-end traffic model. Our simulation
results show that Blueweb can achieve good system performance with this modified
source routing protocol.

In addition, our modified source routing protocol provides the following features.
First, this is a hybrid routing protocol that takes the advantages of both proactive and
reactive routing protocols. Second, the query-based source routing protocol generates
low overhead and small route query latency that is especially useful in the transmis-
sion of large batch of data packets. Third, the size of the piconet routing table of each

master can be increased to include its N-tier (N 2 2) piconet information when the size
of scatternet grows up. This property makes the scatternet easily expandable into a
large network.

References

1. http://www.bluetooth.com. Specification of the Bluetooth System, Volume 1, Core. Ver-
sion 1.1, February 22 2001.

2. Johansson, P., Johansson, N., Korner, U.; Elg, J.and Svennarp, G, “Short range radio based
ad hoc networking: performance and properties,” IEEE International Conference on Com-
munications, vol.3, pp. 1414-1420, 1999.

3. Zhifang Wang, Thomas, R.J., and Haas, Z., “Bluenet — A New Scatternet Formation
Scheme,” Proceedings of the 35th Annual Hawaii International Conference on System Sci-
ences, pp. 779-787, 2001.

4. Chiara Petrioli, Stefano Basagni, and Imrich Chlamtac, “Configuring BlueStars: Multihop
Scatternet Formation for Bluetooth Networks”, IEEE Transaction on Computers, vol. 52,
no.6, pp.779-790, June 2003.

5. Yong Liu, Myung J. Lee, and Tarek N. Saadawi, “A Bluetooth Scatternet-Route Structure
for Multihop Ad Hoc Networks”, IEEE Journal on Selected Areas in Communications,
vol. 21, no. 2, pp. 229-239, Feb. 2003.

6. Zaruba, G.V., Basagni, S.and Chlamtac, 1. “Bluetrees-scatternet formation to enable Blue-
tooth-based ad hoc networks,” IEEE International Conference on Communications, vol.1,
pp- 273 =277, June 2001.

7. P. Bhagwat and A. Segall, “A Routing Vector Method (RVM) for Routing in Bluetooth
Scatternets,” IEEE International Workshop on Mobile Multimedia Communications, pp.
375-379, 1999.

8. Prabhu, B.J.and Chockalingam, A. “A Routing Protocol and Energy Efficient Techniques
in Bluetooth Scatternets,” IEEE International Conference on Communications, 2002. ICC
2002. pp. 3336 —3340.

236 C.-M. Yu and C.-C. Huang

9. R. Kapoor and M. Gerla, “A zone routing protocol for Bluetooth scatternets”, IEEE Wire-
less Communications and Networking, vol.3, pp. 1459-1464, March 2003.

10. C. M. Yu and C. C. Huang, “Introduction to Blueweb: A New Bluetooth-based Multihop
Ad Hoc Network,” International Conference on Wireless Network, June 2004.

11. D. Miorandi, A. Trainito, and A. Zanella, “On efficient topologies for Bluetooth scatter-
nets,” in Lecture Notes in Computer Science, vol. 2775, Proc. 8th IFIP TC6 Int. Conf.
(PWC 2003), Sept. 2003, pp. 726-740.

12. E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structures in C++, Com-
puter Science Press, New York, 1995.

An Adaptive and Scalable Resource Advertisement
and Discovery Strategy for Mobile Ad Hoc Networks

Donggeon Noh' and Heonshik Shin?

! Seoul National Univ., School of Computer Science and Engineering, 301-551,
151-742 Kwanak-gu, Sillim-dong, Seoul, Korea
dgnoh@mobisys.snu.ac.kr
% Seoul National Univ., School of Computer Science and Engineering, 301-502,
151-742 Kwanak-gu, Sillim-dong, Seoul, Korea
shinhs@snu.ac.kr

Abstract. Effective resource advertisement and discovery (Ad/D) are particu-
larly important in mobile ad hoc networks (MANETsS), due to network dynamics
and resource constraints of wireless nodes. In this paper, we propose an adap-
tive and scalable resource Ad/D technique for MANETs. Based on a variable
zone size, it combines push-based Ad/D with a pull-based Ad/D that uses a
modified bordercasting resolution protocol. The scheme avoids redundant
flooding and reduces system overhead by piggybacking resource information on
the routing-layer packet, and adapts locally to changing conditions, such as mo-
bility and popularity levels, in a MANET. Simulation results verify that our
scheme can track a changing network environment while reducing the resource
Ad/D network overheads, thereby saving resources, decreasing latency and be-
ing scalable to large MANETSs.

1 Introduction

Rapid advances in network application technology and its pervasive influence over our
society demand an efficient way to locate resources' over the network. Particularly, in
self-configurable networks which are to be easily deployed and reconfigured automati-
cally when extended with new hardware and/or software capabilities, it is necessary to
efficiently execute the advertisement and discovery (Ad/D) of the network resources.
Mobile ad hoc networks (MANETS) are a special form of such self-configurable net-
works with their own peculiarities, such as network dynamics, resource constraints at
the constituent nodes, and no centralized mechanisms for managing the network. Be-
cause of these characteristics, the development of resource discovery strategies for
MANETs poses interesting challenges:

1. Enabling resource-constrained, wireless devices to discover resources dynamically,
while minimizing both the control traffic and latency.

2. Enabling resource discovery in large-scale MANETS.

3. Enabling lightweight resource discovery for resource-poor constituent nodes.

! The resources of a network are made up of many kinds of service and information, including
peripherals, computation, storage, and the network itself.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 237 -249, 2006.
© Springer-Verlag Berlin Heidelberg 2006

238 D. Noh and H. Shin

To meet these requirements, we present RADIZ (resource Ad/D protocol with inde-
pendent zone), which is a directory-less hybrid adaptive resource Ad/D strategy
integrated with a network-layer protocol. RADIZ provides a zone size determination
algorithm for hybrid Ad/D, which considers the network characteristic (i.e. mobility and
call rate) and the popularity of the resource. In addition, it offers a lightweight imple-
mentation of resource Ad/D by using existing routing control packets. Moreover, it
provides an efficient resource discovery mechanism for on-demand (i.e. pull-based)
resource finding. These characteristics allow RADIZ to support Ad/D with a relatively
low overhead and latency, making it applicable to large-scale MANETs (i.e. those with
at least 100 nodes), unlike other directory-less Ad/D schemes.

The rest of this paper is organized as follows. The next section contains an analysis
of existing resource Ad/D strategies for MANET. Section 3 describes the characteris-
tics of our adaptive and scalable resource Ad/D strategy. We then give an overview of
the simulation environment and present an evaluation of our strategy in Section 4.
Finally, conclusions are drawn and future works are discussed in Section 5.

2 Resource Ad/D for MANETsSs

In a MANET scenario, it can be argued that the directory-less resource Ad/D model is
more suitable than the directory model, because it can be performed in a completely
distributed fashion and there is no need for any infrastructure. In the directory-less
model for MANETs, users actively send out resource request messages and servers
listen for these messages at a well-determined network interface and port. Users can
also learn about the available resources in a passive way by listening for resource
advertisements that are generated by the servers.’

In several existing directory-less resource Ad/D implementations, resource Ad/D
models are applied at the middleware layer [6], [7]. These models have to be sup-
ported by underlying ad hoc routing protocols. Both the Ad/D protocol and the routing
protocol can invoke redundant flooding of the network, and this inevitably incurs a
large overhead. Additionally, these are rather heavyweight solutions, because they
must be implemented as an independent layer. Both of these problems can be a seri-
ous drawback in MANETs, in which there is often a shortage of network and comput-
ing power.

A consideration of these problems motivates the integration of resource Ad/D proto-
cols with routing protocols. A resource Ad/D protocol has already been integrated with a
proactive routing protocol [8] and also with a reactive routing protocol [1], [2], [3].
More recently, two strategies, RUBI [5] and HAID [4], have been designed by integrat-
ing a hybrid resource Ad/D protocol with a simple routing protocol, and this approach
shows improved performance. However, the size of the push-based resource zone is
simply determined by the transmission range of the node in RUBI, or by the popularity
of the resource provider node in HAID. Furthermore, neither Oh et al [4] nor Harbird et
al [5] simulate their schemes in large-scale MANETS.

2 We refer to these methods of resource Ad/D as the pull-based Ad/D model and the push-based
Ad/D model respectively. The hybrid resource Ad/D model is a hybrid of these two models.

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 239

We conclude that existing directory-less resource Ad/D protocols have shortcom-
ings: in particular, a poor ability to adapt to dynamic network changes (e.g. mobility
and call rate level in the network, popularity level of the resource), low efficiency of
resource discovery algorithms, and dubious scalability.

3 RADIZ

RADIZ is an adaptive hybrid resource Ad/D protocol integrated with the IZR routing
protocol, as summarized in Figure 1. Integration with the routing protocol is intended
to result in a lightweight scheme and to reduce the amount of unnecessary network
flooding. The hybrid resource model is used to provide efficient advertisement and
discovery. But, RADIZ also allows nodes to adapt their own zone radii dynamically
and automatically as the network environment changes. And these changing zone
radii are used to provide an efficient resource query mechanism.

Network Characteristic Periodic Adaptation Characteristic of
(Mobility, Call Rate) for Optimal Zone Size Resource Provider
(Popularity, Constraints)

Inter Zone

Hybrid Resource Ad/D

Resource Ad/D Integrated with Routing Resource Ad/D Integrated with Routing

Push based Resource Ad/D Routing and Pull based Resource Ad/D
Resource Infomation
" Table
Proactive Routing Reactive Routing

_— ==

Efficient C icati i for Ad/D and Routing

‘ Reliable Broadcast

‘ Efficient Bordercast

Fig. 1. Overview of the RAIDZ strategy

3.1 Hybrid Resource Ad/D Strategy Integrated with a Routing Protocol

Redundant flooding operations by middleware-oriented resource Ad/D strategies can
expose serious deficiencies in MANET environments, which are by nature poor in
resources. By piggybacking the resource information on the routing control packet,
we can implement a lightweight Ad/D scheme which can obtain the resource and
routing information for an expected resource provider simultaneously.

Our RADIZ scheme also uses a hybrid resource model, which allows each node to
perform push-based Ad/D in its zone, and pull-based Ad/D elsewhere. This is made
possible by integrating the resource Ad/D process with a hybrid routing protocol.
Previous studies of routing [10], [11] have shown that a hybrid routing protocol is

240 D. Noh and H. Shin

more efficient than simple proactive or reactive protocols, in the context of a MANET.
Therefore, by integrating the resource Ad/D protocol with an effective hybrid routing
protocol (i.e. IZR), we expect to achieve a more efficient resource Ad/D model. We
will introduce an extended version of the JARP (intra routing protocol) packet, which
carries resource information piggyback, and call it the JAIP (intra integrated protocol)
packet. And the IERP (inter routing protocol) packet is likewise expanded to become
the /EIP (inter integrated protocol) packet. The architecture of the framework for
integrating hybrid Ad/D and routing is provided in Figure 2.

‘ Applications (Client, Storage, Access Point, etc.) D

Data Send Data Receive Resource Ad/D Resource Ad/D
Request

Result

‘ Routing Module Resource Ad/D Module
Request

IARP IARP Resource Ad/D | | Resource Ad/D
IERP IERP Information Information

Integration Module of Routing and Resource Ad/D
(Includes Packet Processing Module)

(IAIP, IEIP) (IAIP, IEIP)

Integrated Control Packet l T Integrated Control Packet

‘ Link Layer

Fig. 2. Integrated framework for a hybrid resource Ad/D

3.2 Zone Radius Determination

In RADIZ, each node determines the size of its own zone independently, while taking
into account the state of the network (e.g. call rate, mobility). Resource providers
must also consider popularity (e.g. the number of resource invocations). For example,
if the network has a high call rate and low mobility, most nodes should have relatively
large zone radii, in order to perform effective routing and resource Ad/D with mini-
mum impact on the network overhead and latency. Additionally, the provider of a
more popular resource operates more efficiently with a larger zone.

Since RADIZ integrates the resource Ad/D protocol with the routing protocol, the
zone of a resource provider node is now the push-based Ad/D zone as well as the
proactive routing zone. But the zone of a resource user node is only the proactive
routing zone, and does not include push-based Ad/D since a user has nothing to adver-
tise. Nevertheless, the zone of a user node is still significant in the resource Ad/D
process, because it determines the base from which we can perform effective on-
demand resource discovery, as explained in Section 3.4.

We determine zone sizes using a modified version of the IZR algorithm, which is a
hybrid of the Min_Searching and Adaptive_Traffic_Estimation (ATE) algorithms [12],
tailored to integrated Ad/D. The proactive traffic of a node is a nondecreasing function
of the zone radius, and the reactive traffic is a nonincreasing function of the radius [12].

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 241

Optimal

. Next Radius Margin determined by & Next Radius .
é Radius arg‘m €l efmlne‘ y o Marg‘m determme‘d by e
© [| [} |
= IEIP IAIP [— [—
T | DOMINATES DOMINATES R+1 ! — R+l ! —_—
8 TOTAL
3 AP
3
® R R
g ! |
b= | |
= i !
|
R-1 | R-1 |
| | | |
I | I |
IEIP | | | |
I | I |
1 2 3 4 5 Radius Mives/ & Mives* & MR) Poal & Pog +& Prew

Fig. 3. A hybrid zone determination algorithm of RADIZ: (a) Min_Searching, (b) Adap-
tive_Traffic_Estimation (ATE), and (c) Additional part of ATE for resource provider

Hence, the total control traffic, which is a sum of these two components, is a convex
function. Figure 3(a) shows how the IAIP, IEIP and total control traffic vary with zone
radius. In this figure, the total control traffic is a minimum when the zone radius is 3.
At each node, the Min_Searching algorithm can find the minimum point on the inte-
grated control traffic curve by repeated refinement of the zone size in increments and
decrements of one hop. More specifically, each node estimates the integrated control
packet traffic at each time step. If the amount of traffic has fallen, the next change to
the radius is in the same sense; if the traffic has increased, the radius is changed in the
opposite directions.

Once the lowest point on the control traffic curve has been found, the ratio of the
IEIP component to the JAIP component at the optimal zone radius is set to I,
which is periodically used by the ATE algorithm to tune the zone radius. Let /{R) be
the ratio of the /EIP traffic to the IAIP traffic, measured at a network node during an
estimation interval during which the zone radius is R. Simplistically, we can now
compare /(R) with I, to determine whether the zone radius should shrink or grow.
However, since frequent changes of zone size can make the network unstable, a de-
layed triggering mechanism is introduced by the use of a multiplicative hysteresis
term, J. As illustrated in Figure 3(b), if I(R) > [, * J, then the radius is increased by
one hop; if I'(R) < I'y,.s/ 0, the radius is decreased by one hop.

In the case of a resource provider, the popularity of the resource as well as the net-
work state must be considered by the ATE algorithm. For this reason, a resource pro-
vider periodically monitors the frequency of invocation of its resource. As shown in
Figure 3(c) if P,., (the invocation frequency during the current period) is higher than
P, (the invocation frequency during the last period), then the radius is increased by
one hop, and vice versa. A delayed triggering mechanism is also used here to prevent
frequent changes of zone size. The multiplicative hysteresis term is &.

With this hybrid algorithm, each node adapts to dynamic changes in the network
environment with little computational overhead.

3.3 Push-Based Resource Ad/D

In RADIZ, each resource provider performs push-based resource advertisement in its
dynamic zone. The provider periodically broadcasts an advertisement message to all
nodes within its zone, and resource users within that zone learn passively about the
resource by receiving these advertisements.

242 D. Noh and H. Shin

Resource Information IARP

Resource
Type

Resource
Lifetime

Additional information

(Functional Interface, QoS Level) Ete

Originator Address Destination Address TTL
(Resource Provider Address) (Broadcast)

RPM

Fig. 4. RPM (resource publicity message) format

In order to implement integrated push-based resource advertisement, we designed
the JAIP packet format. We will refer to an IAIP packet used in the Ad/D mechanism
as an RPM (resource publicity message). Figure 4 shows that an RPM is composed of
two parts. One is the routing control part used by the JARP. The other is the resource
information part which includes the resource type, the resource lifetime and additional
information about the resource, such as its functional interface and QoS (quality of
service) level. This resource information part can be modified as required. If the target
service architecture is service-oriented and based on web services, then WSDL (web
services description language) can be used for resource description. In this paper, we
focus on the Ad/D architecture, and not on the device-level or service-level interop-
erability. Therefore, we use a simple resource information description.

The resource type is predefined across all the nodes and the resource lifetime field
is used to support the renewal cycle of the resource provider. If a node which receives
an RPM does not receive it again during the lifetime of that resource, the node invali-
dates that resource information. This allows the network to accommodate quickly to
the disappearance of a resource provider. The additional information field includes
the functional interface and dynamic QoS attributes of the resource. The QoS specifi-
cation includes: (i) scalability information, which specifies the capacity of the
resource to service additional requests over a specified period of time; (ii) the per-
formance and capacity of the host, including its available energy, computation power,
and network bandwidth. This specification of QoS parameters is optional but, for each
parameter, the following attributes must be specified: name, value and expiration. The
TTL (time to live) field is initially set to its own zone radius.

3.4 On-Demand Pull-Based Resource Discovery

RADIZ uses the BRP (bordercast resolution protocol) [9] as a pull-based resource
discovery method. It provides efficient mechanisms for sending a query to peripheral
nodes’, and for routing the query outward from the source beyond its own zone. Addi-
tionally, it provides a query detection mechanism to prevent query overlap.

With independent zone radii, the zone of one node may be completely included in
the zone of another. In this case, the first node cannot explore any new zone when it
receives a query from the second node. Processing such a query wastes the resources
of the first node. BRP avoids this situation by assigning query processing to nodes
which are able to explore new zones. Figure 5 illustrates the example of bordercasting
by a node with a zone radius of 3. To start bordercasting, the BRP constructs a

3 A peripheral node is a node whose minimum distance to the source node is exactly equal to
the zone radius.

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 243

o) Dy O Peripheral Node
M Rebordercasting Node
@ Forwarding Node
Node ID (Radius)

Source of Query (3)

Fig. 5. Example of bordercasting using BRP

bor-dercast tree that connects the source node to all peripheral nodes. Then it chooses
rebordercasting nodes on the basis of the zone radius of each node and the query de-
tection mechanism. In Figure 5, Nodes B and D are chosen as rebordercasting nodes,
since they are the closest to the source node of all the nodes which are able to access
the outside of the zone and which have not previously received the current query. The
resource user unicasts a resource query message to these rebordercasting nodes.
Lastly, the rebordercasting node executes query processing, and if it still has no in-
formation about the target resource, it performs bordercasting again.

Resource Information IERP REQ
Resource|Resource Additional information Resource Originator Address Destination Address TTL
Type Lifetime | (Functional Interface, QoS) Addr (Resource Requester Addr.) (Bordercast)

RQM

Fig. 6. Pull-based ROM (resource query message) format

In order to achieve pull-based resource discovery using bordercasting, we need an
ROM (resource query message) and an RRM (resource reply message), which add
resource information to the general /ERP request packet (IERP_REQ) and to the
1IERP reply packet (IERP_REP) respectively. The format of pull-based ROM message
is shown in Figure 6. The lifetime and resource address fields of the RQOM are initially
empty and are used temporarily before an RRM is generated. The resource type and
additional information fields should initially be filled with identification of the re-
source information that the user wants to find. The destination address field of the
RQOM contains the address of a rebordercast node supplied by the source node.

The RRM has similar format to the ROM. It contains the resource information
which the ROM has found. After an RRM has been created by a node which has the
necessary information, it is sent to the node from which the ROM was received, as
part of a backtracking process that leads back to the node that initiated bordercasting.

The query processing algorithm is shown in Figure 7. When a rebordercasting node
receives a resource query, it performs the query processing algorithm. If a node has
the information about the resource provider which matches the RQM, and the routing
information for that resource provider node, that node creates an RRM that contains

244 D. Noh and H. Shin

Query Processing (RQM)

1 if Check RA (RQM) == NULL then /IRA (Resource Address)
2 if Have Resource Info (RT(RQM)) then //RT (Resource Type)
3 if Have Route Info (RA(RQM)) then

4 Make RRM (Resource Info, Route Info)

5 Reply (RRM)

6 else

7 Fill RQM (Resource Info) // RAis filled

8 Bordercasting (RQM)

9 end if

10 else

11 Bordercasting (RQM)

12 end if

13 else

14 if Have Route Info (RA(RQM)) then

15 Make RRM (Resource Info, Route Info)

16 Reply (RRM)

17 else

18 if Have Alter Resource Info With Routing Info (RT(RQM)) then
19 Make RRM (Resource Info, Route Info)

20 Reply (RRM)

21 else

22 Bordercasting (RQM)

23 end if

24 end if

25 endif

Fig. 7. Pseudo-code for the query processing and bordercasting algorithm

this resource and routing information and sends it back by the reverse path. But if the
node only has resource information, and no routing information for the provider, it
only fills the resource information fields of the ROM and rebordercasts it. If a node
has no resource information that matches the RQM, it simply rebordercasts it. Now,
suppose that a node receives an RQM with the resource address field already filled in.
We can infer from this kind of RQOM that resource information about a provider has
already been located, but the routing information is still missing. If the node has the
required routing information, it can create an appropriate RRM and send it back.
However, if it has no routing information about that resource provider, but it does
have resource and routing information about an alternative resource provider, it cre-
ates an RRM with information about that alternative provider and sends it back.

4 Performance Evaluation

We designed a simulation to evaluate the performance of RADIZ. Extended NS2 from
Cornell University * was used to implement RADIZ. On top of the IEEE 802.11 MAC
protocol, OLSR [14] was used as the proactive routing protocol integrated with a
push-based resource Ad/D protocol, and AODV [13] was used as the reactive routing
protocol integrated with a pull-based resource Ad/D protocol.

4.1 Simulation Model

We created network containing different numbers of nodes (50, 100, 150, 200),
spread randomly over an area of 1000 x 1000 m’. Five nodes are resource providers.
All nodes in the network have advance knowledge of the resource types. Each simula-
tion ran for 500 seconds and there were 30 runs in total.

* http://wnl.ece.cornell.edu/Software/zrp/ns2

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 245

There are several parameters that we can use to characterize a network. The first is
the mean speed of the nodes. The faster their relative speed, the more dynamic the
network is. The second parameter is the mean pause time, which controls how long a
node can remain in one place before moving. The longer the pause time, the more
stable the network is. The third parameter is the MSID (mean session interarrival
delay) which corresponds to the call rate of the nodes. The smaller the MSID, the
more frequent calls are. From the resource provider’s point of view, there is one fur-
ther parameter which is the MTNR (mean time to next request). It represents the popu-
larity of the resource.

In order to simulate the resource Ad/D traffic, a randomly chosen node sends a re-
source query message to one resource provider. The interarrival times between que-
ries to each provider are exponentially distributed with a given MTNR (1s, 10s). Since
RADIZ is integrated with the IZR routing protocol, we need to simulate routing traffic
as well as resource Ad/D traffic. We therefore make each node send a certain number
of data packets to a randomly chosen destination. The number of data packets per
session follows a Poisson distribution with an average of 10 packets. The interarrival
time between sessions at each node is exponentially distributed with a given MSID
(3s, 150s). The source of a particular session generates 1Kbit data packets at the con-
stant rate of 16 packets per second.

4.2 Simulation Results

To evaluate the performance of RADIZ, we implemented five different resource Ad/D
strategies and conducted a simulation of each strategy. ZRP-RDP is the resource Ad/D
protocol integrated with ZRP, and AODV-RDP is the Ad/D protocol integrated with
AODV. We will also refer to pull-based RDP and push-based RDP, which are the
resource Ad/D protocols separated from the routing protocol.

Figure 8 shows comparative results for average traffic and latency for different re-
source Ad/D strategies. In this experiment, we only simulated the resource Ad/D traf-
fic and not the routing traffic. The mean speed of the nodes is 0.5 m/s, the pause time
is 100s and the MTNR of each resource node is 1s. The value of J, ¢ for delayed trig-
gering is 10 and 1.5 respectively. As Figure 8 (a) indicates, RADIZ saves between
20% and 65% of the control traffic related to resource Ad/D when the number of
nodes is 50. The average control traffic mentioned in this figure refers to the control
packets passing through each node during the simulation. Therefore, the total number
of control packets in the network can be reduced substantially by using RADIZ. More-
over, the larger the number of nodes, the more definite the difference in traffic over-
head is between RADIZ and the other strategies. Among other strategies, ZRP-RDP
shows the best performance when the zone radius is 1 hop, but this pre-defined uni-
form radius may not be suited to other environments. The traffic overhead of RADIZ
does not increase exponentially as the number of nodes increases, which shows that
RADIZ is suitable for large-scale ad-hoc networks. We can also infer that the nodes
have found an approximately optimal radius from the fact that, using RADIZ, the
traffic is less than it is for ZRP-RDP, whether the zone radius is 1 or 2. The average
zone radius during this experiment was about 1.45. Figure 8(b) shows that RADIZ
also shows the best performance in term of latency.

246 D. Noh and H. Shin

25 [—a—RADIZ
—a—ZRP-RDP (R=1)
AODV-RDP
—%—ZRP-RDP (R=2)
—+— Pull-based RDP
—e—Push-based RDP

14 [—=—RADZ

—— ZRP-RDP (R=1)
AODV-RDP

—%— ZRP-RDP (R=2)

—e— Pul-based RDP

1 [—+— Push-based RDP

(packet x 10%)
o
®

Average Latency (Second)
o
E

|

Average Resource Ad/D Control Traffic

02 W
0 0
50 100 150 200 50 100 180 200
Number of Nodes Number of Nodes

Fig. 8. Performance of RADIZ with only resource Ad/D traffic: (a) Average resource Ad/D
control traffic and (b) Average Ad/D query latency

To observe the performance of RADIZ in a more realistic environment, in which
resource Ad/D and routing traffic coexist, we simulated resource Ad/D traffic and
routing traffic simultaneously. We also changed the network environment 250 sec-
onds after the start of the simulation in order to assess the adaptability of RADIZ. The
network characteristics and traffic model that we simulated are set out in Table 1.
Figure 9 shows the effect on the average control traffic of varying the resource Ad/D
strategy and the number of nodes. Again, RADIZ gives the best performance among
the six strategies, and the differential performance grows with the number of nodes.
Moreover, RADIZ saves much more traffic overhead in this realistic scenario than in a
static environment in which there is only resource Ad/D traffic.

In order to study the performance of RADIZ in more detail, we analyzed the traffic
for each strategy at each period, in a 100-node network. Figure 10(a) shows the
results. In Period 1, RADIZ, ZRP-RDP with a zone radius of 1, and AODV-RDP

—=— RADZ

—— ZRP-RDP (R=1)
50 AODV-RDP

—%— ZRP-RDP (R=2)

Table 1. Simulation environment with realis- e Pukbased ROP
tic traffic 40 | —— Push-based ROP

@
s

B
Paniod 1 Period 2 3
(0s~250s) (2505~-500s) E
g
o Average Speed 15mfs 0.5 mis e
Network Environment P L s 100% 20

Average Integrated Control Traffic

Service Ad'D Traffic MTRR 0s 15
Routing Traffic MSID 1505 is 10 /

50 100 150 200
Number of Nodes

Fig. 9. Average integrated control traffic
with both resource Ad/D and routing traffic

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 247

produce relatively little traffic, while ZRP-RDP with a zone radius of 2, and push-
based RDP generate much more. We suggest that this occurs because a high level of
IAIP traffic is incurred by zone maintenance, when there is a rapidly changing net-
work topology and a high probability of link failure. In Period 2, however, RADIZ and
ZRP-RDP with a zone radius of 2 show relatively little traffic, while AODV-RDP and
pull-based RDP are now much busier. This result indicates that it is more efficient to
maintain larger zones when there is a relatively stable network environment and a
Figure 10(a), high call rate, which are the characteristics of Period 2. As we can see
from RADIZ has better performance than all the other schemes, in terms of the total
number of control packets, over both periods.

We also plotted the average zone radius of the nodes over time while varying the
0, ., As we can see from Figure 10(b), the average zone radius of a node is about 1 in
Period 1, and grows to 2.4 in Period 2. The high value of d, ¢ can mean that adaptation
to changing network characteristics is slow. The average zone radii of the five re-
source providers are 3.3 in Period 2, which shows that the zone determination algo-
rithm used by RADIZ can track a changing network environment while maintaining
approximately optimal zone radii. Our confidence in the validity of this assertion is
strengthened by the strong performance of ZRP-RDP with a zone radius of 1 during
Period 1, and with a zone radius of 2 during Period 2, as shown in Figure 10 (a).

- —=—5=20 £=2.0
—%—5=10 £=2.0
[—+—5=10 e=1.5

s 2052505
@ 250s-500s

(packel X 10%

Average Inegratad Control Traffic
Rad us (Hop)

0 40 80 120 160 200 240 280 320 360 400 440 480

Time (Second)

Fig. 10. Adaptability of RADIZ with both resource Ad/D and routing traffic (100-node net-
work): (a) Average integrated control traffic and (b) Average zone radius

5 Conclusions and Future Work

The characteristics of MANETs, such as the potentially highly dynamic topology and
the inclusion of heterogeneous wireless nodes whose energy needs to be saved for
enhanced autonomy, require special care in the handling of distributed resource provi-
sioning. In particular, the discovery of resources must allow access to the whole
MANET, to ensure availability, while limiting resource consumption. However, exist-
ing directory-less discovery protocols designed for MANETS are short of adaptability
and scalability.

248 D. Noh and H. Shin

RADIZ is a new lightweight adaptive resource Ad/D strategy integrated with the
IZR routing protocol. It avoids the use of redundant flooding mechanisms by integrat-
ing the Ad/D and routing protocols, and can perform more effective resource Ad/D by
applying a hybrid resource Ad/D model which combines the pull-based and push-
based approaches. The system overhead is substantially reduced because RADIZ
extends the existing routing packet, rather then requiring separate resource Ad/D
packets. In addition, each node can have its own zone size to facilitate local adapta-
tion to dynamic changes in the network environment. Maintaining an optimal zone
around each node allows RADIZ to provide an efficient query routing and processing
mechanism. The reduced overheads incurred in using RADIZ can translate to lower
power consumption, less congestion, and reduced memory and processing require-
ments. Due to these advantages of RADIZ, it has the scalability necessary for
large-scale MANETSs containing several hundreds nodes unlike previous directory-less
resource Ad/D strategies.

In future, we plan to improve the zone size determination algorithm, which may
involve considering the resource status or the number of providers supplying the same
type of resource. We also intend to refine the bordercasting mechanism and to under-
take a more mathematical analysis of the integrated traffic model used by RADIZ.

References

1. W. Ma, B. Wu, W. Zhang, and L. Cheng.: Implementation of a light service advertisement
and discovery protocol for mobile ad hoc network. In: GLOBECOM. (2003)

2. L. Cheng.: Service advertisement and discovery in mobile ad-hoc networks. In: CSCW.
(2002)

3. R. Koodli and C. E. Perkins.: Service discovery in on-demand ad-hoc networks. MANET-
WG Internet Draft, IETF. (2002)

4. C. Oh, Y. Ko, and Y. Roh.: An integrated approach for efficient routing and service dis-
covery in mobile ad hoc networks. In: CCNC. (2005)

5. R. Harbird, S. Halies, and C. Mascolo.: Adaptive resource discovery for ubiquitous com-
puting. In: MPAC. (2004)

6. S. Helal.: Konark — a service discovery and delivery protocol for ad-hoc networks. In:
WCNC. (2003)

7. R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, and A. Schade.: DEAPspace:
transient ad-hoc networking of pervasive devices. The International Journal of Computer
and Telecommunications Networking, Vol. 35 (2001) 411-428

8. U. C. Kozat and L. Tassiulas.: Network layer support for service discovery in mobile ad
hoc networks. In: INFOCOM. (2003)

9. Z.J. Haas, M. R. Pearlman, and P. Samar.: The bordercast resolution protocol (BRP) for
ad hoc networks. MANET-WG Internet Draft, IETF. (2002)

10. Z. J. Haas, M. R. Pearlman, and P. Samar.: The zone routing protocol (ZRP) for ad hoc
networks. MANET-WG Internet Draft, IETF. (2002)

11. P. Samar, M. R. Pearlman, and Z. J. Hass.: Independent zone routing: an adaptive hybrid
routing framework for ad hoc wireless networks. IEEE/ACM Transactions on Networking,
Vol. 12 (2004) 595-608

12. M. R. Pearlman and Z. J. Haas.: Determination of the optimal configuration for the zone
routing protocol. IEEE Communications, Vol. 17 (1999) 1395-1414

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 249

13. C. E. Perkins, E. M. Belding-Royer, and S. Das.: Ad hoc on-demand distance vector
(AODV) routing. RFC 3561, IETF. (2003)

14. T. Clausen and P. Jacquet.: Optimized link state routing protocol (OLSR). RFC 3626,
IETF. (2003)

15. U. Kozar and L. Tassiulas.: Service discovery in mobile ad hoc networks: An overall per-
spective on architectural choices and network layer support issues. Ad Hoc Networks, Vol.
2 (2004) 23-44

16. F. Sailhan and V. Issarny.: Scalable service discovery for MANET. In: PerCom. (2005)

Binding Multiple Applications on Wireless
Sensor Networks

Ali Hammad Akbar, Ahmad Ali Igbal, and Ki-Hyung Kim'

Graduate School of Information and Communication,
Ajou University, Suwon, 443-749, Korea
{hammad, ahmad, kkim86}@ajou.ac.kr

Abstract. Multiple applications can be invoked simultaneously on single sensor
network through pre-emptive or late binding. Triggering multiple applications
on sensor networks at a post-deployment stage results into complex interactions
between them. In this paper, we discuss considerations for multiservice sensor
networks such as resource allocation and energy conservation. First, we identify
the uniqueness of node selection strategies for such multi-service sensor net-
works. Second, we discuss their effects on network usability and longevity. We
present a holistic nodes election protocol for such networks. Simulation results
show increased longevity of networks when our protocol is implemented on the
network.

1 Introduction

Wireless sensor networks (WSNs) are a new breed of networks that are application
centric and mission oriented. Distributed in nature, these networks comprise miniatur-
ized hardware platforms and software environments adapted to a wide variety of ap-
plications. So far, most of the application frameworks suggested for wireless sensor
networks have assumed a single service supported by sensor nodes deployed in the
region of interest (ROI). Such single service architectures are relatively simpler in
implementation and management. Management architectures of some existing appli-
cations, however, support change of mission in due course of sensor lifetime.

The problem of sensor nodes management and their network-wide coordination
takes altogether a different outlook once multiple applications are considered from the
service perspective of sensor networks. For example, a sensor network that renders
multiple services simultaneously in the form of application overlays risks of computa-
tion and communication contradictions. Consider Fig.1 for the sake of illustration
where four applications running on the same sensor network share both the nodes’ as
well as the network’s resources. A resource heavy application’s requirements might
compromise another or all the other applications’ quality of service (QoS). Similarly,
due to bidding against only the best resources by applications, part of the sensor net-
work might be under-utilized [1]. The problems highlighted above can be mitigated
by pre-emptive application binding on the sensor nodes. However, it is not a valid
assumption in most of today’s applications scenarios of sensor networks. There is a

! Corresponding author.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 250258, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Binding Multiple Applications on Wireless Sensor Networks 251

need for orchestrating nodes’ and network resources in run time. Therefore late bind-
ing of applications on sensor networks will be a plausible proposition in futuristic
applications. Our contribution here is to propose a protocol that helps applications to
commit resources on the sensor nodes in a fair manner. This load balancing protocol
ensures that all the nodes are effectively utilized to serve multiple applications. The
performance of our protocol shows an increase system longevity by allowing nodes
closer to the application sinks to conserve energy.

SINK-1

Overlay WSNs

Physical WSN

o
\
—
|
TSNk}
Fig. 1. Multiple applications support by a single wireless sensor network

The paper is organized as follows. In section 2, we present scenarios that entail
multiple services provisioning on single sensor network. In section 3, we present the
work reported so far that studies various aspects of multiservice provisioning net-
works. In section 4 we present specific questions that pose challenge to the design of
such a multiservice WSN. Assumptions necessary to propose our scheme are outlined
in section 5. Section 6 thoroughly presents the nodes’ resource bidding and reserva-
tion protocol. Simulation results and performance analysis are discussed in section 7.
Section 8 concludes the paper.

2 Scenario Illustrating Multiple Services Provisioning on a
Singular Wireless Sensor Networks

In this section, we present a scenario to provide motivation for our research. The
scenario will be elaborated for requirements in the next section.

2.1 Scenario: Military Applications

For military applications, primary considerations remain robustness, accuracy, and
timeliness. State-of-the-art vibration, acoustic and magnetic sensors for object diver-
sity are employed and onboard algorithms are used to optimize their performance.
E.g., sensor-cued images of detected threats may be rapidly relayed to chief command

252 A.H. Akbar, A.A. Igbal, and K.-H. Kim

for real-time threat identification and prosecution. Following applications may be
rendered by sensor nodes:

Target tracking: Sensor nodes are randomly deployed through unarmed air vehicle
(UAV) in the battle zone to track enemy vehicles, measure the location of the vehicle
and send this information to the central command for decision making.

Mine detection: Nodes performing tracking may be assigned another task of mine
detection simultaneously to facilitate infantry and armoured personnel carriers to
penetrate into the enemy territory.

Friend or foe: Finally, these sensor nodes may also signal friend or foe (FoF) to
central command in order to avoid loss or casualty through friendly fire by detecting
the presence of e.g., RFID tags on friendly vehicles and personnel.

3 Related Work

In this section, we discuss the work that relates to issues regarding sensor networks
with multiservice provisioning. In particular, we review schemes and protocols that
support node and resource allocation schemes for binding applications onto sensor
networks.

Yang Yu et al presents issues that emerge in allocating resources for a single ser-
vice under various constraints in [2]. They formulate task allocation on a sensor
network as Integer Linear Programming problem and as a 3-phase heuristic. Using
simulations, they analyze energy-latency tradeoffs for the two schemes.

A more recent work by the same author in [3] has pinpointed the exact issue of
multiservice provisioning by adopting a middleware approach. They also identify the
need for resource management in cluster-based sensor networks.

A management approach is presented by Linnyer et al in [4]. They give MANNA
architecture for specifying functional, information, and physical management of sen-
sor networks. The authors itemizes the management functions such as topology dis-
covery function, node operating state control function, and network connectivity
discovery function etc. However, this paper does not propose a new resource alloca-
tion and optimization protocol.

Well known routing schemes such as [5]-[8] address optimizations over energy ef-
ficiency, reducing communication overhead, scalability and reliability. However,
there is no explicit mention to support multiple services in either of the schemes.

In summary, no work reported so far proposes nodes’ resource allocation protocol
that considers network lifetime and network utilization simultaneously.

4 Purported Challenges

Consider Fig. 2 where sensor nodes are part of various applications simultaneously
being executed on a WSN. There are specific sinks associated with every application,
though shown for just three for visual clarity. Applications solicit for resources on
individual sensor nodes through gateways to carrying out sensing for them. Another
important concern is that all the sensor nodes in the ROI must be used as fairly as

Binding Multiple Applications on Wireless Sensor Networks 253

possible, else the network is underutilized. With usual greedy approach of choosing
the closest nodes with appropriate resources, it is quite likely that multiple applica-
tions will acquire sensing nodes in the fringes of the network. The nodes in the centre
of the network may go unused.

—_—
[— N @ Apalication 4%, TN Application ?
[— @ Application 5 G Application &

- i } e — - .
T =¥ Appliction Application 6 Ty iy

Fig. 2. Applications sharing sensor nodes and application specific sinks

These observations and requirements pose the following questions that we sought
answers for in the next section.

Question#1: How can gateways acquire nodes for their applications such that
nodes closer to gateways are highly available for routing data?

Question#2: How can load be balanced amongst the sensor nodes in the ROI?

Question#3: How can a system be made dynamic such that it optimizes energy-
latency-load for applications with differing QoS requirements?

These questions when seen in the context of network and node resources intrigue
our minds to put forth resource allocation protocol. In the following sections, we
define nodes’ resource bidding and allocation protocol and its variants in detail.

5 Model and Assumptions

In this section, we formulate the role of entities and other key assumptions that inter-
play in the proposed protocol.

Communication: Sensor nodes transmit data that can be received by one hop
neighbours. All the non-destined nodes can overhear the transmission. This phe-
nomenon is useful in establishing the behaviour of the surrounding nodes in dense
deployments.

Caching: The sensor nodes have the capability to cache the data or control messages.
This assumption allows a node to hold data or control information until some specific
timers expire.

254 A.H. Akbar, A.A. Igbal, and K.-H. Kim

Deployment: Sensor nodes are randomly deployed in the region of interest. This will
result into non-uniform accessibility of nodes’ resources to application gateways.

Node architecture and constraints: Every sensor node in the network has resources
that enable it to execute certain tasks. Intelligence in a sensor node is provided
through an operating system such as TinyOS [9]. For our scenario, we assume a ho-
mogeneous model for all the sensor nodes. Assuming heavy sensing applications, we
model the ratio of sensing-cum-transmission to relaying is 1:0.3.

A single sensor node chassis can have multiple types of sensors, e.g., thermal sen-
sor, a photodetector, and a CCD etc. Execution environments such as TinyOS® pro-
vide concurrency support by add-ins such as MATE [10].

Node types: A node can be either a gateway (equivalently termed as sink when
deemed appropriate) or a sensing node. A gateway initiates the resource solicitation
on behalf of an application. A sink node can participate in sensing and/or routing data
for a specific gateway.

Routing protocol: 1t is assumed that an underlying address-centric routing protocol is
in-place. The protocol messages used in subsequent section will form the payload of
the usual data packets.

6 Nodes’ Resource Bidding and Reservation Protocol

The protocol answers the challenge questions raised in section 4 by providing the
following features:

= The selection of nodes and their resources is based on their current load
and remaining battery energy.

= Nodes that are closer to gateways are involved in sensing activities to a
lesser extent. This ensures network longevity.

= Nodes that are farther from the application gateways, which otherwise
were ignored, also participate in sensing activities. This yields a higher
degree of network utilization.

In remainder of the section, we present the details of our proposed protocol. The
operation of the protocol is performed using following algorithms and packet formats.

A. Application Advertisement Message

An application advertises its bid to solicit sensor nodes and their resources for its
application tasks through Application_Join_Req message. This advertisement is re-
ceived by all one-hop neighbours. The packet format for Application_Join message is
shown in Fig. 3 and explained below.

| Flag | App_ID | TTL | Threshold |

Fig. 3. Packet format for application advertisement message

Flag: Application_Join_Req message; 00
Application_ID: Identifies a unique application. It is used to match a request to
areply

Binding Multiple Applications on Wireless Sensor Networks 255

TTL: Time to live; A hop count field that decrements on every hop.

Threshold: A field specified by the application. The node at which TTL equals
threshold, it may join an application as a sensing node. This field prevents nodes
closer to the sink from becoming part of a specific application. Thus nodes deep in-
side the network are chosen for sensing tasks and nodes closer to the gateway forward
the sensed data.

B. Node Reply Message

A node or set of nodes within one-hop neighbourhood of a gateway receive Applica-
tion_Join_Req message. From here on, we may refer to the sensor node under consid-
eration as this node. Each of these nodes starts a timer called Join_TimeOut. The
duration of timer will depend upon the following factors:

Current_Application_Load: A number that shows the number of applications this
node is already part of. Thus greater load on the sensor node will result into longer
timer duration.

Remaining_Battery: It represents the remaining units of energy affordable by this
sensor node. Incase there is enough battery power, timer duration will be shortened.

A node can reply back to the gateway in either of the messages given below. Fig. 4
shows a general format of sensor node reply message.

[Flag [App.ID |

Fig. 4. Packet format for sensor node reply message

Application_Join_Rep message: 01

The timer of this node has expired. The TTL field does not equal the Threshold
field now. The node has not overheard any neighboring node replying back to the
gateway. It implies that this node is the only node in one hop vicinity to the gateway.
Or there may be some nodes that are beyond the reception range of this node. The
node expresses its willingness to act as a router, and rebroadcasts the Applica-
tion_Join_Req message.

Application_Join_Rep message: 10

The timer of this node has expired. The TTL field equals the Threshold field now.
The node has not overheard any neighboring node replying back to the gateway. The
node may expresses its willingness to act as a sensor node and a router. It rebroad-
casts the Application_Join_Req message.

Application_Join_Rep message: 11

The timer of this node has expired. The TTL field equals the Threshold field now.
The node has not overheard any neighboring node replying back to the gateway. The
node only agrees to be a router for the application. It rebroadcasts the Applica-
tion_Join_Req message.

Incase a node overhears a neighboring node replying back to the gateway, it gives up
any activity pertaining to this application and clears the timer. This is an indication that
there are ample number of nodes available in this area offering spatial redundancy.

256 A.H. Akbar, A.A. Igbal, and K.-H. Kim

By analyzing the working of the proposed protocol, we realize that the Applica-
tion_Join_Req message diverges inside the topology as it traverses through multiple
hops. Hence, we refer to this phenomenon as divergecast. This protocol is greedy in
approach. Using this scheme, an application can acquire sensing nodes for as long as
the TTL does not expire.

In the following subsection, we present and discuss a variant of divergecast that
yields a different set of advantages.

6.1 Acknowledgment-Based Variant to the Proposed Protocol

In this version of the proposed protocol we introduce the notion of one-hop acknowl-
edgement. It means that in reply to Application_Join_Req message from the gateway,
receiving nodes generate an Acknowledgement. The format of Acknowledgment may
include node parameters such as current load and remaining battery. Now the gateway
decides which next hop node to select. The operation is performed recursively till all
the gateways commit nodes’ resources on the network. Here, the Applica-
tion_Join_Req message follows a unicast transmission model. This approach cau-
tiously reserves resources, making it more apt for energy starved sensor nodes.

Both the original protocol and its variant have their advantages. However, to make
the best out of the two, a policy can be spelled out at the application gateway that
allows a switch over to either of the protocols in the real time environments.

The following might form the guidelines for making a policy for soliciting and
committing resources in a sensor network.

Traffic type: 1f the traffic load is high, the variant protocol might be considered. It
is due to the fact that higher traffic load means more contention at the link layer. In
order to undermine the effect of contention, lesser nodes should be involved in for-
warding of data packets.

Application type: If the application defines a minimal coverage in the ROI, it is
necessary to use the original proposal. Otherwise, adopting the variant will be a com-
munication-savvy approach.

7 Performance Evaluation

A simulator based on the system in section 6 was developed in c++ to evaluate our
approach. The simulations were obtained for a topology of 400 nodes that were
randomly distributed across an area of 60*60 units as shown in Fig. 5. A total 25
sinks contested against resources by sending out their Application_Join_Req re-
quests. The number of nodes that successfully joined the applications during the
simulation time were recorded. By introducing the role of threshold field and asso-
ciating it with TTL resulted into performance gains. The number of nodes that die
during the simulation time were also recorded to see the effect of multiple applica-
tions running simultaneously.

Fig 6 shows the performance of the proposed protocol, i.e., divergecast, under two
conditions. Compare Fig. 6(a) and Fig. 6(b); when the difference between Threshold
and TTL is large, the Application_Join_Req message goes inside the sensor network.

Binding Multiple Applications on Wireless Sensor Networks 257

60 a3 Tws
3 3 T
. . >
S oate Soe 2 0 4o
[0, b Bt %
04— > % +
33, ?. 3 3,:3 '3

50 60 70
+ Non Sink Nodes
= Sink Nodes

Fig. 5. Simulation topology used for proposed protocol

Divergcast at Threshold: 3; TTL: 6

Divergecast at Threshold: 1; TTL: 6
160 160
140 + —e— Joining Nodes 1‘2‘8 || —e— Joining Nodes
o 120 3 T
§ 100 —a— Dead Nodes ; 2 100 | —a— Dead Nodes ;
Z 80 g o0
3
. 60 1 . 60
2 4 s 2 404
e ‘/::/n/‘/‘/r 20 1
0 : - - - 0 T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Simulation Cycles Simulation Cycles
(a) ()

Fig. 6. Performance of proposed protocol

This allows an increased number of nodes to join the contending applications.
Similarly, the number of nodes that die because of drained energy is also reduced
considerably.

Fig. 7(a) shows similar scenario when the difference between threshold and TTL is
three hop. It means that nodes at three hops distance from the sink can join as sensing
nodes. The results of Fig. 7(b) show an increase in number of nodes that join the net-
work by a margin of 10. The compromise, however is the longer time for nodes join-
ing. The nodes that die during the simulation shown both in Fig 7(a) and (b) show that
using the propsed scheme network longevity can be achieved.

9 Unicast at Threshold: 3; TTL: 6 % Unicast at Thresh: 1; TTL: 6

80 1 —e— Joining Nodes|————————| 80 1 —e— Joining Nodes
2 70 1 _, Dead Nodes Poad [70 1 _4— Dead Nodes
5 60 el g 60
S 50 2 501 /
5 40 5 40
S 30 S 301
Z 20 e Z 204

10 10 NN

0 * lf/rr- _ y 0 o “—"‘/r‘- ;

0 5 10 15 20 25 0 5 10 15 20 25

Simulation Cycles Simulation Cycles

(a) (b)

Fig. 7. Unicast variant of proposed protocol

258 A.H. Akbar, A.A. Igbal, and K.-H. Kim

8 Conclusion

In this paper, we have addressed the important issue of interplay between load balanc-
ing and network longevity for multiservice sensor networks. We have presented an
overlay for resource allocation that implicitly allows the nodes to balance their rout-
ing load with local sensing activity. Through simulation, our proposal demonstrates
its efficacy in terms of utilizing more sensor nodes.

References

1. Jonathan L., Jeff S., Matt W., Mema R., and Margo S.: Open Problems in Data Collection
Networks. Proceeding of 11™ ACM SIGOPS European Workshop 2004, Leuven Belgium,
(2004)

2. Yu Y. and Prasanna V. K.: Energy-balanced task allocation for collaborative processing in
wireless sensor networks. MONET special issue on Algorithmic Solutions for Wireless,
Mobile, Ad Hoc and Sensor Networks, (2003)

3. Yu Y., Bhaskar K., Prasanna, V.K.: Issues in Designing Middleware for Wireless Sensor
Networks. Network, IEEE Vol. 18, Issue 1, (2004), 15-24

4. Linnyer B. R., Jose M. N., Antonio A. F.. MANNA: A Management Architecture for
Wireless Sensor Networks. In IEEE Communication Magazine, vol. 41, (2003)

5. W. Heinzelman, J. Kulik, and H. Balakrishnan, “Negotiation Based Protocols for Dissemi-
nating Information in Wireless Sensor Networks,” Wireless Networks, Vol. 8, pp. 169-185,
2002.

6. Chalermek I., Ramesh G., Deborah E. Directed Diffusion: A Scalable and Robust Com-
munication Paradigm for Sensor Networks. Proceedings of the Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networks (MobiCOM 2000), Boston
MA, Aug. 2000.

7. Kemal A., Mohamed Y.A survey on routing protocols for wireless sensor networks. Ad
hoc Networks, pp. 325-349, Mar. 2005.

8. Tatiana B., Nirupama B., Sanjay J. A Performance Comparison of Data Dissemination
Protocols for Sensor Networks. In Proceedings of IEEE Globecom Wireless Ad Hoc and
Sensor Networks Workshop (Globecom 2004), Dallas Texas, Nov. 2004.

9. TinyOS Community Forum (www.tinyos.net)

10. Phil L., David C. Maté: A Virtual Machine for Tiny Networked Sensors,” 10th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, Oct. 2002.

Model-Aided Metadata Management for Wireless
Sensor Networks*

Chongqing Zhang, Haibing Guan, Minglu Li, Min-You Wu,
Wenzhe Zhang, and Feilong Tang

Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China
zhangchongging@sjtu.edu.cn

Abstract. Metadata are abstraction and knowledge of wireless sensor networks
and are used to provide adequate information for query processing. The purpose
of metadata management is to provide adequate information for query process-
ing, while at the same time to make the cost of maintaining the metadata as low
as possible. In this paper, we discuss new issues about metadata management in
wireless sensor networks; and propose a metadata management solution which
includes an architecture and a model-aided approach for the base station to col-
lect meta-data from sensor nodes. Experimental results show the effectiveness
of our solution.

1 Introduction

With the rapid advancement in wireless communications technology and micro-
electro-mechanical systems (MEMS) technology, the wide deployment of large-scale
wireless sensor networks (WSNs) has been made possible. Due to their features of
reliability, accuracy, flexibility, cost-effectiveness and ease of deployment, WSNs are
promising to be used in a wide range of applications, such as environmental monitor-
ing, target tracking, etc [1].

A WSN is a data-centric network [2] and can be viewed as a distributed database [3].
In order to reply a query submitted by a user effectively, a WSN needs to parse and
optimize the query so as to work out an efficient query plan. The query parsing and
optimization work are generally done on the base station with more powerful computa-
tion ability and rich resources. After the query plan is worked out, it will be dissemi-
nated into the WSN. The decomposed query is executed on sensor nodes and may bring
forth sensing tasks and in-network processing tasks that can save energy significantly by
reducing the bandwidth usage [4].

Then there are several questions. Without knowing the knowledge of the WSN in
priori, how does the base station parse and optimize the queries to work out query
plans of high efficiency? How does an in-network processing function know the
meaning of the data it processes? How does a node adjust itself to satisfy several
queries? The answer to above questions is metadata. In a traditional DB system,
metadata are defined as the descriptive data used by the DBMS to describe the data

" This paper is supported by Natural Science Foundation of Shanghai (No.05ZR14081).

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 259268, 2006.
© Springer-Verlag Berlin Heidelberg 2006

260 C. Zhang et al.

that it manages. But in fact the scope of metadata is beyond this definition. Metadata
include data schema, definition of tables and views, statistics of data, storage paths,
data distribution information, and so on. Metadata are stored in special tables called
the system catalogs. Metadata are frequently accessed and have great influence on the
performance of the DBMS so that metadata deserve being carefully designed and
managed [5].

There has been substantial work [6, 7, 8, 9, 10, 11, 12] on adopting database tech-
niques to solve the problem of collecting data in wireless sensor network. Several
works [6, 9, 10] have mentioned metadata more or less. The special nature of a WSN
makes it differ significantly from a traditional database system in many aspects. These
differences mean new challenges of metadata management in WSNs. Yet there is not
a work dedicated to the research of this issue.

In this paper, we define metadata in a WSN as the descriptive data used to describe
the WSN system, including the environment, the nodes and their states, measurement
data, and the WSN as a whole entity; metadata are knowledge of the WSN system and
can be used for the purpose of querying processing. We try to answer following ques-
tions: What metadata are needed for query processing in a WSN? How to formalize
these metadata? How do the nodes and the base station manage the metadata in a
WSN? How does the base station efficiently collect metadata from nodes in a WSN?

The remainder of this paper is organized as follows. In section II, by discussing
query and metadata, challenges of metadata management and definition of metadata
are introduced. We introduce the solution in next two sections, that is, the manage-
ment architecture in section III and the metadata collecting approach in section IV.
Experimental results are presented in section V to show the effectiveness of our solu-
tion. In section VI, related work is reviewed. We conclude and describe the future
work in section VII.

2 Query Processing and Metadata in WSNs

In this section, we first give the WSN model on which we base our research work.
Then we discuss query processing in WSNs. Based on the discussion, new challenges
of metadata management are introduced.

2.1 Wireless Sensor Network Model

Without loss of generality, the WSN model in this paper is based on following assump-
tions: 1) A WSN is composed of a base station and large number of nodes scattered on a
plane. Each node has a unique identifier. 2) Each node is aware of its location by some
localizing techniques, such as GPS or other ranging localization techniques [13]. 3)
Base station and nodes can move at a relatively low speed. Nodes don’t have to be ho-
mogeneous.

2.2 Query Processing in WSNs

Although a WSN can be viewed as a distributed database, its special nature makes it
differ significantly from a traditional database system in many aspects. A WSN is
composed of a base station and large number of sensor nodes. Base station and nodes

Model-Aided Metadata Management for Wireless Sensor Networks 261

play different part in query processing. Query parsing and query optimization are
mainly carried out on base station and sensing and in-network processing are carried
out on nodes. As a result, new solutions for querying WSNs are needed. Figure 1
illustrates what operations happen in the course of query processing in WSNs.

2).Query parsing
4).Query 3).Query optimization
5).Query execution dissemination Metadata needed:
6).Sensing a).Data schema
7).In-network b).Nodes information
processing. c).States of WSN
Metadata needed: d).Targets information

a).Data Schema etc 1).Qqery

b).Current states < submission

c¢).Configuration
etc

8).Results
collection

‘ Base station <— Queries

Fig. 1. Operations of Query Processing

Just as Figure 1 reveals, the process of query processing in a WSN has following
operations: query parsing, query optimization, query dissemination, query execution,
sensing, in-network processing, aggregation, and result collecting, etc. All these opera-
tions need the help of metadata. For example, the query parsing and optimization work
is generally done on the base station, so the base station needs to maintain metadata,
such as nodes distribution and topology of the WSN, for the use of query parsing and
optimization.

Note different metadata are needed by different kinds of queries. There is a diver-
sity of applications for WSNs, and accordingly there are different kinds of queries for
WSNs. And there are different ways to categorize the types of queries [14], such as
long-running continuous queries and one-shot queries, aggregate queries and non-
aggregate queries, complex queries and simple queries, etc. It seems there is not a
one-fit-all solution to handle all types of queries. Every type of queries has its own
nature, which means that it should be treated specially. As a result, the metadata to
support those types of queries are different.

2.3 Challenges of Metadata Management

To cater for the new characteristics of WSNs so as to help a WSN process queries
effectively, new metadata management solution is demanded. In the following, we
summarize new challenges of metadata management in WSNs:

262 C. Zhang et al.

1) Distribution of metadata. In a DBMS, metadata are generally stored concentrat-
edly. While in a WSN, metadata are totally stored distributedly. Both base station and
nodes need to maintain corresponding metadata for their use.

2) Formalization of metadata. In a DBMS, most metadata are rather stable, only
some statistical metadata are dynamic. While in a WSN, there are errors and uncer-
tainty in WSN data; and the metadata related to the residual energy, topology, etc are
of high variability. This not only means metadata already used in traditional DB sys-
tems need to be modified to meet the need of WSNs, but new techniques, such as
probabilistic and stochastic methods, may be taken to formalize and manage meta-
data.

3) Metadata collection. In a DBMS, metadata are generally predefined and stored
concentratedly, and this makes it relatively easy to maintain. In a WSN, the distributed
storage and variability of metadata make metadata management work more complex
than what it is in a DBMS. For example, base station need to collect metadata from
sensor nodes and calculate those metadata to work out new metadata describing the
global states of the WSN.

4) Cost consideration. Energy efficiency is always an important issue in WSNs.
Metadata management also consumes energy, computing and storage resources. For
example, collecting metadata from nodes consumes the energy of nodes.

3 Metadata Management

The purpose of metadata management is to provide adequate information for query
processing, while at the same time to make the cost of maintaining the metadata as
low as possible. To do this, we need to face the challenges discussed in last section.
As a reply to those challenges, we propose a solution in this section and next section
to solve the problems. The solution includes two parts: an architecture and a model-
aided metadata collecting approach. The architecture is addressed in this section.

3.1 Metadata Management Architecture

From discussed above, we know metadata can be classified according to two criteria:
distribution and variability. Further, metadata can be classified into four types: static
metadata on base station, dynamic metadata on base station, static metadata on nodes
and dynamic metadata on nodes. Different management solutions are adopted for these
different types of metadata.

As for a sensor node, static metadata can be prestored in the flash of the node in ad-
vance. When the node boots up, the static metadata are read into memory. Dynamic
metadata change with the states of the node and cannot be prestored. There should be a
process that monitors the states changes of the node and update the metadata accord-
ingly. As for base station, similar strategy can be adopted for the static metadata. How-
ever, things for dynamic metadata are quite different from what they are on sensor
nodes. The base station needs to collect metadata from sensor nodes dynamically and
calculate those metadata to generate new metadata that reflect the states of the WSN.

In order to manage the metadata effectively we propose an architecture to help the
WSN to manage metadata. The architecture is shown in Figure2, and the primary
work that the metadata manager needs to do is also given.

Model-Aided Metadata Management for Wireless Sensor Networks 263

Queries

Application Layer Application Layer

Oueries

>
«

Results

»
>

— —

Supporting Layer (OS, }\ \, etc) Supporting Layer (OS, \% etc)
O —
1). Maintains metadata

2). Analyzes metadata and
makes collecting decisions
3).Collects metadata

1).Maintains local metadata
2).Provides metadata for
base station

3).Report metadata changes
to base station

Metadata Management on Nodes Metadata Management on Base Station

Fig. 2. Metadata Management Architecture

4 Collecting Metadata from Nodes

Designing an effective approach for collecting metadata from node is a challenging
work and deserves being studied carefully. We need to take energy efficiency, fidelity
of the data, network scale, collecting methods and the regularity of metadata into
consideration. To meet these challenges, models are created on base station and are
used to guide the collecting of metadata.

4.1 Metadata Collecting Approach

Based on above discussion, we propose an approach for collecting metadata from
nodes. Following are the strategies adopted by the approach to lower the cost:

1) Models reflecting how the state of the WSN changes is created on base station
to help managing metadata.

2) Push and pull are all used and play different roles respectively.

3) Flexible strategies can be adopted to compose queries for querying metadata.

4) Nodes are grouped into different groups according to their positions, types and
other attributes.

5) In-network processing, such as aggregation and compression, can be used to re-
duce the traffic caused by metadata.

264 C. Zhang et al.

One-shot
ue

One-shot
esults

(L)

Queries results
lchange reports

Base station Side Nodes Side

Fig. 3. Solution for Collecting Metadata from Nodes

The approach for the metadata manager of base station to collect metadata from the
nodes is based on above strategies. As figure 3 depicts, the approach has following
functional steps among which steps 3, 4, 5, 6 run on base station, steps 2, 7 run on
nodes, and step 1 runs on both base station and nodes.

1) After being deployed, base station and nodes boot up and read static metadata
into memory; then they organize into an integral WSN.

2) Nodes get dynamic metadata such as locations, neighbors, residual energy, etc.

3) At the base station side, the metadata manager issues a one-shot query to inquire
exhaustive metadata of nodes, including ID, location, hardware and software configu-
ration, resources, and functions, etc.

4) Using the retrieved metadata, models, such as nodes distribution, coverage map,
topology map, etc are created. Corresponding structures for managing metadata, e.g.
different kinds of groups, are created according to the actual condition of the WSN.
Then the metadata manager can provide basic help for query processing.

5) Based on the models and the measurement data returned by nodes, the metadata
manager can use more elaborate queries to inquire metadata of the nodes.

6) With more metadata are collected, the accuracy of models can be refined gradu-
ally by the learning algorithm.

7) On a node, metadata manager monitors the states changes and updates metadata
accordingly. It replies to the metadata queries by sending back metadata and it also
reports unlooked-for metadata to base station.

5 Experimental Results

As Figure 4, one of the simulation scenes, shows, the WSN model consists of 200
sensor nodes that are uniformly placed in a 300mx300m square area. The base station

Model-Aided Metadata Management for Wireless Sensor Networks 265

is located at the center of the simulation area. All nodes have same transmission
ranges of 40 meters. The initial energy of a sensor node is 5 joules, and the energy of
the base station is infinite. We assume the WSN is deployed to monitor fires; and
nodes are equipped with sensors to measure temperature. A node is in sleep mode in
most of time and wakes up every 30 seconds to check if there is a fire. If there is a
fire, then the node sends a data packet to one of its parents chosen randomly every 5
seconds. If there is not a fire, then the node sleeps and will wake up in 30 seconds
again. Nodes within the circle of 40 meters of a fire can monitor the fire. Two fires
happen somewhere in the field randomly every 1 minute; and the lifetime of a fire is 1
minutes. The energy needed for a sensor nodes to sense, receive and transmit a packet
on average are 2x10°° joule, 2x10°° joule, and 1x107 joule respectively. The power
for a mobile node to move is 5x10” w. For simplicity, a query command or a reply is
also regarded as a packet and consume as much communication energy as a meas-
urement data packet.

Fig. 4. A Scene of Simulation WSNs

We use two metrics, energy cost and fidelity to evaluate different approaches in our
simulation. Energy cost is the energy consumption of disseminating queries from base
station to nodes and transmitting metadata from nodes to base station. We simply cal-
culate the energy cost by take count of the data packets used for collecting metadata,
including the queries for metadata. The higher the value is; the worse is the perform-
ance. Fidelity can be evaluated by the errors between the metadata given by base sta-
tion and the metadata on sensor nodes. We use two errors: average error and max error
to evaluate the fidelity of all approaches.

We compare five metadata management approaches: 1) approach denoted as NMLQ
is not model-aided, and metadata are reported to the base station periodically; 2) ap-
proach denoted as NMR is not model-aided, and nodes only report metadata as signifi-
cant changes happen; 3) approach denoted as MLQ is model-aided, and metadata are
reported to the base station periodically; 4) approach denoted as MOQ is model-aided,
metadata are collected with one-shot queries which means a node sends metadata to the
base station only when it receives a query command; 5) approach denoted as MR is
model-aided, and nodes report metadata as significant changes happen.

266 C. Zhang et al.

Table 1. Settings of Experiments

Immobile Nodes Mobile Nodes
NMLQ T > 1 minutes T > 30 seconds
MLQ T > 1 minutes T > 30 seconds
NMR DataSend(7) > 12 DataSend(7) > 12 or
C(Neighbors, 7) > 2
MR DataSend(7) > 12 DataSend(7) > 12 or
C(Neighbors, T) > 2
MOQ (T4 <0.6) and (T, <0.6) or
(Trpue > 0.8) (T4 <0.4) and
(Lroue > 0.8))

20 simulation scenes are used to evaluate the metadata management approaches.
Energy cost, average error, and maximum error are calculated by averaging the simula-
tion results of all scenes. We use DataSend to calculate average error and maximum
error. Settings for all approaches are listed in Table 1. In Table 1, T denotes the time
interval from the last time when metadata was sent till now; DataSend(7) denotes the
number of data packets sent during time 7; C(Neighbors, T) denotes the number of
neighbors that changed during T; T, is the threshold set for DataSend.

200

150

100

&0

Time (second)

Fig. 5. Energy Cost of All Approaches

Figure 5 and Figure 6 show the energy cost of five metadata collecting approaches.
Figure 5 compares the absolute energy cost of all approaches in one minute in detail;
while Figure 6 shows total energy cost in 10 minutes of all approaches. It can be seen
that NMLQ consumes as much energy as MLQ; NMR also consumes as much energy
as MR; and the energy cost by MOQ is less than other four approaches. It will be seen
later that the error of MOQ is also less than other four approaches.

Figure 7 and Figure 8 respectively compare average errors and maximum errors of
five approaches in 3 minutes. Horizontal axes in both figures are time; and vertical
axes are average error and maximum error that have the unit of packet. As for NMLQ
and MLQ, because immobile nodes send metadata packets every 1 minutes and mobile

Model-Aided Metadata Management for Wireless Sensor Networks 267

0.4
1 NMLQ
O/ MLQ
& . == NMR
= 03 === MR
S EEEEl MOQ
=
'O [].2 -
S
&
£
2
s 0l —
0

Fig. 6. Energy Consumption of All Approaches

20

Average Error (packet)

100 120 140 160
Time (second)

Fig. 7. Average Error of All Approaches

500 T T

400

3001

200

Maximum Error (packet)

80 100 120 140
Time (second)

160 180

Fig. 8. Maximum Error of All Approaches

nodes send metadata packets every 30 seconds and arrivals of the packets at the base
station are distributed in an extremely short time, so the average errors and maximum
errors of NMLQ and MLQ appear to be periodic. When the base station receives the
metadata, the errors reach their minimum points. After then, the errors gradually

268 C. Zhang et al.

increase till the next arrivals of the metadata packets. The reason of the maximum error
of NMR is a fixed value lies in the nodes send metadata packet to the base station
when the number of packets sent reaches corresponding threshold. From the figures,
although consuming same amount of energy, the performances of model-aided MLQ
and MR outscore the performances of their corresponding non-model-aided counter-
part: NMLQ and NMR. Among five approaches, helped by models, one-shot queries-
based MOQ consumes least energy and has the best precision.

6 Conclusion and Future Work

The issue of metadata management for query processing in WSNs was addressed in
this paper. We discussed the new characteristics of query processing in WSNs and new
demands for metadata. As an answer to the new challenges of metadata management in
WSNs, we proposed a general solution that helps a WSN manage metadata. The solu-
tion includes a metadata management architecture and approaches for collecting meta-
data from sensor nodes. Experiments show the effectiveness of our approaches.

References

1. LF. Akyildiz, W. Su*, Y. Sankarasubramaniam, E. Cayirci. “A survey on sensor net-
works”. Computer Networks, 2002.
2. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, "Next century challenges: Scalable
coordination in sensor networks". MobiCom 1999.
3. P.Bonnet, J. E. Gehrke, P. Seshadri. “Towards sensor database systems”. MDM 2001.
4. F. Zhao, L. Guibas. “Wireless Sensor Networks : An Information Processing Approach”.
Boston: Elsevier-Morgan Kaufmann; 2004.
5. R. Ramakrishnan, J. Gehrke. “Database Management Systems” (Third Edition), The
McGraw-Hill Companies, Inc, 2003
6. Y. Yao, J. E. Gehrke. “Query Processing for Sensor Networks”. CIDR 2003.
7. S. Madden, J. Hellerstein, and W. Hong. “TinyDB: In-Network Query Processing in
TinyOS”. Version 0.4, September 2003.
8. Y. Yao, J. Gehrke. “The cougar approach to in-network query processing in sensor net-
works”. SIGMOD Record, 2002,31(3):918.
9. S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong: “The Design of an Acquisitional
Query Processor For Sensor Networks”. SIGMOD Conference 2003: 491-502
10. W. Wong and S. Madden. “TinySchema: Managing Attributes, Commands and Events in
TinyOS”. Version 1.1, September 2003.
11. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “Tag: A tiny aggregation
service for ad-hoc sensor networks”. In OSDI 2002.
12. J. Gehrke and S. Madden. “Query Processing in Sensor Networks”, IEEE Pervasive Com-
puting, Vol. 3, No. 1, pp. 46-55, 2004.
13. C. Savarese, J. M. Rabaey, and J. Beutel. “Locationing in distributed ad-hoc wireless sen-
sor networks”. ICASSP 2001.
14. N. Sadagopan, B. Krishnamachari, and A. Helmy, "Active Query Forwarding in Sensor
Networks (ACQUIRE)", SNPA 2003.

Availability Considerations for Wireless Sensor Grids

Ali Hammad Akbar', Ki-Hyung Kim"*, Seung-Jin Bang®,
Waleed Mansoorl, and Won-Sik Yoon>

! Graduate School of Information and Communication,
Ajou University, Suwon, Korea, 443-749
? Dept. of Mathematics,
Ajou University, Suwon, Korea, 443-749
3 School of Electrical Engineering,
Ajou University, Suwon, Korea, 443-749
{hammad, kkim86, math, waleed, wsyoon}@ajou.ac.kr

Abstract. In this paper, we derive and analyze network availability for sensor
grids by considering an elaborate energy consumption model. Sensor grids that
form chain topologies are compared for two widely known grid traversal mod-
els, namely staircase and Delannoy number. Based upon the mathematical
model, we analyze two sleep modes, viz, synchronous and asynchronous for
their effects on the network availability of sensor grids with regard to energy
conservation and packet loss. We also propose a non-uniform, asynchronous
sleep scheme in sensor grids which allows nodes to sleep in a manner such that
nodes closer to the gateway sleep less than the nodes in the fringes. The per-
formance results show that the proposed scheme prolongs network availability
effectively in sensor grids.

1 Introduction

Wireless sensor networks are autonomous networks that are expected to render a
broad range of services in the emerging ubiquitous era. Once, deployed, either in an
ad hoc manner or in a preconceived arrangement into the environments, they are ex-
pected to continue to function unattended. Optimization schemes concerning their
functional behaviour are widely studied to extend their lifetime, while meeting per-
formance objectives amicably [1]. Serviceability of sensor nodes is gauged by their
continued operation in the sensor network; an issue of network availability. Various
interpretations of network availability as identified in [2] have emerged into parallel
research directions. For example, in [3], the authors propose a scheme to adjust the
sleep-awake periods of sensor nodes for energy optimization, consequently extending
operational lifetime. In [4], the authors ascertain relationship between node transmis-
sion power control and lifetime by suggesting topology control algorithms.

Assuming mostly ad hoc deployments, studies of sensor nodes and networks have
seldom exploited prior knowledge of sensor networks, e.g., location information of
sensor nodes. Exceedingly complex and computationally expensive schemes for

* Corresponding author.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 269278, 2006.
© Springer-Verlag Berlin Heidelberg 2006

270 A.H. Akbar et al.

sensor networks can therefore be tailored into light-weight equivalents by utilizing
such knowledge base.

In this paper, we target sensor grids, considering them to be candidates for future
applications in target tracking and surveillance [5]. In [6], we derived network avail-
ability expression for sensor grids and analyzed the network availability for two
widely known lattice path traversal models, namely Delannoy number and staircase-
based traversals.

In this paper, we revisit the derivation and analysis of network availability of sen-
sor grids for the two lattice path traversal models under a thorough range of assump-
tions. We then analyze two widely known sleep modes, viz, synchronous and
asynchronous for their effects on the network availability of sensor grids with regards
to energy conservation and packet loss. Finally, we propose a non-uniform, asynchro-
nous sleep scheme in sensor grids which allows nodes to sleep in a manner such that
nodes closer to the gateway sleep less than those in the fringes. The performance
results show that the proposed scheme prolongs network availability effectively in
sensor grids.

The organization of the paper is as the following. In section II, we present sensor
grid model and formulate assumptions necessary to make it practicable. In section III,
we derive an expression for network availability by considering a range of node and
network parameters. Section IV presents our proposed scheme that makes nodes sleep
in a non-uniform manner. We present simulation-based performance evaluation for
the proposed scheme in Section V. Section VI summarizes the contributions and con-
cludes the paper.

2 Model and Assumptions

As given in Fig. 1, we consider a reference grid of nxk equidistant sensor nodes. Each
node has an index as (1,1),...,(i})),...,(n,k), where i and j refer to rows and columns of
the grid, respectively. Following assumptions are made to formulate the model;

— Every sensor node maintains energy availability tables of neighbouring nodes.

— Whenever a sensing node transmits data, it is overheard by all its neighboring
nodes that are one hop away. A neighboring node only relays the data in a unicast
manner towards the collector if i) it has the highest energy level amongst the can-
didate relay nodes and ii) it is closer to the collector as compared to the sending
node, i.e., it is a downstream neighbor.

— Every node in the sensor grid senses an event and sends it towards the gateway.
Intermediate nodes relay it downstream towards the gateway through the last node.
— hy is the initial energy of the sensor node (i,j) at the reference time #,, distributed

across the network as ﬂljein"jt with mean 1/7);;.

— The sensing process is a random memoryless process that takes place whenever
an event occurs. It is assumed that the occurrence of an event is Poisson distributed
with mean A4;; [7].

Availability Considerations for Wireless Sensor Grids 271

Gateway

Fig. 1. Reference topology of sensor networks

— Since the inter-arrival time of Poisson distribution is exponential, the energy
consumptions due to these activities are exponentially distributed with mean
1/B;; and 1/ y; respectively.

— Sensor node (i,j) consumes energy at a rate of a;; per second to remain awake. It
means that even if there is no sensing and relaying activity, sensor node energy
will be drained at a constant rate in idle time.

— Sensor node (i,j) consumes energy at a rate of a 7; per second during the time
they sleep. Different schemes suggest different levels of energy consumption
while sleeping. For example, [8] suggests that the energy consumption ratio dur-
ing the awake state and sleep is 1:0.05. While a node is sleeping, it does not per-
form relaying for other nodes’ data. From the routing perspective, it is equivalent
to a soft failure.

— When a node dies, either due to battery drainage or component failure, it ceases
to perform any sensing operation. Due to the dead node, a hole is created in the
network that undermines relaying activity of other nodes.

In the following section, we derive the network availability of a two-dimensional
topology in the form of Chapman-Kolmogorov equations [7] for two special cases of
data relaying models, namely Staircase and Delannoy number-based lattice path
traversals.

3 Mathematical Analysis

We denote y; as the total energy consumed by sensor node (i,j) in sensing, relaying,
during sleep, and in idle mode. Furthermore, x; denotes energy consumption just
being sensing and relaying data only. Fi(x;), Vij={11, ...,1k,21,...,2k,...nl,...,nk} is
the joint probability density function (pdf) of all nodes at time ¢. Since Poisson proc-
esses are pure birth processes, the joint pdf of all the sensor nodes can be given by the
differential-difference equation as

272 A.H. Akbar et al.

dF 1 k n k
%)== ;M(W; ;zﬁﬁy

1 j-1 X Xij

H}/lm J J-Ft(y]],..., Vijreres x”k)x
n=1 ¥1=0 yij=0

i—1
exp { _ﬁ'j (-x[j _yU)_ZZ—I:

Equation (1) reflects overall energy consumption in awake state and in active state,
i.e., during sensing and relaying data. An interesting observation is that the second
term on the right hand side of (1) implies that due to sensing and relaying activity, the
energy consumption reaches from y; to x;;. Considering (1) to be an initial value prob-
lem, we obtain R(s;) as Laplace transform of F,(x;):

Il
=
.

i—
X
=1

3

—1

.

%m('xlm_ylm)}dyl]‘”dy{j‘ (1)
=1

3

k n_ k ﬁ“ G- (=D
ZoIDITevs 10) iy

A F A ST wE ST

R;(s;;) =exp| - i xt| . @)
i=1

Now if we include the notion that all the sensor nodes synchronously adopt sleep
mode on detecting no activity, the total energy consumption of entire sensor network
is now characterized by an individual node’s energy consumption. The energy con-
sumption is now given by y;;=x;;+a;;t1+a’';;t,; t; is the time for which sensor nodes
are awake and ¢, is the time for which sensor nodes sleep, i.e., t=t;+f,. Since it is
assumed that all the nodes of a sensor grid in the region of interest sleep and wake-up
at the same time, i.e., nodes follow synchronous sleeping schedules, a synchronization
mechanism needs to be incorporated amongst the sensor nodes [8]. According to the
expression for y;, introduction of sleep mode into sensor nodes suggests reduction in
the overall energy consumption of the sensor networks proportionate to the sleep
duration of sensor nodes. Let Z(s;) be the Laplace transform of F(y;).

Z,(s;)=R (SU)Xexp{z Za”s”tl+z ZaU . 2} . 3)

In this paper, availability A, is adopted to be a measure of network lifetime and is
defined as the probability that all the nodes along all the paths are alive. Inserting (2)
into (3) and manipulating the variables, the network availability is given by

By, (ZZ'Z, P @

Tt

At this stage, we investigate the effect of regulating the transmission power on
network availability of spatial distributions of sensor nodes by considering two uni-
cast data relaying models, i.e., Delannoy number-based and staircase lattice path

Availability Considerations for Wireless Sensor Grids 273

traversals. If the transmission range is adjusted to R; as shown in Fig. 1, staircase
lattice paths are used, i.e., only leftwards or downwards (€W) links are formed en-
route to relay data from the sensing node to the gateway, and assuming a square to-
pology, (4) can be transformed as

wl N
1+ ——) +
it A— i :j Al X,
A, =exp D Z:(n_])(l)(n—w
o)

Similarly, adjusting the power level such that the transmission range changes to R,,
the data relaying activity turns out to be a different lattice path traversal, i.e., paths
from sensing node to the gateway are formed by leftwards, downwards or diagonal-
downwards (€W) links as given by Delannoy numbers [8]. The network availabil-
ity of (4) is now given as

n*na+n*l—

n=1 | EXE
2i+1 VAR 1
i;O @t)(7+77)}

_ A8
A= e p

—(n*na Xt,

(6)

The parameters in (5) and (6) are all assumed to be independent of i, j, [, and m i.e.,
ag=a, ay=a’; A=A By=P, ny=n, nm=n, and y,,=y. The numeric values are adopted
from [9] as: a = 15 W/s, a’= 1.5 W/s, A = 0.083 packets per second, 1/77 = 12960 J,
1/8=42.611, 1/ys = 140.87 J for staircase and 1/yp = 280 J for Delannoy. The number
of nodes varies from 4 (or n = 2) to 1600 (or n = 40).

Fig. 2 plots the network availabilities of (5) and (6) for various node and net-
work parameters. According to Fig. 2, when d = 1000 m, 1/7; = 12960 J, detection

Metweark size

= 09
g —— 100

\ Staircase l — 40
\ =% 1600

and Delani
o
@

—— 00
Delannoy || -~ 400
- 1600

=)
=

a
o
@

Netwark avsilabilities of Staircase
2 o o o o
S @ o= i

o
o

in sec 5
Time in secends o

Fig. 2. Network availabilities for two grid traversal schemes

274 A.H. Akbar et al.

rate = 0.000005, and the numerical plots are obtained for ¢ = 0 seconds to # =15552000
seconds (six months), staircase lattice path traversal shows intuitive advantage over
Delannoy number’s traversal due to half power consumption for small to medium
sized networks. For large to extremely large networks, however, Delannoy number-
based lattice path traversal offers up to 1% increase in the network availability as
compared to staircase’s. It is due to the fact that increased transmission range results
into an effective decrease in the number of hops traversed from sensing nodes to the
gateway as compared to staircase’s, saving the relaying energy for an increasing
number of nodes that use diagonal paths.

Hatwors 2 7a

10
A
an
1d

znd Dizlanney
Ty

LRFIS T ekt vize

A
Feiid
g8az

! e

P

T,

=
A

P I+

A

=
=
t

a3

S10 00 15I0 X000 2B 31000 3EI00 400 g0 SOZ s 1 15 2 25 a
Dislance in rneler Datection e vt

g

Matwar zvailabiliy diffareace harwean Stairnaze snd Dalanray
=
=

Metwork awailabilty dfference between Staicase

=
5]

=

(a) Varying network size (b) Varying detection rate of all sensor nodes

Fig. 3. Difference between network availabilities under design considerations

Fig. 3 (a) is the difference between (5) and (6) to show the effect of distance varia-
tion onto network availability. It was observed at £=1000000 seconds (11.57 days) for
the two data relay models under consideration. The grid size was varied from 100 m
to 5000 m with a step size of 150 m. For very large networks, i.e., for a network size
of 1600 nodes or more, when the inter-node distance is increased for a fixed number
of sensor nodes, staircase is a better choice for relaying until the network size be-
comes exceedingly large. As can be seen, Delannoy number-based lattice path tra-
versal starts to outperform staircase-based data relay because of 40 percent more
transmission range only when the grid is too large. This suggests an advantage of
increasing the transmission power on the network availability for wide spatial distri-
butions of sensor nodes.

Fig. 3 (b) is the difference between (5) and (6) to show the effect of detection rate
variation onto network availability. It was observed at t=1000000 seconds (11.57
days) for the two data relay models under consideration. The detection rate varies
from 0 to 0.00003 with a step size of 9.09091x10”. For small to medium sized net-
works, e.g., for network sizes up to 100 nodes, staircase traversal shows better per-
formance, however when the network sizes are large, e.g., when the number of sensor
nodes is more than 400, Delannoy number-based lattice path traversal offers up to 0.5
percent more network availability as compared to staircase-based data relay.

Availability Considerations for Wireless Sensor Grids 275

4 Proposed Non-uniform Asynchronous Sleep Scheme

As defined in (3) and throughout our analytical modelling, we adopted synchronous
sleep mode for the sensor grid. The choice of synchronous sleep mode owes to sim-
pler treatment of network availability. In this energy conservation scheme, since all
the nodes sleep and wake up at the same time, there is no data relaying loss. However,
this choice is a compromise between energy conservation and sensing fidelity. Once
all the nodes sleep simultaneously, the probability of an event not being sensed in-
creases in proportion to the sleep duration.

In contrast to synchronous sleep mode, a sensor network may implement asyn-
chronous sleep mode. For such sensor networks, sensing fidelity is relatively higher.
The nodes that are awake sense an event and send this information towards the gate-
way. The sleeping nodes, however, do not participate in their relaying activity [8]. As
more nodes sleep, more relaying paths become unavailable, thus affecting the overall
relaying activity. Sensor networks that incorporate sleep mode conserve energy at one
hand but waste the relaying energy on the other. This implicit phenomenon occurs
simultaneously to energy conservation. Thus the overall data relay activity is com-
promised for individual nodes’ energy conservation. Coming back to the comparison
of two data relay models, Delannoy number-based traversal is a better candidate for
asynchronous sleep-schedule implementing sensor grids because it offers an addi-

. . . - (n)! (n+#k)! (2n-2)!
tional number of increasing paths of the order of Z -

o (n =Kk (k) (n=Dn—1)!
as compared to Staircase, avoiding sleeping nodes effectively. Delannoy number-
based traversal can reduce such an adverse effect of sleeping nodes.

We suggest that the sleep schedules for sensor nodes deployed as a grid can be
governed by an interesting observation and an intuitive scheme that follows. Owing to
the lattice mathematics, when a node ij sleeps, it cannot participate in relaying the
data of up to (n-i+1)(n-j+1)-1 nodes. This data loss is unrecoverable for real time
applications. For non-real time applications, the data loss is compensated through
retransmissions. Not all types of sensor networks, however encourage retransmis-
sions. This relay loss is therefore critical in determining the sleeping behaviour of
sensor bodes. For sensor grids supporting retransmissions, such loss will generate
retransmissions; energy wastage.

In this paper, we propose that nodes closest to the gateway, say e.g., node (1,1)
should adopt sleep schedules with the smallest durations, commensurate to the relay-
ing load. This sleep schedule may be communicated to one hop neighbours to adjust
their sleep schedules, in a similar manner as proposed in [10]. Consequently, nodes
located on the outskirts may opt to adjust their sleep schedules according to the occur-
rence of events that they sense and the sleep schedules of downstream neighbours.

The proposed scheme can be generalized for sensor fields which form chain to-
pologies of sensor nodes. More appropriately, for scenarios where multiple sources
sense data and relay to a single sink through multiple hops. This idea is envisaged to
complement proposed routing protocols such as two-tier data dissemination model
that forms a grid from the sensing node towards the sink [11].

276 A.H. Akbar et al.

5 Performance Analysis

A simulator based on the system in section IV was developed in C++ to evaluate our
scheme. The simulation results were obtained for a topology of 10x10 nodes that
were placed in the form of a two-dimensional grid. We assumed the free space radio
propagation model. The gateway or sink node is located at the bottom-left corner of
the grid. All the nodes in the grid generate packets towards the gateway in a uniform
distribution. The routing of packets towards the gateway follows the model described
in section II. In case of data loss due to sleeping or dead node(s) along the routing
path, a source node retransmits end-to-end. Detailed network parameters are summa-
rized in Table 1.

Table 1. Simulation parameters

Simulation Parameters Value
Tx (€W¥) 3
Node energy Tz () g
consi}r;ptlon Constant drain 1
Sleep 0
Sense 2

Initial energy of nodes (J) 2000
Sleep duty cycle of nodes 0.3
Max. Retransmissions 1

Network availability was obtained as a performance index which is defined as the
ratio of nodes that are alive to the total number of nodes at the initialization time of
simulation.

Fig. 4 (a) illustrates simulation results obtained for staircase lattice path traversal
under the three scenarios as shown in the legend. The advantage using our scheme is

Staircase lattice path traversal -
14 Delannoy number-based lattice path traversal

0.9 1 —e— Uniform sleep 1 m T
niform sleep [—
08 LAY \: Nomentom sloep o TN —&-Nosleep
207 = 08 —&—Non-wniform sleep| |
gos \'Cx}"\ 3 ﬂ; x ‘\:\k
= o 0
Ll Fo
o3 % 03
0s RS z
02
0 T T T
0 10 20 30 40 0 0 10 20 ® 4 50
Simulation time Simulation time
(a) Staircase lattice path traversal (b) Delannoy number-based path traversal

Fig. 4. Network availability comparison for sleep schemes

Availability Considerations for Wireless Sensor Grids 277

clear. Nodes closer to the gateway either do not sleep or sleep less. Thus they do not
loose any routing data. It results into network wide energy saving when compared
with uniform sleeping scheme. Obviously, the scenario that does not implement any
sleeping strategy has the lowest availability.

Fig. 4 (b) shows the comparison and simulation results asserting the usability of
non-uniform sleep scheme in Delannoy number-based traversal. A fractional gain in
network availability is observed in this traversal when compared to staircase traversal
for all the three scenarios. This agrees with our earlier mathematical results that De-
lannoy number-based lattice path traversal performs better than staircase extending
network longevity.

6 Conclusion

In this paper, we study the spatio-temporal effects of transmission power adjustment
onto network availability of sensor nodes deployed across a two-dimensional space
that implement sleep mode under a variety of constraints. We observe that doubling
the transmission power of sensor nodes in sensor grids can help incorporate diagonal
neighbours into the data relay path from sensing nodes to the gateway, especially in
dense and large deployments of sensor nodes. This results into better network avail-
ability due to a decrease in effective number of hops for very large deployment of
sensor nodes. It is clearly against the apparent notion that lifetime reduces by increas-
ing the transmission power. This observation should be considered valid only for
sensor grids that form chain topologies. It might be deemed appropriate as a future
work to deliberate on other topologies of sensor nodes.

It is also noticeable that increasing the transmission power also increases the prob-
ability of finding alternate paths for two cases; first, when the sensor nodes are dis-
tributed in a wide area; second, when sensor nodes sleep to conserve energy and make
the intermediate paths unavailable. We propose a non-uniform, asynchronous sleep
scheme in sensor grids which allows nodes to sleep in a manner such that nodes closer
to the gateway sleep less than those in the fringes. The performance results show that
the proposed scheme prolongs network availability effectively in sensor grids.

References

1. Tilak, S., Ghazaleh, N. B. A., and W. Heinzelman.: A Taxonomy of Wireless Micro-
Sensor Network Models. ACM SIGMOBILE Mobile Computer and Communications Re-
view, vol. 6, issue. 2 (2002)

2. Sauve, J. P., Coelho, F.E.S.: Availability Considerations in Network Design. Proceedings
of International Symposium on Dependable Computing, Pacific Rim, (2001), 119-126

3. Schurgers, C., Tsiatsis, V., Ganeriwal S., and Mani, S.: Optimizing Sensor Networks in the
Energy-Latency-Density Design Space. IEEE Transactions on Mobile Computing, vol. 1,
no. 1, (2002), 70-80

4. Liu, J., Li, B. Distributed Topology Control in Wireless Sensor Networks with Asymmet-
ric Links.: IEEE GlobeComm, vol. 3, (2003), 1257-1262

278

10.

11.

A.H. Akbar et al.

Chakrabarty, K.: Grid Coverage for Surveillance and Target Location in Distributed Sen-
sor Networks. IEEE Transactions on Computers, vol. 51, no.12, (2002), 1448-53

Akbar, A. H., Yoon, W. S., and Kim, J. H.: Effect of Transmission Power Adjustments on
Network Availability. Information Technology Journal, 4(3), 2005 271-273

Kleinrock, L.: Queuing Systems Volume I: Theory. Cambridge University Press (1997)
Gao, Q.: Analysis of energy conservation in sensor networks. Wireless Networks, Kluwer
Press

Bhardwaj, M., Garnett, T., and Chandrakasan, A. P.: Upper Bounds on the Lifetime of
Sensor Networks. in Proceedings of ICC, (2001), 785-790

Ye, W., Heidemann, J., and Estrin, D.: An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. IEEE INFOCOM, vol. 3, (2002), 1567—- 1576

Ye, F., Luo, H., Cheng, J., Lu, S., and Zhang, L.: A Two-Tier Data Dissemination Model
for Large-Scale Wireless Sensor Networks. 8" ACM/IEEE MobiCOMM, (2002), 148-149

An Energy-Aware Position-Based Routing
Strategy

Linfeng Yuan*>**, Zongkai Yang, Liang Ou,
Wenging Cheng, and Xu Du

Department of Electronics and Information Engineering,
Huazhong University of Science and Technology,
Wuhan, Hubei Province, 430074, P.R. China
yuanlf@163.com

Abstract. In sensor networks, the nodes are always equipped with lim-
ited power source, energy-awareness must be carefully considered in the
design of sensor networks. According to the analysis of the classical
positioned-based routing protocols, this paper introduces a novel con-
cept of Effective Transmission (ET) which ensures each forwarding node
is not only farther from the source node, but also nearer to the destina-
tion node with respect to its sender. An energy-aware routing protocol
based on ET is proposed. It decreases the energy consumption for each
hop in the transmission. The simulation results show the routing protocol
is effective on the performance of energy consumption while comparing
with some other routing protocols.

1 Introduction

Wireless Sensor Network (WSN) technology is declared as one of the most im-
portant technologies for the 21st century and it will play an important role in our
future lives [1]. It recently received tremendous attention from both academia
and industry because of its promise of a wide range of potential applications in
both civil and military areas. A WSN consists of a large number of small sen-
sor nodes with sensing, data processing, and communication capabilities, which
are deployed in a region of interest and collaborate to accomplish a common
task, such as environmental monitoring, military surveillance, and industry pro-
cess control. Distinguished from traditional wireless networks, WSNs are char-
acterized of dense node deployment, unreliable sensor node, frequent topology
change, and severe power, computation, and memory constraints. These unique
characteristics and constraints present many new challenges to the design and
implementation of WSNs. Energy efficiency is the key to prolonging the network
lifetime and is thus of primary importance in WSNs [2].

* This work is supported by the National Natural Science Foundation of China (No.
60572049) and the Natural Science Foundation of Hubei Province, China (No.
2005ABA264).

** Corresponding author.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 279-288, 2006.
© Springer-Verlag Berlin Heidelberg 2006

280 L. Yuan et al.

Although many networking protocols and algorithms have been developed
for traditional wireless ad hoc networks, they cannot effectively address the
unique characteristics and constraints and application requirements of sensor
networks. To meet the new challenges, innovative protocols and algorithms are
needed to achieve energy efficiency. It is highly desirable to develop new energy-
efficient protocols for topology discovery, self-organization, route discovery, and
data dissemination.

At the same time, position is another important issue in wireless network. It is
natural to utilize location-aware routing [3]. But most of these routing protocols
(GRS [4], MFR [5], COMPASS [6]) do not consider energy consumption carefully.
The position-based protocols [3, 7] only ensure that the forwarding candidate is
nearer to the destination node and don’t care whether the forwarding candidate
is farther from the source node when comparing with the preceding node. So they
have not maximized each hop’s transmission area and thus bring less efficiency.

This paper proposes an energy-aware routing protocol in sensor networks.
We put forward a novel concept of Effective Transmission (ET) that ensures the
forwarding candidate is not only nearer to the sink, but also farther from the
source node with respect to its preceding node. So it can limit the area of the
candidate nodes and efficiently decrease the transmission energy to the least on
each hop. Each intermediate node can decide its next forwarding node according
to the value of decisive energy factor. The energy efficiency will be achieved in
this transmission mode.

2 Effective Transmission Model

The main idea in this paper is to propose an effective way to reduce the energy
consumption from the source node to the destination node during the transmis-
sion. The optimum forwarding candidate is chosen according to the computation
results of each link’s energy consumption. And this choice is based on a position-
based transmission model. So we will first discuss this model in this section.
Suppose each node’s transmission radius is R, we give the following definitions.

Definition 1. The distance of node A and node B is given by d(A,B) =
\/(A:v - B.)? + (Ay - By)Q' U
The distance between node A and B can also simply be denoted as AB. That
is AB = d(A, B).

Definition 2. Neighbors of node V; are defined as

{N(V;) = V;|d(Vi, V) < R, j # i} 0

Definition 3. Effective Transmission (ET) ensures each forwarding node is far-
ther from the source node and nearer to the destination node with respect to its
preceding node. a

Definition 4. The Forwarding Candidate Set (FCS) of node V; is formed by
the nodes in V;’s neighbors that comply with the criteria of ET. a

An Energy-Aware Position-Based Routing Strategy 281

Fig. 1. ET and FCS model

Given the source node S and the destination node D, the node V;’s FCS is
FOS(Vi) ={V;ld(V;, S) > d(Vi, 5),d(V;, D) < d(Vi, D), V; € N(Vi)}. (1)

In Figure 1, S is the center of arc FAQG and D is the center of arc HPAK.
Nodes H,C, G are on the circle with the center point of A and its transmission
radius is R. Three arcs of APH, HCG and GQA, as illustrated in the shadow
part, surround the FCS area of sender A.

Some position-based routing algorithms only require the forwarding candidate
is nearer to the destination. For example, in Figure 1, node B and node F
are the forwarding candidates of node A because BD < AD and ED < AD.
But candidate F is less efficient since E\S < AS, while B can bring effective
transmission since BS > AS.

Theorem 1. The overall path is guaranteed to be loop free when the routing
scheme selects next hop nodes if they have ET. ad

Proof: Denote PS as the routing path set,

m=|PS|,V; e PS,V; € PS,1<i<j<m-—-1,V4 =5V, =D.

If the routing path is not loop free, it means there must be a node V; whose
forwarding node is its ancestor V;. According to the condition of ET, there is

SV, < SVig1 <--- < SV < SV (2)
If V; is V}’s forwarding node, there is
SV; < SV;. (3)

Equation (3) is contrary to equation (2). So there does not exist a node whose
forwarding node is its ancestor. The theorem holds. a

282 L. Yuan et al.

3 Forwarding Candidate Model Based on Energy
Consumption

The selection of the forwarding candidates based on energy consumption needs
two steps. The first step is to determine the FCS. That is to determine the
candidates who can bring ET as illustrated in the above definitions.

The second step of the selection is to determine the optimal candidate within
the FCS. According to paper [8], the energy consumption formulas in sensor
networks are as follows,

ERT(Z) = ERz—elec(l) = [Eejec (4)
ETm (la d) = ETx—elec(l) + ETx_amp(l, d)
B {ZEM tlepd?, d<do

5
lEelec + lEmpd47 d 2 dO ()

where FEgje. is the electronics energy, 5f5d2 is the amplifier energy in the free
space and &,,d* is the amplifier energy in the multipath fading channel models,
[is data size (bit), d is transmission distance, dp is a distance threshold. In a
densely deployed sensor network (it means d < dp), the first transmission energy
formula is used here. For an intermediate node in the routing path, the energy
consumption is

E(l) = Ery(1) + Ery(l,d) = 21 Eejec + ley5d? (6)

Whatever angle-based or distance-based is used in position-based routing pro-
tocol, the only one goal is energy efficiency. Given a sender node A, there are
two candidate nodes B and C. We compare the energy consumption relaying by
each node.

If the packets are propagated via node B, the energy consumption for the
transmitting from A to B is

Epi1(l) = Ery(1,d(A, B)) = Eejec + lepsd* (A, B) (7)
The energy consumption for receiving of node B is
Eps(l) = Epz(l) = lFeiec (8)
The energy consumption for the transmitting from B to the destination node D is
Egps(l) = Ery(1,d(B, D)) = Egec + le5d* (B, D) 9)
So the total energy consumption relaying by node B is

Eg(l) = Ei1(l) + Ep2(l) + Es(l)
= 31F,jec + leys(d*(A, B) + d*(B, D)) (10)

An Energy-Aware Position-Based Routing Strategy 283

Similarly, the total energy consumption relaying by C' is

Ec(l) =Ec1(l) + Ec2(l) + Ecs(l)
= 3lE e + less(d*(A,C) + d*(C, D)) (11)

So the differences between the transmission via the two nodes lie in (d?(A, B)+
d?*(B, D)) and (d?(A, C)+d?(C, D)). We denote the decisive energy factor (DEF)
as

DEA(B) = d*(A, B) + d*(B, D) (12)
DE4(C) = d*(A,C) +d*(C, D) (13)

If the energy consumption through node B is less than that through node C,
node B is more appropriate to be chosen as the forwarding node. It means that

Ep(l) < Ec(l) (14)
From equations (10), (11) and (12), (13), equation (14) means

DEA(B) < DEA(C) (15)

So for a specific data size, the energy consumption is decided by the De-
cisive Energy Factor (DEF'). The sender node can compare each node in the
FCS by computing each DEF. And from the opinion of the energy consump-
tion, the sender will select the node with the least DEF as the optimal
candidate.

Many other position-based routing protocols cannot ensure the least energy
consumption. In SPEED [3] and GRS [4], the sender selects its neighbors the clos-
est one to its destination. MFR [5] demands the packet is forwarded to the neigh-
bor whose progress is the maximum. In Figure 1, there are two candidate nodes B
and C of sender node A, suppose CD =7,BD =8, AC =5,AB =3, BULAD,
CV LAD. From the opinion of SPEED and GRS, since CD < BD, node C'is a bet-
ter candidate node than node B. And from the opinion of MFR, since AV > AU,
node C is also better than node B as a candidate node. But from the energy con-
sumption formulas,

DE4(C) = AC* + CD? > AB? + BD* = DE4(B) (16)

Equation (16) shows that the energy consumption via node B is less than that via
node C, so node B is a better candidate node than node C. In the COMPASS [6]
routing method, it selects the neighbor that its direction to the sender is the
closest to the direction from the sender to the destination. It often brings more
hops to the destination node than the other protocols, so it also cannot ensure
the efficient energy consumption.

284 L. Yuan et al.

4 Energy-Aware Routing Protocol Based on Effective
Transmission

4.1 Candidate Selection

The sender node compares each element in the FCS(V;) by the Decisive En-
ergy Factor (DEF) and chooses the node with the least value as the optimal
forwarding node.

If the sender node has sent its query and receives no reply after a certain
period, it means that no candidate is available according to the constraint of ET.
Our protocol will automatically adopt an adaptive selection adjustment method.
The sender node initiates another query for the forwarding candidates with a
looser constraint that only requires the candidates are closer to the destination
node. After receiving the replies from the candidates, the sender node compares
each candidate’s selection function and indicates the node with the least value
as the forwarding node.

4.2 Protocol Description

The sender node V; (beginning from the source node S) broadcasts its own
coordinates together with the coordinates of the source node and the sink node.
Each receiver candidate V; determines whether to join the routing path selection
based on its residual energy and the comparison results of SV; vs SV;, V;D vs
ViD. Only if the residual energy is above the threshold and SV; > SV;,V;D <
ViD, will V; compute the Decisive Energy Factor (DEF') and send it back to its
sender node V;.

<

| Sender broadcasts info to its neighbors |

One neighbor is node D? Yes

Q/NO
| Each neighbor calculates distances to S and D |

Yes Neighbor meets ET? No

| Candidate sends info to the sender | | Drop packets |

No inished receiving replies?

Yes
\ Sender decides the forwarding node |
I

Ny
\ D tells S with the success path info |

Source node sends useful packets to sink node |

Fig. 2. Protocol implementation flow chart

An Energy-Aware Position-Based Routing Strategy 285

After receiving the replies from the candidates, the sender node V; compares
each DEF and selects the candidate with the least value as its forwarding node.
Then the sender node V; sends the decision to that node. If the sender node has
not received any reply for a certain period, it will initiate another query with
the constraint that the candidate nodes are closer to the sink compared with the
sender node.

The process lasts until the forwarding candidate is the sink node. Then the
sink node sends the information of the path establishment to the source node
along the routing path adversely. After receiving this success information, the
source node S can now send useful packets to the sink node. Figure 2 is the
implementation flow chart.

5 Simulation Results

In this section, we evaluate the performance of our proposed routing protocol in
the ns-2 simulator. The sensing area is 200m x 200m and the radio range is 30m
for each node. The initial energy of each node is 2J. The simulation will start
from 1s and stop at 30s. Each packet size is 36 bytes. The interval time among
each packet is 1s. We evaluate the following performance metrics:

— Energy consumption during the transmission.
— Success link ratio.

We denote our proposed solution as ET protocol, and we will evaluate the
performance by comparing ET with SPEED, GRS, MFR, COMPASS.

5.1 Energy Consumption

In the simulation, we calculate the energy consumption of all the nodes in the
routing path during the transmission per 4 seconds and get the results shown in
Figure 3. In the figure, we can find that the energy consumption in ET protocol is
least and COMPASS costs most energy. Because COMPASS selects the neighbor
that its direction to the sender is the closest to the direction from the sender to
the destination, it needs more hops to the destination node and need more energy
consumption for the propagation. In our simulation, there are only 9 hops from
the source node to the destination node in ET protocol, but 11 hops are existed
in COMPASS protocol. The figure also shows SPEED protocol consumes more
energy than ET protocol. This can explain that SPEED protocol can get higher
transmission rate at the cost of energy consumption at some time comparing
with ET protocol.

In order to illustrate the energy consumption statistically, we randomly gener-
ate 30 network topologies based on the above environmental settings and calcu-
late the whole energy consumption in the routing path at the time of 30 seconds
for every topology with each protocol. Then we compute the mean energy con-
sumption for all the topologies for each protocol. Figure 4 shows the simulation
result. The figure shows that the mean energy of ET protocol is the least one

286 L. Yuan et al.

N —8—ET
S g | —o—SPEED
& 7 || —a—MFR
2 —%—GRS
= 06 1 ——compass
=]
S 04
>
20
2 02
3]

0

2 6 10 14 18 22 26 30
Time (sec)

Fig. 3. Energy consumption during the transmission

COMPASS

0.8

MFR

0.7

Energy consumption (1)

A

0.6

Fig. 4. Mean energy consumption with different topologies

and COMPASS costs most mean energy consumption. The energy consumption
in SPEED protocol is a little higher than that in GRS protocol and MFR proto-
col. It is ET protocol has considered energy metric and other protocols have not
carefully considered energy metric that ET protocol becomes a more efficient
transmission scheme for the energy consumption.

5.2 Success Link Ratio

We change the number of nodes and evaluate the probability that the source node
can successfully find a route to the destination node in each routing protocol.
When selecting a certain number of nodes, we test each routing protocol in 50
different topologies and calculate how many times the source node can find a
route to the destination node. Figure 5 shows the simulation results.

The figure indicates that the success link ratio for each protocol has small
differences with the others. When the number is under 150, ET’s link ratio is a
few lower than the others. This is because the selection area in the ET protocol is
smaller than those in the other protocols. But in the densely distributed network,
ET can get almost the same success link ratio with the others, as illustrated in

An Energy-Aware Position-Based Routing Strategy 287

100

80

60

Link success ratio (%)

40 —B—ET
—o— SPEED
20 —A—MFR
—%—GRS
0 —+— COMPASS
90 120 150 180 240 300

Number of nodes

Fig. 5. Success link ratio at different number of nodes

the figure when the number of nodes is above 150. And it is the smaller selection
area that makes ET protocol more accurate and more efficient to find a routing
path.

6 Conclusions

Many excellent protocols have been developed for ad hoc networks. However, sen-
sor networks have additional requirements that were not specifically addressed.
Energy efficiency is one of those important issues. The most existing position-
based routing protocols have not considered energy consumption carefully. This
paper proposed an effective energy-aware position-based routing protocol in sen-
sor networks. The novel concept of ET is introduced for the forwarding candidate
selection. The simulation results indicate that the proposed routing protocol can
get low energy consumption when comparing with some other routing protocols.
Moreover, it can also achieve about the same success link ratio after providing
effective transmission.

References

1. John A. Stankovic, Tarek F. Abdelzaher, Chenyang Lu, Lui Sha, and Jennifer C.
Hou, Real-Time Communication and Coordination in Embedded Sensor Networks,
Proceedings of the IEEE, Vol.91, No.7, July 2003, pp: 1002-1022.

2. Jamal N. Al-karaki, Ahmed E. Kamal, Routing techniques in wireless sensor net-
works: a survey, Wireless Communications, IEEE [see also IEEE Personal Commu-
nications], Volume: 11, Issue: 6, Dec. 2004, pp. 6-28.

3. Tian He, J.A. Stankovic, Chenyang Lu, T. Abdelzaher, SPEED: a stateless protocol
for real-time communication in sensor networks, Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems, 19-22 May 2003, pp. 46-55.

4. G.G. Finn, Routing and Addressing Problem in Large Metropolitan-Scale Internet-
works, ISI res. Rep ISU/RF-87-180, Mar 1987.

288 L. Yuan et al.

5. H. Takagi. L. Kleinrock, Optimal Transmission Ranges for Randomly Distributed
Packet Radio Terminals, IEEE Transactions on Communications, Vol. 32, no. 3,
1984, pp. 246-257.

6. E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks, Pro-
ceedings of the 11th Canadian Conference on Computational Geometry. Vancouver,
Canada, August 1999.

7. Wook Choi, Sajal K. Das, and Kalyan Basu, Angle-based dynamic path construction
for route load balancing in wireless sensor networks, Wireless Communications and
Networking Conference, 2004 IEEE, Volume: 4, 21-25 March 2004, pp. 2474-2479.

8. W.B.Heinzelman, A.P.Chandrakasan, H.Balakrishnan, An application-specific pro-
tocol architecture for Wireless Microsensor Networks, [EEE Tran. On Wireless Com-
munications, Vol. 1, No. 4, Oct 2002, pp. 660-670.

Introduction of Grid Computing Application Projects
at the NASA Earth Science Technology Office*

Kai-Dee Chu', Liping Di’, and Peter Thornton®

! Global Science & Technology, Inc.,
NASA ESTO Technology Integration Manager
% Laboratory for Advanced Information Technology and Standards (LAITS),
George Mason University
3 National Center for Atmospheric Research (NCAR)

Abstract. In 2003, NASA Earth Science Technology Office (ESTO) awarded
funding for 20 new investigations in information systems technology
development under the Advanced Information Systems Technology (AIST)
Program. Two of the selected proposals specifically used Grid computing
technology in their Earth science applications:

(1) Integration of OGC and Grid Technologies for Earth science modeling and
applications

The Open Geospatial Consortium (OGC) web service technologies are deve-
loped to provide interoperable access and services of geospatial data while the
Grid technology is developed for sharing data, storage, and computational
powers of high-end computing facilities within a virtual organization. The built-
in OGC geospatial services include subsetting, resampling, georectification,
reprojection, reformatting, and visualization. The technology integration will
make Grid technology geospatially enabled and compatible with OGC standards
and, at the same time, make OGC technology Grid enabled.

(2) Grid-BGC: A Grid-computing architecture for terrestrial biogeochemical
modeling

The objective of the Grid-BGC project creates an end-to-end technological
solution for high-end Earth system modeling that will reduce the costs and risks
associated with research on the global carbon cycle and its coupling to climate.
The system can provide a robust end-to-end processing environment that
permits computation at the supercomputer level and addresses the associated
demands for massive on-line and near-line input and output data streams.

1 Integration of OGC and Grid Technologies for Earth Science
Modeling and Applications

1.1 Project Description

Open Geospatial Consortium (OGC) is an international organization promoting the
interoperability and sharing of geospatial resources and services in the distributed

" These projects are currently funded by NASA Earth Science Technology Office (ESTO),
Advanced Information Systems Technology (AIST) Program.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 289—-298, 2006.
© Springer-Verlag Berlin Heidelberg 2006

290 K.-D. Chu, L. Di, and P. Thornton

environment through the development of volunteer-based implementation specifi-
cations. OGC specifications are widely used by geospatial communities for sharing
data and resources and are becoming ISO standards. The recently developed OGC
web-services specifications allow seamless access to geospatial data in a distributed
environment, regardless of the format, projection, resolution, and the archive location.
The fundamental ones include Web Coverage Services (WCS), Web Feature Services
(WFS), Web Map Services (WMS), and Web Registries Services (WRS). They form
the foundation for OGC web-based interoperable data access.

The OGC technology allows users to specify the requirements for the data they
want. An OGC compliant server has to preprocess the data on-demand based on
users’ requirements and then returns the data back to users in the form specified by
users. At the end, users get the data that exactly match their requirements in both the
contents and the structure (e.g., format, projection, spatial and temporal coverage,
etc). This will significantly reduce the time needed for users to acquire and preprocess
the data before they can be used in models or analysis packages.

The Laboratory for Advanced Information Technology and Standards (LAITS) of
George Mason University has developed NASA Hierarchical Data Format for Earth
Observing System (HDF-EOS) Web Geographic Information System Software Suite
(NWGISS) to test OGC interfaces in NASA’s data environment. It is the only OGC
compliant servers and client system in the world that works with all generic HDF-
EOS files. Funded by ESTO, OGC, and the Earth Science Data and Information
System Project (ESDISP), NWGISS provides interoperable, personalized, on-demand
data access and services (IPODAS) to Earth Observing Systems Data and Information
System (EOSDIS) data with built-in georectification, reprojection, subsetting,
resampling, reformatting, and visualization functions. Currently, NWGISS consists of
five components: a Map Server, a Coverage Server, a Catalog Server, a multi-protocol
geoinformation client (MPGC), and a Toolbox. The map server serves HDF-EOS data
as maps to any OGC-compliant map clients. The coverage server allows clients to
access multi-dimensional data at user specified geographic location, parameters,
projection, and formats. The catalog server provides the catalog search capabilities to
catalog clients. MPGC enables users to search WRS server and to access data served
by OGC web coverage, map, and feature servers. It also provides a set of data
manipulation, processing, and analysis functions at user's desktop.

The main work of this project is to integrate Grid and OGC technologies. Based on
the preliminary analysis of the two technologies and the EOSDIS data environment,
the integration took place between the backend of the NWGISS OGC servers and
front-end of data Grid services. The key is to make Grid-managed data accessible
through NWGISS OGC servers.

Figure 1 shows the architecture of the integrated system. The first phase is the
initial integration, which includes the setup of the development environment,
preliminary design of the integration, and implementation of WCS access to Grid-
managed data. The second phase is the data naming and location transparency, which
includes investigating the use of Data Grid and Replica Services (metadata
catalogues, replication location management, reliable file transfer services, and

Introduction of Grid Computing Application Projects 291

4E Adapter o ECHO ECHO)
LAITS CHOWAPE (s ased on ECHOTaK)
Gird-enabled =1 =]

Catalog Servica Federation

LAITS
GridCSF Web-Portal
[T

—— Legend ———

i ESGLLNL oo ——— Motadala Quory
Grid-0GC CSW . (OGC Protocal)
LAITS Da
Download Servige /' ™S 1 sl aiieems 0 B ;0 N | Onee g Metadata Query
(ECHO Protocal)
#°°" Mgtadata Ingestion
User

4—— EOS Data
Download

- 5
LAITS Grid OGC-DataServices —& 4+
I (s | [crawes) Giaes] e
Workflow

LAITS Multi-Protocal On-demand
Geospatial Cliont +— EOSData
Customization
LAITS ECHO Data (0GC Protocal)
Downloading Server
LAITS Grid Services D Data Flow
=3 n)) s
] ala Flow
Grid-Enabled 06C-Compiient
oGe Grid \

Fig. 1. Integrated Architecture of Geospatially-Enabled OGC-Compatible Data Grid

network caches) to provide naming and location independence for data used by
NWGISS and revising NWGISS to invoke such Grid services. The approach to
investigating the Data Grid and Replica Services will be to configure a Data Grid
testbed. This will be followed by the integration of NWGISS data catalogs into a data
Grid catalog and the investigation of naming approaches, followed by interfacing
NWGISS with data generators and Data Grid Replica Location service.

The third phase is the virtual dataset research and development. Virtual datasets are
those the Grid knows how to produce on-demand, but not produced (materialized)
yet. The concept of virtual datasets is being implemented in the high-energy physics
Grid project, but is not tested anywhere in Earth science. This project has
implemented the Virtual Data services (materialized data catalog, virtual data catalog,
abstract planner, concrete planner) to provide the on-the-fly data transformation
services needed by NWGISS.

1.2 Project Accomplishments

In order to show the real power of Grid technology for use in Earth science modeling
and application, the project has successfully built a creditable, realistic Grid virtual
organization as the project testbed among members of the project team and
Committee on Earth Observation Satellites (CEOS). The virtual organization
(VO) testbed includes 7 machines with realistic NASA data environment and large
amount of data. Figure 2 shows the structure of virtual organization at the end of May
2005.

The flagship computer in the VO is LAITS’ Apple Cluster server. The machine is
hosted at the network laboratory of NASA Earth Science Data and Information
System Project (ESDISP) in NASA Goddard Space Flight Center (GSFC). The server
at Lawrence Livermore National Laboratory (LLNL) is used as the gateway between
the Earth System Grid (ESG) project and this project.

292 K.-D. Chu, L. Di, and P. Thornton

GMUT (Solaris) (laits.gmu.edu)
Globus 3.2, 3.9 with CEOS Certs.

GMU CA ¢ ESG CA center

GMTT (Linux)
(llinux.laits.gmu.edu)
Globus 2.2 with Laits Certs.

LLNL esg? (Linux)
(esg2.1lnl. gov)
Globus 3.2 with ESG Certs.

TCA center LLNL ESG VO

GMTT (Linux)

(data laits.gmu.edu) Ames ipg05 (Linux)
Globus 3.2, 3.9 with Laits Certs. , o .
(1pg05.1pg.nasa.gov)

GMU LAITS VO Globus 3.2 with IPG Certs.
NASA IPG VO

Fig. 2. Structure of Virtual Organization

Client Portall
(Zlient Partal WMS Portal

WS Portal FJ
- fows)

[(Zrid Map Service)

— T awes)

(Zrid Coverage Service)

(Catalog Service]

- - (Data Transfer Service)
Cshonrtoring and Discovery Service]

(Replica Optimization Service)

Fig. 3. Portal and Service Interface to intelligent Grid Service Mediator (iGSM)

An intelligent Grid Service Mediator (iGSM) was implemented to mediate the
resources in a Grid to fulfill the geodata request from WCS and WMS portals. The
iGSM was enhanced to work with Globus Replica Optimization Service
(ROS),Monitoring and Discovery Service (MDS), and Data Transfer Services (DTS)
for best utilization of the Grid resources. Figure 3 shows the services that iGSM
works with. In the figure, the ROS, MDS and DTS are Globus services. The GWMS,
GWCS and GCSW are the Grid-enabled geospatial services developed by this project.
And the WCS and WMS are the portals developed by this project.

Introduction of Grid Computing Application Projects 293

1.3 Integrated Grid-Enabled OGC Applications

With the development of Grid-enabled geospatial services components, we are ready
to establish a geospatial data grid at our testbed that can provide on-demand
geospatial data services through OGC interfaces. Figure 4 shows how the geospatial
grid fulfills a data request from OGC client. The scenario is based on the access pattern
that an OGC client first searches the data in Grid and then retrieves the data. The
following paragraphs explain the request and response sequences labeled in the figure.

ey
2

3)

C))

&)
(6)

Other WC'8
= . = =TT
Client e
et S
=
-

+
- 3 default WCS portal [P

- e P Retrieval Manager

Fig. 4. A Data Request Scenario with the Geospatial Grid

The OGC client issues a search request to CSW portal to find if the data the client
wants exist in the Grid.

The CSW portal propagates the request to GCWS at LAITS and ESG data
catalog. Those catalogs will return with the logical names of the matched datasets
as well as proper metadata to the portal. The portal then integrates the results
from individual catalog services and returns the result to OGC client.

Based on the search result, the OGC client formulates a WCS data retrieval
request for retrieving a dataset from the Grid. The request is then sent to the
default WCS portal, in our case, the LAITS WCS portal.

The portal then sends the whole request to iGSM to mange the retrieval.

iGSM sends the logical name to ROS for resolving the physical name and
location of the requested dataset.

ROS sent the logical name to RLS to find a list of physical file name and service
ID for the datasets.

294 K.-D. Chu, L. Di, and P. Thornton

(7) With the physical name and service ID, ROS then query MDS to find the best
available server. Then ROS returns an optimized Physical File Name Information
(PFNInfo) object to iGSM. Each PFNInfo contains a physical file name, a
GridWCS service ID, and the host where the data file located. The service ID
could be either a valid or NULL ID.

(8) If the ID is a valid ID, iGSM sends a request to the GCSW for corresponding
GridWCS/WMS URL to the service ID. If the ID is NULL, iGSM sends a
request to GCSW for finding an available GWCS(s) /GWMS(s) which accepts
data from other node in the Grid. Once such a GWCS(s) is found, iGSM then
requests a ROS (Replica and Optimized Service) for selecting the best
GridWCS/WMS among the resources returned from the GCSW and requests a
DTS (Data Transfer Service) for transferring the data to the selected system.

(9) iGSM sends the data retrieval request to the corresponding GWCS for data
retrieval.

As a result, the OGC client users are able to retrieve data products on demand as
was available from the original OGC architecture. The users do not know or feel the
underlying Grid layer that enhances and enriches the services.

2 Grid-BGC: A Grid-Computing Architecture for Terrestrial
Biogeochemical Modeling

2.1 Project Description

The objective of this project is to create an end-to-end technological solution for high-
end Earth system modeling that will reduce the costs and risks associated with
research on the global carbon cycle and its coupling to climate. The completed
system bridges gaps in process and scale between the remote sensing observations
that form the foundation of NASA’s Earth Science Strategic Vision for carbon cycle
research, and the global coupled climate-carbon cycle model predictions that form the
culmination of that Strategic Vision. This project takes advantage of recent
developments in Grid technologies to reduce the costs of this research by providing an
integrated software system that links remote computational, storage, analysis, and
visualization hardware components, reducing the need for on-site access to expensive
hardware.

The completed system also helps achieve NASA Earth Science strategic goals in
global carbon cycle research by making it practical to link remote sensing
observations to global coupled climate-carbon cycle simulations through a
hierarchical interaction with a high-resolution regional model of terrestrial biogeo-
chemical cycles. The high-resolution model predicts many of the same quantities as
the coarse-resolution global coupled models, so acts as a useful conduit for passing
process-level understanding to the global scale through focused model-model
evaluations.

The Grid-BGC system consists of a single user-oriented software framework that
integrates the following five technology components:

Introduction of Grid Computing Application Projects 295

(1) A data ingest and interpolation engine that acquires ground-based observations of
surface weather as its lowest-level input data and produces high-resolution
gridded outputs of surface weather fields.

(2) A state-of-the-art model of terrestrial carbon, water, and nitrogen cycles that
acquires gridded surface weather fields from the interpolation engine, performs a
configurable sequence of simulations, and produces a high-volume multi-
dimensional gridded output dataset. Model code and documentation is on-line at
http://www.cgd.ucar.edu/tss/staff/thornton/rnd.html

(3) A post-processing engine that acquires and summarizes the high-resolution
biogeochemical model output, evaluates the model results against operational in-
situ and remote-sensing observations, and performs spatial scaling analyses
against global coupled climate system model outputs.

(4) A visualization engine that acquires analyzed or summarized output from the
post-processing engine and produces static and dynamic visualizations to assist
the user in assessing experimental results, developing new experiments, and
effectively conveying high-volume high-resolution model output and model
evaluation information to a broad scientific audience.

(5) A mass storage system with high-speed connection to the computational engines.
See description of the National Center for Atmospheric Research (NCAR) Mass
Storage System (MSS) on-line at http://www.scd.ucar.edu/main/mss.html

Over the past several years, since the development of the interpolation and carbon
cycle components of the proposed system, the development team has received a
growing number of requests for assistance in implementing large gridded simulations
employing these components. Because of the lack of a software framework that
integrates these components and addresses the parallel computational requirements
for these large simulations, it was impossible to respond positively to more than one
or two such requests per year. NCAR undertook the development of the prototype
system to demonstrate that there was a viable technological solution that would
permit the efficient implementation of large simulations with a low start-up cost in
terms of time and hardware expense. In the course of this exercise a more
comprehensive vision was formed for an end-to-end software framework to facilitate
the development, implementation, and evaluation of high-resolution carbon cycle
simulations requiring supercomputer levels of parallel computation, which is the
system we have developed under the current NASA project. The architectural design
block diagram can be seen at Figure 5.

2.2 Project Accomplishments

The list below expands on the project overview, providing a description of the project
accomplishments including reference to particular technology components that will be
deployed:

(1) Use emerging Grid-Compute technologies to provide a research-quality platform
for terrestrial carbon cycle modeling.

(2) Provide a Web Portal user interface to organize the complicated workflow and
data object dependencies that are typical of very large gridded ecosystem model
implementations.

296 K.-D. Chu, L. Di, and P. Thornton

I VWeb Portal GUI

| Project Object

MNCAR
Mass
Storage

Manager

Job Execution
Intarfaca Scratch Space

Web Service Client SridFTP

Grid Security Infrastructure Boundary

| Grid-BGC Web | T

Service

Scratch Space

Job Database
Slobus RFT

Workflow
Management Sarvice |‘-‘_ EsE e
i Surfer R
‘ “ Esrmizsurce & Executables

Fig. 5. Grid-BGC Current Architecture Design Diagram

(3) Connect Portal-based simulation definition and control with automated job
execution on remote supercomputer platforms, eliminating direct user interaction
with the remote computational resources.

(4) Provide automated data streaming for very large model input and output datasets
between the Portal, remote computational resources, and a remote mass storage
facility.

(5) Provide robust analysis and visualization tools through the Portal.

(6) Demonstrate end-to-end functionality with a research-quality application (U.S. 1
km gridded simulations, targeting application to the North American Carbon
Program).

(7) Focus on the needs of real researchers, through multiple iterations of platform
development and beta-testing.

Most of the developed services are applicable to other application domains and can
be reused in future systems that address those domains. We have demonstrated this
capability by re-tasking the current back-end grid service components to run the
Parallel Ocean Program (POP), developed by DOE at the Los Alamos National
Laboratory and a component of NCAR’s Community Climate System Model
(CCSM). An example of the application of Grid-BGC is shown in Figure 6. This
project satisfies the pressing need for a research-quality software infrastructure to
support simulations of terrestrial biogeochemistry over large domains at high spatial
resolution.

2.3 Science Relevance of Grid-BGC

Our system will help to answer two of the fundamental questions defining the NASA
Earth Science Mission: “How well can we predict future changes in the Earth
system?” and “How do ecosystems respond to and affect global environmental change
and the global carbon cycle?”. The Earth Science Strategic Vision for 2003 to 2025

Introduction of Grid Computing Application Projects 297

Example Results

Model GFF.
o fur

18-year mean
ipot=sn sl GPE nssdialeaf Eare:

Daymet inputs...

Taual
PEyear Mear (Anmmal) .

...Grid-BGC outputs

Fig. 6. An example of the typical simulation domain targeted by the project, showing
schematically the information flow from the Daymet model processing that produces gridded
surface weather fields, to the Biome-BGC model processing that ingests these fields and
produces estimates of the state and flux variables for carbon, nitrogen, and water cycles.

calls for the research community to “develop and test models to bring diverse
observations to bear on the fundamental Earth Science questions”, and later to
“develop a collaborative synthetic environment to facilitate understanding and enable
remote use of models and results.” If our project is a success, we will have made
substantial progress toward both of these goals. Our vision for this technology is to
bring the modeling capabilities for regional terrestrial carbon cycle science up to the
level of technical readiness that already exists for large remote-sensing data
distribution systems and global coupled climate-carbon simulation systems. This
addresses a critical gap in scales between the observations available for evaluation of
carbon cycle simulations and the current simulation platforms. The technology
developed under this project will significantly provide an evaluation framework for
the terrestrial component of carbon cycle research at the scales appropriate to the
remote sensing technology planned through 2010.

3 Lessons Learned

A surprising amount of our time has been spent on basic network administration and
security due to network performance and firewall restrictions. A dedicated domain
expert and the point of contact for each virtual organization is essential to the success
of the project. Maintaining configuration management across independent agencies
and centers is difficult but extremely important. Each tool/software upgrade should
be carefully planned and executed in order to minimize service disruptions. Listen
carefully to the concerns of the end users, and communicate frequently among the
collaborators so that a healthy feedback loop can be formed to ensure the success of
the project.

298 K.-D. Chu, L. Di, and P. Thornton

4 Table of Acronyms

Acronym Elaboration ‘Acronym Elaboration
BGC Biogeochemical IPG NASA Information Power Grid
CA Grid Certificates and ISO International Organization for
Authentications Standardization
CCSM Community Climate System Model LAITS Laboratory for Advanced Information
Technology and Standards
CEOS Committee on Earth Observation LLNL Lawrence Livermore National
Satellites Laboratory
CSS Computational Sciences Section MCS Grid Globus Metadata Catalog System
CSW OGC Catalog Service for Web MDS Grid Monitoring and Discovery
Service
DAAC Distributed Active Archive Center MODIS MODerate-resolution Image
Spectrometer
DTS Grid Data Transfer Service MSS Mass Storage System
EOS Earth Observing System NASA National Aeronautics and Space
Administration
EOSDIS EOS data and information system NCAR National Center for Atmospheric
Research
ESDISP NASA Earth Science Data and POP Parallel Ocean Program
Information System Project
ESG Earth System Grid of Department of | PFNInfo Physical File Name Information
Energy
ESTO Earth Science Technology Office RLS Grid Replica Location Service
GRAM Grid Resources Allocation and ROS Grid Replica Optimization Service
Management
GSFC NASA Goddard Space Flight Center | SAN Storage Area Network
GCSW Grid-enabled OGC Catalog Service SCD Scientific Computing Division
for Web
GWCS Grid-enabled OGC Web Coverage OGC Open Geospatial Consortium
Service
GWMS Grid-enabled OGC Web Map UCAR University Corporation for
Service Atmospheric Research
HDF Hierarchical Data Format VO Grid Virtual Organization
HDF- EOS profile of HDF WCS OGC Web Coverage Service
EOS
iGSM Intelligent Grid Service Mediator WMS OGC Web Map Service

Modeling Message-Passing Overhead on NCHC
Formosa PC Cluster

Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang, and Shou-Cheng Tcheng

National Center For High-Performance Computing

Abstract. The communication plays a role in the overall system performance.
The characterization of the communication overhead is very important to
estimate the global performance of parallel applications and to detect possible
bottlenecks. In this work, we evaluate and model the performance of the
message-passing libraries on NCHC Formosa PC Cluster, a large cluster system
with dual processor nodes and connected by Gigabits Ethernet networks. Our aim
is to fairly characterize the communication primitives using general models and
performance metrics. We use the formulae to estimate the communication time
of a real application program for molecular dynamics simulation. We hope that it
is able to provide some useful information for performance prediction and
scientific computing.

1 Introduction

The improvement of the microprocessor and network has been so rapid for the last
many years that has enabled PC clusters to compete with conventional supercomputers.
In fact many powerful supercomputers currently in use are made of microprocessors
and which usually are even a generation behind the fastest processors used in PCs.
Furthermore, the availability of low-cost and fast interconnection network allows many
research groups to put together commodity off-the-shelf PCs to build parallel
high-performance computers. Having the advantage of delivering high-performance at
low-cost, PC clusters are becoming one of the most important platforms for HPC [1-5].

Message passing plays a crucial role in distributed computation. The overheads
incurred with message passing can severely limit the performance on these
applications. Without knowing these overheads, users cannot make informed
code-optimizing decisions, such as the tradeoffs between higher parallelism and
increased communication overheads [6].

Xu and Hwang [6] have already proposed communication overhead models for
machines like IBM SP2, Cray T3D, and Intel Paragon. Likewise, Prieto et al. [7]
proposed models for Cray T3E and SGI Origin 2000, Tourifio and Doallo [8] for
Fujitsu AP3000 platform, and Gunawan and Cai [9] for Myrinet-based cluster system.
Yet, there has been no formulation for clusters with Gigabit Ethernet so far.

NCHC Formosa PC Cluster [10] is a high-performance, cost-effective parallel
computing system dedicated to serve a diverse group of researchers for computational

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 299 -307, 2006.
© Springer-Verlag Berlin Heidelberg 2006

300 C.-Y. Chou et al.

science applications. The system consists of 150 dual-Xeon PCs (i.e., 300 Intel Xeon
processors) connected by a private subnet with 1000 Mbits/s Gigabits Ethernet. It has a
theoretical peak speed of 1680 Gflops/s with the Linpack performance score being 997
Gflops/s, the best score of Taiwan on the 22™ Top500 List [11].

We will establish the formulae of point-to-point, broadcast, and reduce message
passing on Formosa PC Cluster, and estimate the communication time of a real
application program for molecular dynamics simulation by using the formulae.

Our aim is to estimate communication overheads with simple expressions, which can
help application developers to design or migrate parallel programs more efficiently.

The rest of the paper is organized as follows. The communication model and
measurement methodology is in section 2. In section 3 we present the results of some
commonly used MPI functions. A case study is evaluated in section 4. Some
concluding remarks are made in section 5.

2 Communication Model and Measurement Methodology

Table 1 lists the variables used in the communication models in this Section.

Table 1. Definition of the variables

Variable Definition or Meaning
t the communication time in microseconds
m Message size in bytes
ty the latency (or startup time) in microseconds
Fen the asymptotic bandwidth in MB/s
n the number of processors

2.1 Hockney’s Model

Hockney [9, 12] has proposed a model to characterize the communication time (in
microseconds) for a point-to-point communication [13]. The model is described as:

t(m)=t,+— , where m is the transferred message size in bytes, r., is the asymptotic

oo

bandwidth in MB/s, which is defined as the maximal bandwidth achievable when the
message length approaches infinity, and ¢, is the latency (or startup time).

2.2 Xu and Hwang’s Model

The Hockney’s model in the prior section is only for point-to-point communication.
The communication time is only dependent on message size. For collective
communication, Xu and Hwang [6] developed a generalized communication model
m
r.(n)’

based on Hockney’s model: t(m,n)zto(n)+ where n is the number of

Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 301

processors, the communication time is a function of n and m now, and both the latency
and the asymptotic bandwidth are also functions of .

2.3 Gunawan and Cai’s Model

Gunawan and Cai [9] divides the transferred messages into two groups, then fit the
model of communication overhead in Myrinet environment, respectively. The above
models in Sections 2.1 and 2.2, respectively, are rewritten as follows.

t0+ﬁ,m3mp to(n)+L,mSmp
rp rp(n)
t(m)= and t(m,n): ,
m
tO +Z,m>mp to(n)+r(n),m>mp

where r, is the peak bandwidth achieved at the message size m = m,. The model
suggests that there should be two ranges for the performance metrics. One for the
message size m = m, where the message still fits the cache size and another for the
message size m > m, where the cache no longer can hold the message in one operation.

2.4 Measurement Methodology

In our experiment, we measured the MPI communication overhead likely as follows.

While (Static Check is O.K) {
Barrier synchronization;
for (i=0; i < ITERS+5; i++) {
if (i==5) get start_time;
MPI_communication;
}
get end_time;
local_time=(end_time- start_time)/ ITERS;
communication_time = maximum reduce(local_times);
compute statics;

}

Our test bed is composed of eight dedicated nodes (16 processors). Because our
system consists of dual processor nodes only, we use 2, 4, 6, 8, 10, 12, 14, and 16
processors for measuring sample data. The only exception is the pingpong case where
we use one processor of each two dedicated nodes to pass message.

After five iterations for startup, we repeat one thousand times of the tested MPI
functions, and then calculate the mean of these iterations. The data is called a “sample”.
In the paper, we have taken one thousand samples. Harmonic mean [14] was used since
it gets rid of outliers better than the arithmetic mean [5,9]. Moreover, we repeated the
measurement until the standard error of the mean was within 10% of the mean with
95% confidence level [14].

302 C.-Y. Chou et al.

In our work, we used the Intel compiler 8.0 with option “-O3”. And the LAM 7.0.6
[15] is adopted as the MPI library.

3 Results

3.1 Point to Point (Hockney’s Model)

The results of the well-known ping-pong method [6] are clearly shown in Table 2.
The detail description of the standard error is in [14]. From the table, we show that the
throughput of the system is about 90.14 MB/sec, near the peak performance of
1000Mbits Ethernet. The projection function of the Hockney’s model is

{m)=51.8+0.011 m. (1)

Table 2. Pingpong results on NCHC Formosa PC Cluster

Message length Bandwidth

(bytes) (MB/s)

1 0.020+0.0000

2 0.038+0.0013

4 0.070+0.0000

8 0.141+0.0010

16 0.285+0.0017

32 0.560+0.0052

64 1.106+0.0067

128 2.1324+0.0291

256 4.0434+0.0151

512 7.145+0.0201

1024 11.580+0.0319

2048 18.970+0.0158

4096 30.554+0.0317

8192 48.859+0.0422

16384 65.020+0.0767

32768 75.108+0.0413

65536 84.1454+0.0696

131072 78.655+0.0811

262144 83.702+0.0286

524288 87.104+0.0190

1048576 88.516+0.1199

2097152 87.644+1.7322

4194304 89.642+0.1073

8388608 89.678+0.2283

16777216 89.974+0.0986

33554432 90.001+0.0134

67108864 88.685+1.2288

134217728 90.045+0.0226

268435456

90.141+0.0966

g 4000000
£ 3000000
2 2000000
5 1000000

= 0

Q S Db Vo)
AP N)

Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 303

—>— Measured time

-----projected time

Message length (bytes)

%6&
%%6%

(OX

Fig. 1. Measured versus projected times for point-to-point communication

Figure 1 is the comparative analysis of projection function and measured data. The
projected and measured values nearly coincide with each other.

3.2 MPI_BCAST

Figure 2 is the throughput of the MPT_BCAST on 16 processors. We observe that the
maximum occurred at message length=32KB, and the highest value for the second
curve at message length=16MB.

35 -
%)
255 3 X
= kKX
220 -
£15
210 - /
=5 - /
= 0 KKK KKK L L L1
1 8 64 512 4K 32K 256K 2M 16M 128M
Message length(bytes)

Fig. 2. The throughput of MPI_BCAST on 16 processors

Therefore, we extend the Gunawan & Cai’s model as

m

ry(n)’

to(n)+

tn,m)=1to(n)+ ———,

m
to(n)+ ,

ro(n)

304 C.-Y. Chou et al.

After curve fitting, the MPI__BCAST overhead model on the system is

81.31541In(n)—63.81+[0.0137In(n)—0.0057}n, m<2"
(n,m)=181.3154In(n)—63.81+[0.0152in(n) - 0.0031}m, 2B <m<2*! (2
81.31541n(n)—63.81+[0.0193/n(n)—0.0085m, 2% <m

where n is the number of processors and m is the size of message in byte.

Figure 3 shows the communication time of MPI_BCAST where the transferred
message size varies from 16Kbytes to 256Kbytes. Four curves are plotted: our model,
Xu & Hwang’s model, Gunawan & Cai’s model and by measurement. Our model
appears to be closer to the measurement than the other models .

14000

12000 - - - - - Measurement P X

10000 ——— QOur Model -
8000 Xu&Hwang

Mircoseconds

6000 — 2 — Gunawan&Cai
4000
2000
0 BT
16K 32K 64K 128K 256K

Message length(bytes)

Fig. 3. The Time of MPI_BCAST on 16 processors

3.3 MPI_REDUCE

Figure 4 demonstrates the bandwidth of MPI_ REDUCE with MPI_SUM operation
(float point) using 16 processors. From figure 4, we observe that the curve may be fitted
by using Gunawan & Cai’s model accurately. Then we obtain the projection function of
MPI_REDUCE in the following formulae.

0.119 + 0.0025m, m<2%
t(2,m)=)

0.119 + 0.0042m, 20 <m (3)

o) 0.0014In(n)+0.123+[0.0141in(n)—0.0109}n, m<2"
n,m)=
0.00141n(n)+0.123+[0.0143In(n)—0.0046}n, 2" <m

} forn>2

where n is the number of processors and m is the size of message in byte.

Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 305

4 16 64 256 1K 4K 16K 64K 256K IM
Message Lengths (bytes)

Fig. 4. The throughput of MPI_REDUCE on 16 processors

20000

15000 |-

10000 r

—— Estimated
5000 o Measured

Microseconds

2 4 6 8 10 12 14 16

Number of Processors
Fig. 5. The Time of transferring 512 KB Message by MPI_REDUCE
Figure 5 shows the communication time of MPI_REDUCE while transferring 512 KB

message in various numbers of processors by projection function and by measurement.
The two curves nearly coincide.

4 Case Study: Molecular Dynamics Simulation

The program Modyn is a representative benchmark in computational chemistry domain,
which simulates molecular dynamics. It can efficiently simulates the molecular
dynamics of Lennard-Jones atoms [16].

306 C.-Y. Chou et al.

The program must perform MPI_ALLREDUCE of 750,008 bytes message in one
stage. The MPI_ALLREDUCE is equal to one MPT_BCAST plus one MPI_REDUCE,
i.e., Eq.(2) and Eq.(3).

For the sake of discussion, we define the error of the estimated time as the following
formula.

Error = (Measured Time - Estimated Time) / Measured Time @

The experimentally measured time and the estimated time by Eq.(2) and Eq.(3) on
various number of processors are listed in Table 4. The error is about 7%.

Table 4. The Measured and Estimated Time of Modyn (in sec.)

Number of Procs Measured Time Estimated Time Error(%)
8 43560 40338 7
16 59837 55731 7
32 76780 71123 7
64 93437 86516 7

5 Conclusion

We present the formulae of point-to-point, broadcast, and reduce message passing on
Formosa PC Cluster, a dual-processor shared-memory PC Cluster connected together by
Gigabits Ethernet. The times predicted by the projection functions of Egs. (1) through (3)
are pretty close to the times by measurement. The three stages model of MPT_BCAST in
Eq. (2) is more accurate than the other models mentioned in Section 3.2.

Appling the formulae to estimate the communication time of Modyn, the error is
about 7%. We hope that it is able to provide some useful information for performance
prediction and scientific computing.

References

1. Sterling, T., Becker, D., Savarese, D., et al.. BEOWULF: A Parallel Workstation for
Scientific Computation. Proc. Of the 1995 International Conf. On Parallel Processing
(1995)

2. Sterling, T., Savarese,D., Becker, D., et al.: Communication Overhead for Space Science
Applications on the Beowulf Parallel Workstation. Proc. of 4™ IEEE Symposium on High
Performance Distributed Computing (1995)

3. Reschke, C., Sterling T. and Ridge, D.: A Design Study of Alternative Network Topologies
for the Beowulf Paralle] Workstation. Proceedings of the 5™ IEEE Symposium on High
Performance and Distributed Computing (1996)

4. Ridge, D., Becker, D. and Merkey, P.: Beowulf: Harnessing the Power of Parallelism in a
Pile-of-PCs. Proceedings of IEEE Aerospace (1997)

5. Pfister G. F.: In Search of Clusters. Prentice-Hall, Inc. (1998)

10.
11.
12.

14.

15.
16.

Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 307

Xu, Z. and Hwang, K.: Modeling Communication Overhead: MPI and MPL Performance on
the IBM SP2. IEEE Parallel & Distributed Technology 4(1) (1996) 9-23

Prieto, M., Espadas, D., Llorente, I. M. and Tirado, F.: Message Passing Evaluation and
Analysis on Cray T3E and SGI Origin 2000 Systems. In 5™ Int’] Euro-Par Conference 1685
(1999) 173-182

. Tourifio, J. and Doallo, R.: Characterization of Message-Passing Overhead on the AP3000

Multicomputer. International Conference on Parallel Processing (2001)

Gunawan, T. and Cai, W.: Performance Analysis of a Myrinet-Based Cluster. Cluster
Computing 6 (2003) 229-313

NCHC Formosa PC Cluster Home Page, http://formosa.nchc.org.tw

Top 500 List, http://www.topS00.org

Hockney, R. W.: Performance Parameters and benchmarking of supercomputers, Parallel
Computing 17 (1991) 1111-1130

. Hockney, R. W.: The Communication Challenge for MPP: Intel Paragon and Meiko CS-2.

Parallel Computing 20 (1994) 389-398

Burns, G.., Daoud, R. and Vaigl, J.: LAM:An Open Cluster Environment for MPL
Proceedings of Supercomputing Symposium'94 (1994) 379-386

Lichten, W.: Data and Error Analysis. Prentice Hall (1998)

Huang, Kuo-Chan, Chang, His-Ya, Shen, Cherng-Yeu, Chou, Chau-Yi, Tcheng,
Shou-Cheng. :Benchmarking and Performance Evaluation of NCHC PC Cluster. High
Performance Computing in the Asia-Pacific Region (200)

Evaluation of the Device Driver Availability in
Dawning4000A

Yuanxia You 1’2, Dan Meng 1, Gang Xue 3, and Jie Ma

! National Research Center for Intelligent Computer Systems,
Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100080, P.R. China
% Graduate University of the Chinese Academy of Sciences, Beijing 100039, PR. China
? Shanghai Supercomputer Center, Shanghai 201203, P.R. China

vyx@ncic.ac.cn

Abstract. Device drivers were claimed to be the most error prone in kernel
source. A lot of error tolerance or error prevention approaches have been de-
veloped or suggested after this claim. But after analyzing the event log and
maintenance record of Dawning4000A for three month, we find that device
driver errors are not the most crucial crash causes in this previous TOP10 su-
percomputer. We believe device driver errors need developing and debugging
efforts, rather than tolerance. We also suggest drivers to achieve better tolerance
to device errors, especially on storage device.

1 Introduction

Large-scale Linux clusters are widely deployed in recent years. As node quantity be-
comes larger, components becomes more complex, node error and failure turns out to
be more and more crucial to the availability and serviceability of the entire cluster. On
the other hand, node MTBF of Dawning4000A (D4KA) has reached 200,000 hours,
and the inherent redundant node of cluster provide the best fault tolerant infrastructure.
For years people believe that the node failures are easier to be caused by software than
hardware. Among all the software components in a commercial cluster, system soft-
ware is the most likely to cause node failure, especially for the OS [1][2][3].

Static scan and analyse on OpenBSD and Linux kernel source codes show that the
device drivers have the highest error rates than all other kernel modules [4]. Some
people studied how these source code errors impact the kernel [5] [8], and others tried
to reduce or tolerate their impacts [6]. Therefore, device driver errors and their be-
haviors are one of the emphases during our research on the node error and failure of
D4KA.

This research used the event log and maintenance records of D4KA from Jul. 6,
2005 to Oct. 6 2005. The device drivers in D4KA can be classified into three cata-
logues: i) storage related, including HBA card and SCSI disk drivers, ii) network re-
lated, including Myrinet card driver and firmware, Gigabits Ethernet and Megabits
Ethernet card drivers, iii) management and control related, such as KVM card driver.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 308 —313, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluation of the Device Driver Availability in Dawning4000A 309

After carefully inspection and classification, we find that Myrinet card driver and
firmware are the only drivers that have ever fallen into error context on D4KA. Only
Myrinet related utilities have happened oopses among all drivers, but these oopses are
not regular and routinely.

Why device drivers’ errors are noisy in source code, but quiet in production runtime?
We believe the reasons are as following:

e D4KA'’s light weighted kernel eliminated useless but possibly faulty drivers

e Matured runtime eliminated high error rate drivers

e Developers paid more attention on important and widely used devices, such as SCSI
HBA.

Section 4 describes the detail of reboot analyses of D4KA, and demonstrates those
reboots that were caused by driver errors; section 5 compares static kernel error rate
with the reboot causes of D4KA, and shows the gap between them; section 6 evaluate
the efficiency of fault isolation on driver errors based on both static results and pro-
ductive reboot analyses.

2 Related Works

[4] is a milestone research on kernel error analyse. Their authors implemented uni-
formed trace on the entire kernel sources upon different versions based on identified
kernel error patterns. They concluded that device drivers have the highest error rate
among the whole kernel. After that, several further researches evaluated the possibility
to isolate and tolerate a faulty driver in a running kernel [6]. Others examined the be-
havior of the kernel when driver or similar error happens [5]. Some people even pro-
posed user space drivers to provide a less sensitive kernel infrastructure [9]. All these
works imply that the quality of driver in open source operating systems is difficult to
improve as quickly and well as core functions and modules of kernel.

On the contrary, OSDL supplies driver-hardening guidance to decrease bug quantity
and improve fault tolerance in drivers [7]. But this guidance is too rigid and compli-
cated for developers to follow.

3 Approach

D4KA has 512 computing nodes, 16 storage nodes, and 4 management nodes. There
are mainly four connections in D4KA: Myrinet, Gigabits Ethernet, SAN, and Megabits
Ethernet. Megabyte Ethernet is a management connection, which we used to collecting
event log from every computing nodes and storage nodes to management nodes.

The event logs used in the research are collected through UDP based network syslog
on dedicated connections to dedicated log collecting nodes, together with maintenance
and analysis records. Linux kernel has limited network event messages. Besides, SCSI
errors are only transferred over this network connection; no SCSI command errors will
be recorded on node’s local disk. These measures can prevent domino effect when error
happens on either NIC or SCSI device and (or) driver.

310 Y. Youet al.

4 Node Crash Analyse in D4KA

Node crash is the extreme result of kernel error. As is pointed out by [5], Linux kernel is
most sensitive to four major errors: NULL pointer, illegal kernel paging request, inva-
lid operation code, and general protection failure. These crashes are always followed by
node reboots before the node can be used again. We examined reboot in D4KA to get
ideas on how node crashes.

The methods to catalog these reboots include:

e Collecting every possible reboot causes from the log.

e Evaluating the gravity priority of each cause. Among the causes discovered, network
core lockup has the highest priority, and Myrinet firmware failure the lowest.

e C(lassifying each reboot to each cause according to the highest priority messages
before reboot.

Figure 1 shows the reboot statistics in D4KA.

SCSI disk
Other Hardware

Network core

1'gura

EXT3

Kernel BUG

Page allocation failure

Maintenance

Gm firmware

Uncertain

Oops&panic

Reboot Sum

Fig. 1. Reboot statistics in D4KA

From Figure 1 we confirmed that hardware is really an unimportant cause for node
reboot. Only SCSI disks and some other minor hardware have ever crashed the node.
Maintenance reboot are different. Most of maintenance reboots are not after crash.

Next we analyzed software caused node crash, resulting in Figure 2:

Memory error, like NULL pointer, is only considered when it is the first error after
node startup. Thus memory based error propagation will not disturb to find the original
cause. From Figure 2, we can conclude that:

Evaluation of the Device Driver Availability in Dawning4000A 311

e The software caused node crash in D4KA is limited to several causes.

e A single driver conflict between Myrinet and nVidia leads to the largest portion of
software caused node crash, almost 56%.

e Myrinet driver and firmware errors contribute to more than 70% of node crash.

e All the other node crashes have no relationship with any device driver error.

e Transient hardware errors can propagate to IO system and then lead to permanent
data error and file system crash (see the last line in Figure 2).

Myrinet nVidia
conflict ‘

GM firmware error

uncertain oops

sWap error

buddy allocator error

memory full

EXT3 metadata error

network core lock up

SC3I block failure
caused metadata error

MUU'H'H'UL

Fig. 2. Software caused node crashes in D4KA

5 Comparison with Static Research

Static analyses show that device driver has significant errors or bugs. More than 90% of
Block, Free and Intr errors and more than 70% of Lock Null and Var errors are from
device drivers [4]. This is a milestone research on open source OS kernel errors. Al-
though this is totally true for source code, no one has validated it in productive
environment.

Even in source code, driver error distribution is still different from the coarse grain
data in [4]. Following Figure 3 is a simple driver quantity and error rate statistics based
on Linux kernel bugzilla for version 2.4:

Figure 3 implies an important fact: error rate is unbalanced inside device drivers.
Mature or widely used device, like SCSI disk & HBA card, and network interface card,
usually got more effort from their developers and testers. They also got more assistance

312 Y. Youet al.

OCode quantity MError rate

Input
Frame
FCNCTA
[EEE1394
ENP
Parallsl
UsB

12¢
Video
Serial
PCI

120

SCs1 —

Sound

Network

TEDN

Fig. 3. Driver code quantity (MB) and error rate (errors/MB)

from users to achieve high code quality. From Figure 3 we can see that the main device
used in D4KA, including SCSI, network, PCI, etc. often has relatively lower driver
error rate.

Myrinet and nVidia confliction is a well-know caveat in GM driver. These two
drivers are correct when running individually, and this can also be easily avoided by not
running gm_board_info in some situation. This runtime error cannot be scanned by the
compiler in [4]. Except the confliction mentioned above is excluded, GM firmware
error is the only case of device driver error in D4KA, and it leads to 20 OS crash.

From this comparison, we can claim that in large scale Linux cluster as Dawn-
ing4000A, device driver error rate is not higher than other part of the kernel, except
specific drivers for custom device.

6 Evaluation the Efficiency of Error Isolation

Some researches tend to tolerate driver errors during runtime, that is, isolating the kernel
from faulty drivers. These driver can be isolated in either kernel [6] or user space [9]. The
isolation can catch error modification and access of fragile shared memory. When errors
are activated and propagated to the isolation border, isolation can help to kill the drivers
and prevent the kernel from crash.

This passive protection results in unavoidable slow down. Furthermore, it protects
only the kernel, neither driver nor application. For large-scale cluster systems for

Evaluation of the Device Driver Availability in Dawning4000A 313

advanced scientific applications, slow down and kernel oriented (not node oriented)
protection are all unacceptable. However, these are what must to be paid for tolerating a
driver which has a much higher error rate than other parts of the kernel. The worst thing
happens when several kinds of OS crashes, such as hardware address conflicts, memory
full error, allocation error, ext3 error propagation, and SCSI disk error propagation,
which happened in D4KA, are very difficult to be tolerated only by current isolation
and stop methods.

On the contrary, from section 4 and 5, we know that after eliminating buggy drivers
from kernel, testing in production environment, and updating to newer versions,
driver’s error rate can be reduced to a comparable low level as other parts of the kernel.

The trick here is to balance the cost between development and production [10]. For
private OS like Windows, driver vendors usually have no chance to trace into kernel
code to improve driver quality. Desktop user would rather fail one or more applications
than crash the Windows OS and restart. For mature clusters as D4KA, more efforts
should be paid not on tolerate a faulty driver, but on tolerating a reliable SCSI disk to
prevent error data propagation from memory onto disk.

7 Conclusions

This paper analyzed the reboot and crash cases in one of the largest commercial Linux
cluster, Dawning4000A, and tried to evaluate the device driver errors and their impact
on node failure. Compared with previous researches on OS errors, we concluded that
device driver error is not the largest node crash cause of D4KA, compared with static
scan result. In D4KA, high error rate drivers have been eliminated in construction and
test period. We suggested improving the error propagation prevention mechanism in
device drivers as SCSIL.

References

1. J.Gray, High-Availability Computer Systems, IEEE Computer, Sep. 1991

2. J.Gray, A Census of Tandem System Availability Between 1985 and 1990, Technical Re-
port, 1990

3. J.Xu, Z.Kalbarczyk, etc, Networked Windows NT System Field Failure Data Analysis,

Proceedings of the 1999 Pacific Rim International Symposium on Dependable Computing.

A.Chou, J.Yang, etc, An Empirical Study of Operating Systems Errors, SOSP 2001

W.Gu, Z.Kalbarczyk, Characterization of Linux Kernel Behavior under Errors, DSN 2003

M.M. Swift, B.N. Bershad, Improving the Reliability of Commodity Operating Systems.

Device Driver Hardening Design Specification, Intel Corp. IBM Corp 2002

A.Albinet, J.Arlat, etc, Characterization of the Impact of Faulty Drivers on the Robustness

of the Linux Kernel, DSN"2004

Peter Chubb, Get More Device Drivers out of the Kernel, OLS 2004

10. D.S.Bai, W.Y. Yun, Optimum Number of Errors Corrected before Releasing a Software

System, IEEE Trans. On Reliability, Vol 37, Issue 1, 1988

PNk

hed

HyMPI - A MPI Implementation for Heterogeneous
High Performance Systems

Franciso Isidro Massetto*, Augusto Mendes Gomes Junior**,
and Liria Matsumoto Sato

Politechnic School — University of Sdo Paulo — Sao Paulo, Brazil
{francisco.massetto, augusto.gomes, liria.sato}@poli.usp.br

Abstract. This paper presents the HyMPI, a runtime system to integrate several
MPI implementations, used to develop Heterogeneous High Performance Ap-
plications. This means that a single image system can be composed by mono
and multiprocessor nodes running several Operating Systems and MPI imple-
mentations, as well as, heterogeneous clusters as nodes of the system. HyMPI
supports blocking and non-blocking point-to-point communication and collec-
tive communication primitive in order to increase the range of High Perform-
ance Applications that can use it and to keep compatibility with MPI Standard.

1 Introduction

Since MPI[1] became thoroughly used in the development of applications of high per-
formance, among them, clusters and computational grids, several researches involving
these subjects began to appear.

MPI is considered an interface standard. This way, there are several implementa-
tions, each one with your own characteristic, portability and platform. However, one
of the largest limitations of the MPI is the integration of different implementations.
This challenge has motivated the development of researches, some of them with real
results that allow executing applications that can make use of several MPI implemen-
tations in a clear way.

This work presents the HyMPI — Hybrid MPI [2], a set of MPI primitives that al-
low the integration of heterogeneous environment. It means that, through the HyMPI
is possible to integrate, in a single system, monoprocessors and multiprocessors ma-
chines, besides computers clusters. This integration allows that different machines
that execute different Operating Systems and have different MPI implementations in-
stalled can communicate to each other and to heterogeneous clusters in a transparent
way.

Thus, with the use of HyMP], it is possible to create a high performance system
formed by monoprocessor nodes, SMP machines, homogeneous and heterogeneous
clusters.

This article is structured as follows: in section 2 we present the works related to
HyMP], it means, implementations that support integration of several implementations.

X Professor at Centro Universitario UNIFIEO and Anhembi Morumbi University.
™ Professor at Anhembi Morumbi University.

Y .-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 314323, 2006.
© Springer-Verlag Berlin Heidelberg 2006

HyMPI — A MPI Implementation for Heterogeneous High Performance Systems 315

In section 3, it is presented the structure and architecture of HyMPI, as well as the
communication primitives supported and the communication protocol. Section 4 illus-
trates some tests and results reached with HyMPI. Finally in section 5, we show the
conclusions and present some future works.

2 Related Work

The researches effort to integrate several MPI implementations, as to execute in clus-
ters environment as in grids, has produced results, among them are IMPI [3], PVMPI
[4], MPICH-G2 [5], PACX-MPI [6], STAMPI [7] and MetaMPI [8].

IMPI is a standard that defines rules and aspects of interoperability among dif-
ferent MPI implementations. LAM-MPI [9] implements this pattern, including the
daemon impid, responsible for the communication among the nodes of different
implementations.

In IMPI, there is a global nomination among the processes, that is, if there is a set
of n processes executing with implementation A (ranks from 0 to n-1) and m proc-
esses executing with implementation B (ranks from 0 to m-1), we will have processes
with rank between 0 and m+n-1. The IMPI architecture can be seen through Figure 1.

MPI_COMM WORLD

0

MPI Implementation B

MPI Implementation A

N e e

1
I
I
1
I
I
I
I
1
I
1
I
:
Rank 8 i
I
I
1
I
I
1
I
1
I
1

Fig. 1. IMPI Architecture

In this figure, we can notice two clients. Client O has 2 hosts executing a MPI im-
plementation and Client 1 has 1 host executing another MPI implementation. The
communication among the hosts of Client 1 is accomplished through MPI messages.
For a process of Client 0 to communicate with a process of Client 1, an intermediate
process is made necessary. This process, called server is responsible for interoperabil-
ity among the clients. A message of a process in Client O is sent to the server process
that forwards it to the process of Client 1.

The messages among clients of different MPI implementations pass, obligatorily,
through the server. Besides the message forwarding, authentication protocols, service
negotiation and data security among the clients.

316 F.I. Massetto, A.M. Gomes Junior, and L.M. Sato

PACX-MPI also has a global numbering schema accessible for all the process,
however, PACX-MPI implements interoperability among “pseudo-mpi” processes. It
means, for each different MPI implementation, the process of rank 0 and 1 are
responsible, respectively, for sending and receiving messages of process of other im-
plementations. This communication is made via TCP, where the process 0 from im-
plementation A connects itself to process 1 from implementation B and vice-versa. As
well as in IMPI, there is a local numbering (for each implementation) and a global
numbering (including all implementations), as can be seen in Figure 2.

|:| Global Numbering

O Local Numbering

Fig. 2. PACX-MPI Communication model

In this figure, there are two MPPs (Massive Parallel Processors), each one running a
MPI implementation. It can be noticed that the processes represent by circles are local
numbering of each MPI implementation and the process represent by squares are the
ones of global numbering, unassuming the processes 0 and 1 of each implementation.

This way, if process 3 (global) needs to send a message to process 5 (global), the
message is sent to process 0 (local to MPP1) via MPI. The process 0 of MPP1 sends,
via TCP/IP the message to process 1 (local to MPP2) that forwards it to process 5
(global).

MPICH-G2 is a MPI implementation, based on MPICH implementation of Argone
Lab, for Grids environments, which uses services from Globus Toolkit 3 [10].
MPICH-G2 can be used in two distinct scenarios: in the first scenario there is a cluster
of workstations with nodes executing different operating systems and/or MPI imple-
mentations. The second scenario illustrates a set of MPPs (Massive Parallel Proces-
sors) dispersed through a WAN that can be integrated to increase performance.

This way, MPICH-G2 creates a mesh of connections among the several processes
to make possible the communication, as shows Figure 3. For a MPI application uses
the MPICH-G2 resources, it is necessary that some services of Globus Toolkit’s infra-
structure are installed and available, in the workstations and in MPP.

Finally, PVMPI has a hybrid communication model, where MPI is used for intra-
cluster communication and PVM [11] for inter-cluster communication. This way,
PVM processes work as a “bridge” among several MPI implementations.

HyMPI — A MPI Implementation for Heterogeneous High Performance Systems 317

0 0 0
0 0 0

0 0] 0
L] 00 L]

L

0 0 0
L] L] L]

0 0] 0
0 00 0

Vendor MPI

TCP/IP

Fig. 3. MPICH-G2 Architecture

3 HyMPI - Hybrid MPI

Hybrid MPI [2] is an execution time system that aims to integrate nodes that execute
different operating systems and MPI implementations. Besides, it possible to integrate
computer clusters as nodes of this system.

The term “hybrid” was used to describe HyMPI, because HyMPI can be used in an
environment with mono and multiprocessor nodes. In case of monoprocessor nodes, it
can integrate nodes executing different operating systems and MPI implementations.
Among the multiprocessor nodes, HyMPI allows using a computer cluster, where the
nodes of this cluster also can execute different operating systems and different MPI
implementations.

The communication strategy in HyMPI is defined taking into account the existent
types of nodes. It means that are created mesh of connections among the nodes that
have different MPI implementations and/or Operating Systems. In case of a node be a
cluster, there is a process in the front-end machine, that we will call GATEWAY, re-
sponsible for the forwarding of messages for the others nodes that compose the cluster.

This way, all the nodes will create connections amongst them and with the
GATEWAY process to communicate with the nodes belonging to the cluster.

3.1 System Architecture

To exemplify the HyMPI architecture, let us take as example a system formed by: a
SMP machine with 4 processors, a Linux operating system and LAM-MPI (A). A ma-
chine SMP with 4 processors also, Windows Operating System and MPI-Pro (B) and,
finally, a heterogeneous cluster with 16 nodes, 8 of them with Windows and MPICH
library and the other 8 nodes with Linux and MPICH library (C).

Each MPI implementation has a MPI_COMM_WORLD communicator that identi-
fies its processes from O to n-1. Supposing that there is, in this case, a process for each
processor, we would have 4 distinct process numbering: from 0 to 3 in systems A and
B and twice from O to 7 in system C, due to different implementations, as illustrates
Figure 4.

318 F.I. Massetto, A.M. Gomes Junior, and L.M. Sato

MPI_COMM_WORLD ~MPI_COMM_WORLD §

@@@@
OO0

MPI_COMM_WORLD

O)0,
OX0,

System A: SMP Machine (4 processors)
H running Linux and LAM-MPI

§ B System B: SMP Machine (4 processors)
feccccccccccaaaaad running Windows and MPICH

Systems C and D: Cluster composed by
Linux and Windows nodes running,
respectively, MPICH and MPI-Pro

Fig. 4. Different Systems running combinations of Operating Systems and MPI implementations

Considering the heterogeneity of the environment, we would have 4 different proc-
esses numberings, taking into account the MPI implementation in each one of the en-
vironments. HyMPI uses the models adopted in IMPI and PACXMPI creating a
global numbering for all processes. In this scenario and, considering a process for
each processor, we would have a process numbering from 0 to 23.

The communication among several processes in HyMPI is accomplished creating a
communication mesh among all the processes. However, for the nodes inside of a
cluster, there is the need of a message to be forwarded through the cluster front-end
machine. It means that there is a process in the cluster front-end machine, called
GATEWAY, responsible for forwarding the messages inside and out of the cluster.

"
MPI COMM WORLD MPI COMM WORLD

{0000

Systems C and D

MPI_COMM_WORLD

- ——-Mesh of connections
— Connections with the Gateway

Fig. 5. Global processes numbering using HyMPI

HyMPI — A MPI Implementation for Heterogeneous High Performance Systems 319

This way, all the nodes that are not part of the cluster should maintain connections
with the GATEWAY process, as well as the nodes that are part of the cluster, as
shows Figure 5.

In this figure, we can notice that the nodes that are not part of the cluster, but exe-
cute different Operating Systems and MPI implementations create a mesh of connec-
tions, amongst themselves and also with the GATEWAY process, located in the
cluster font-end machine. As the cluster of Figure 5 is also composed of heterogene-
ous nodes, communication meshes are created among these nodes and also with the
GATEWAY process. In that way, every message that enters or leaves the cluster,
obligatorily pass through the GATEWAY process.

3.2 Architecture of An Application That Uses HyMPI

As said previously, HyMPI is a set of libraries of execution time that must be con-
nected to the MPI application. An advantage of this model is that HyMPI maintain the
compatibility with the MPI interface, avoiding rewriting the code. On the other hand,
the application should be recompiled and re-linked with the libraries. Figure 6 shows
the architecture of a HyMPI application.

MPI Application

ﬂ MPI calls

MPI Calls Conversion
Module

HyMPI

lDifferent Groups l Same Group

Vendor-MPI

TCP /P (socket API)

Fig. 6. Architecture of an Application that uses HyMPI

As it can be noticed in the figure, the communication among the processes of same
implementation is done through a MPI native interface (vendor MPI) and the whole
communication among the nodes of different Operating Systems and/or MPI imple-
mentations is accomplished through the Sockets TCP/IP API.

HyMPI offers a set of primitives in ANSI C that includes:

— Initialization and finalization of the environment
— Blocking and Non-Blocking Point-to-Point Communication
— Collective Communication

Besides, some utility and environment control functions were developed, aiming to
offer larger resources in the development of MPI applications.

HyMPI — A MPI Implementation for Heterogeneous High Performance Systems 321

3.3.3 Collective Communication

HyMPI follows the same collective sending specification defined in IMPI. A two
phase’s protocol is used, where there are a global and a local phase. Figure 7 shows
the operation of the MPI_Bcast primitive.

Supposing that the process of rank “0” (global) wants to broadcast a message. In
the first phase of the protocol (global phase), it sends a message to all the processes of
rank O of each implementation (called local root).

This sending can be made directly (through the point-to-point channel for proc-
esses in a same sub-network) or through the gateway (for processes in different sub-
networks).

After all the local root nodes receive their respective copies of the message, they
are responsible for doing the Broadcast among their pairs of same implementation.
This second phase is called local phase.

4 Development and Tests

In the test phase, some parallel algorithms were implemented to test the communica-
tion viability in HyMPI. The environment of tests included systems composed of ho-
mogeneous and heterogeneous workstations and systems composed of workstations
and a heterogeneous cluster. In this developing stage, versions of Windows-
compatible and Linux-compatible libraries were implemented, intending to extend for
a larger variety of operating systems. The tested system is composed by two SMP
machines, each one running a different operating System (Windows and Linux) and
different MPI implementations (MPIPro and MPICH, respectively) and a heterogene-
ous cluster, composed by eight nodes, where four of them are running Windows and
MPICH and the other four nodes running Linux and LAM-MPI. The gateway ma-
chine is running Windows.

Among the developed algorithms, stands out the HEAT2D [12], based on a simpli-
fied two-dimensional heat equation domain decomposition. An array contains cells
that indicate heat in a metal foil. The boundaries are held at zero throughout the simu-
lation. During the time-stepping, an array containing two domains is used; these do-
mains alternate between old data and new data.

This parallel version uses a master-slave approach, where the grid is decomposed
by the master process and then it is distributed in lines for the slaves. To each instant
of time the slave processes should change the data of their borders with their
neighbors, because the effective temperature of each point of the grid depends on the
values of the instant of previous time, added of their neighbors' values. When the task
is completed by the slave, it returns its results to the master process.

In this algorithm, point-to-point primitives (MPI_Send e MPI_Recv) are used to
communicate the slaves with their neighbors and the MPI_Barrier primitive is used to
synchronize all the slaves with the master process.

Another algorithm is a parallel version of MergeSort [13], that also uses a master-
slave approach for distribution and accomplishment of tasks and makes use of point-
to-point and collective primitives for tasks distribution from the master. Finally, a
Matrix Multiplication algorithm with point-to-point primitives was also used.

Table 1 shows some execution times obtained with both algorithms.

322 F.I. Massetto, A.M. Gomes Junior, and L.M. Sato

Table 1. Execution times (in seconds)

Algorithm Test A Test B Test C Test D
Heat2D 70.187 66.231 72.514 80.749
MergeSort 15.880 13.983 16.003 20.830
Matrix ~ Multi-
plication 11.008 8.503 11.632 13.065
(1000x1000)

Matrix ~ Multi-
plication 66.019 57.688 62.850 72.140
(2000x2000)

The Test A is a homogeneous system, composed by nodes with Linux and LAM-
MPIL. Test B is another homogeneous system composed by nodes with Windows and
MPI-PRO. Test C is a heterogeneous cluster only with nodes monoprocessor running
Linux with LAM and Windows with MPICH. Finally Test D is a heterogeneous sys-
tem, composed by workstations running Windows with MPICH, workstations running
Linux and LAM and a heterogeneous cluster, with nodes running Windows and MPI-
Pro and Linux with MPICH.

As seen in Table 1, Test D has greater execution times because most of messages
between slaves must go through Gateway process, and it becomes a bottleneck.

5 Conclusions and Future Work

This paper presented HyMPI, a MPI-compatible message-passing interface that al-
lows integration, in a single system, several SMP nodes, each one running a different
Operating System and/or MPI implementation. Besides that, it’s possible to have, as a
node, homogeneous and heterogeneous clusters (i.e., clusters with nodes running dif-
ferent OS and MPI implementations).

Comparing qualitatively HyMPI with other implementations, can be noticed some
differences and similarities. Similarities are related to the process numbering, as see-
ing in MPICH-G2, PACX-MPI and IMPI Standard. The more significant difference
among HyMPI and the other implementations is the capability to integrate SMP ma-
chines, homogeneous and heterogeneous clusters as nodes of the system. To accom-
plish this feature, HyMPI combines different strategies, which are present in MPICH-
G2, PACX-MPI and IMPI, i.e., creating meshes of connections among process
running different OS and MPI implementations, and having a process to forward mes-
sages between nodes inside and outside clusters. The gateway process, considering
clusters features, is a bottleneck for the communication.

The quantitative analysis of the obtained results shows that HyMPI is viable, be-
cause communication among different nodes was possible, considering point-to-point
and collective communication. However more detailed comparative analysis between
HyMPI and the other implementations will be performed. Besides that, other MPI
primitives will be implemented in order to increase the compatibility between HyMPI
and the MPI standard.

HyMPI — A MPI Implementation for Heterogeneous High Performance Systems 323

References

—_

SNIR M., GROPP W., “MPI the Complete Reference”. The MIT Press (1998).

2. MASSETTO, F. L, SATO, L. M., GOMES, A. M., “HMPI - Hybrid MPI”. 14th IEEE In-

10.
11.

12.

13.

ternational Symposium on High Performance Distributed Computing, 2005.

GEORGE, W., HAGEDORN, J., DEVANEY, J.: “IMPI: Making MPI Interoperable”.
Journal of Research of the National Institute of Standards and Technology. Vol 105.
(2000).

FAGG, G., DONGARRA, J., GEIST, A., “Heterogeneous MPI Application Interoperation
and Process management under PVMPI”, Recent Advances in Parallel Virtual Machine
and Message Passing Interface', (1997).

. KARONIS, N., TOONEN, B., FOSTER, I.: “MPICH-G2: A Grid-Enabled Implementation

of the Message Passing Interface”. Journal of Parallel and Distributed Computing (JPDC),
Vol. 63, No. 5, pp. 551-563 (2003).

GABRIEL E., RESCH M., RUHLE R.. “Implementing MPI with optimized algorithms for
metacomputing”. In Message Passing Interface Developer’s and Users Conference (1999).
IMAMURA, T., et al. “An architecture of Stampi: MPI library on a cluster of parallel
computers”. In Recent Advances in Parallel Virutal Machine and Message Passing Inter-
face, vol 1908 of Lecture Notes In Computer Science, (2000)

POEPPE, M, SCHUCH, S., BEMMERL, T.: “A Message Passing Interface Library for In-
homogeneous Coupled Clusters”. Proceedings of ACM/IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2003), Workshop for Communication Archi-
tecture in Clusters (2003)

LAM Team. LAM/MPI Parallel Computing, MPI General Information. Avaliable at
http://www.lam-mpi.org/mpi/

The Globus Project. Available at http://www.globus.org

GEIST A., BEGUELIN, A., “PVM Parallel Virtual Machine — A Users’ guide and tutorial
for networked parallel computing”. The MIT Press (1994).

BARNEY, B. Lecture notes. Available at http://carbon.cudenver.edu/csprojects/
csc5809F99/ mpi_examples/ 2d_heat_equation.html

JACKSON, B. Lecture Notes. Available at http://carbon.cudenver.edu/csprojects/
¢sc5809F99/mpi_examples/merge_sort.html

Performance Improvement by Data Management
Layer in a Grid RPC System

Yoshiaki Aida, Yoshihiro Nakajima, Mitsuhisa Sato,
Tetsuya Sakurai, Daisuke Takahashi, and Taisuke Boku

Department of System and Information Engineering, University of Tsukuba,
Tennodai 1-1-1, Tsukuba-shi, Ibaraki 305-8577, Japan
{aida, ynaka}@hpcs.cs.tsukuba.ac.]jp,
{msato, sakurai, daisuke, taisuke}@cs.tsukuba.ac.jp

Abstract. A grid RPC system provides a useful and intuitive program-
ming interface for master-worker type applications in a grid environment.
In many grid applications, such as parameter search programs, both mas-
ter and workers are often required to have a large amount of common
data. Since in the RPC model the data must be transferred from the
master directly to each worker, the master is sometimes a bottleneck,
resulting in poor performance. In order to improve the performance in
such cases, we propose a model to decouple the data transfer by a data
management layer from the RPC programming. We have designed and
implemented a prototype data transfer layer called OmniStorage to Om-
niRPC, which is a grid RPC system for parallel programming in a grid
environment. This allows efficient data transmission of a large amount
of data by placing intermediate relay servers, taking the network topol-
ogy into account, to route the communication and cache the common
data in the server. We have evaluated the performance of the proposed
system by using synthetic workloads and a real grid application. The re-
sults show that OmniStorage can improve the performance of OmniRPC
applications compared to the case of using only OmniRPC.

1 Introduction

Recent advances in wide-area networking technology and infrastructure have made
it possible to construct large-scale, high-performance distributed computing envi-
ronments, or computational grids, that provide dependable, consistent and perva-
sive access to enormous computational resources. Grid tec