

Lecture Notes in Computer Science 3947
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Yeh-Ching Chung José E. Moreira (Eds.)

Advances in
Grid and
Pervasive Computing

First International Conference, GPC 2006
Taichung, Taiwan, May 3-5, 2006
Proceedings

13

Volume Editors

Yeh-Ching Chung
National Tsing Hua University
Department of Computer Science
Hsin-Chu, Taiwan 300, ROC
E-mail: ychung@cs.nthu.edu.tw

José E. Moreira
IBM Systems & Technology Group
Blue Gene Software Systems
Rochester, MN 55901, USA
E-mail: jmoreira@us.ibm.com

Library of Congress Control Number: 2006924367

CR Subject Classification (1998): F.1, F.2, D.1, D.2, D.4, C.2, C.4, H.4, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33809-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33809-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11745693 06/3142 5 4 3 2 1 0

Message from the General Chairs

It is our great pleasure to welcome you to the beautiful campus of Tunghai University,
Taiwan, and the first annual event of the International Conference on Grid and
Pervasive Computing (GPC). Grid computing addresses the needs for coordinating and
sharing large-scale heterogeneous resources for problem solving in dynamic,
multi-institutional virtual organizations. Extending the resource concept into our
physical surroundings and everyday objects, it is not hard to see the overlapping of grid
and pervasive computing. It is with this view that GPC 2006 was established to serve as
the premier forum covering the emerging research and development on blending and
extending grid and pervasive technologies.

An international conference of this scale requires the support of many people. First
of all, we would like to thank the Steering Committee Chair, Hai Jin, and the committee
members for nourishing the conference and guiding its course. We also like to express
our sincere appreciation to the Program Chairs, Yeh-Ching Chung and Jose Moreira,
who, together with the exceptional Program Committee members, put together a highly
selective and very exciting technical program. We are also indebted to the members of
the Organizing Committee. Particularly, we thank Chao-Tung Yang, Kuan-Ching Li,
Cho-Li Wang and Ching-Hsien Hsu for their devotions and efforts to make this
conference a real success. Our heartfelt gratitude also goes to the Honorary General
Chair, President of Tunghai University, Haydn H.D. Chen for his full support of this
conference. Finally, we would like to take this opportunity to thank all the authors,
reviewers and participants for their contributions to making GPC 2006 a grand success.

It has been an honor for us to serve as General Chairs for the first event of this great
conference and to work with a group of dedicated and capable people. We trust that you
will enjoy the proceedings of GPC 2006.

May 2006 Sajal K. Das and Chung-Ta King
 General Co-chairs

Message from the Program Co-chairs

We are proud to present the proceedings of the First International Conference on Grid
and Pervasive Computing 2006, held at Tunghai University during May 3-5.

Grid and Pervasive Computing (GPC) is an annual international conference on the
emerging areas of merging grid computing and pervasive computing, aimed at
providing an exciting platform and paradigm for all the time, everywhere services.
This emergence is a natural outcome of the advances in cluster computing, high-
performance computing, utility computing, service-oriented computing, peer-to-peer
computing, mobile computing, sensor networks, and smart devices technologies. The
aim of GPC 2006 was to be the premier event on grid and pervasive computing,
focusing on all aspects of grid and pervasive computing and providing a high-profile,
leading edge forum for researchers and engineers alike to present their latest research.

In order to guarantee high-quality proceedings, we put extensive effort into
reviewing the scientific papers and processing the proceedings. We received 267
papers from 24 countries. All submissions were peer reviewed by three or four
program or technical committee members or external reviewers. It was extremely
difficult to select the presentations for the conference because there were so many
excellent and interesting ones. In order to include as many papers as possible and keep
the high quality of the conference, we finally decided to accept 64 papers for oral
presentations. We believe all of these papers and topics will not only provide novel
ideas, new results, work in progress and state-of-the-art techniques in this field, but will
also stimulate future research activities in the area of grid and pervasive computing
with applications.

This conference would not have been possible without the support of many people
and organizations that helped in various ways to make it a success. The exciting
program for this conference was the result of the hard and excellent work of many
people. We would like to express our sincere thanks to the invited speakers who
delivered such high-quality lectures at GPC 2006 and all authors for their valuable
contributions. We thank the Program Committee members for their excellent job of
reviewing the submissions and thus guaranteeing the quality of the conference and the
proceedings under a very tight schedule.

May 2006 Yeh-Ching Chung and Jose E. Moreira
 Program Co-chairs

Organization

Conference Committees

Honorary General Chair

Haydn H.D. Chen, Tunghai University, Taiwan

Steering Committee Chair

Hai Jin, Huazhong University of Science and Technology, China

Steering Committee Members

Jean-Luc Gaudiot, University of California - Irvine, USA
Chung-Ta King, National Tsing Hua University, Taiwan
Jysoo Lee, KISTI, Korea
Kuan-Ching Li, Providence University, Taiwan
Satoshi Sekiguchi, AIST, Japan
Cho-Li Wang, The University of Hong Kong, China
Chao-Tung Yang, Tunghai University, Taiwan
Albert Y. Zomaya, The University of Sydney, Australia

General Co-chairs

Sajal K. Das, The University of Texas at Arlington, USA
Chung-Ta King, National Tsing Hua University, Taiwan

Program Committee Co-chairs

Jose E. Moreira, IBM Systems and Technology Group, USA
Yeh-Ching Chung, National Tsing Hua University, Taiwan

Publicity Co-chairs

Hao-Hua Chu, National Taiwan University, Taiwan
Kuan-Ching Li, Providence University, Taiwan

Publication Co-chairs

Cho-Li Wang, The University of Hong Kong, China
Ching-Hsien Hsu, Chung Hua University, Taiwan

X Organization

Finance Co-chairs

Chao-Tung Yang, Tunghai University, Taiwan
Wen-Chung Chiang, Hsiuping Institute of Technology, Taiwan

Registration Co-chairs

Liang-Teh Lee, Tatung University, Taiwan
Kun-Ming Yu, Chung Hua University, Taiwan

Local Arrangement Co-chairs

Chu-Hsing Lin, Tunghai University, Taiwan
Hsiao-Hsi Wang, Providence University, Taiwan

Best Paper Award Committee Chair

Jemal Abawajy, Deakin University, Australia

Best Paper Award Committee

Yong-Kee Jun, Gyeongsang National University, Korea
Wang-Chien Lee, Penn State University, USA
Ivan Stojmenovic, University of Ottawa, Canada

International Program Committee

Jemal Abawajy, Deakin University, Australia

Jose Nelson Amaral, University of Alberta, Canada

Hamid R. Arabnia, University of Georgia, USA

Mark Baker, University of Portsmouth, UK

Rajkumar Buyya, University of Melbourne, Australia

Jiannong Cao, Hong Kong Polytechnic University, China

Christophe Cerin, Universite de Paris XIII, France

Jerry Hsi-Ya Chang, NCHC, Taiwan

Ruay-Shiung Chang, National Dong Hwa University, Taiwan

Wenguang Chen, Tsinghua University, China

Hao-Hua Chu, National Taiwan University, Taiwan

Walfredo Cirne, UFCG, Brazil

Toni Cortes, Universitat Politecnica de Catalunya, Spain

 Organization XI

Alvaro L.G.A. Coutinho, UFRJ, Brazil

Luiz DeRose, Cray Research, USA

Rudolf Eigenmann, Purdue University, USA

Dan Grigoras, University College Cork, Ireland

Minyi Guo, University of Aizu, Japan

Xiangjian He, University of Technology Sydney, Australia

Hung-Chang Hsiao, National Cheng Kung University, Taiwan

Ching-Hsien Hsu, Chung Hua University, Taiwan

Kuo-Chan Huang, Hsing Kuo University of Management, Taiwan

Stephen Jenks, University of California - Irvine, USA

Yong-Kee Jun, Gyeongsang National University, Korea

Daniel S. Katz, Jet Propulsion Laboratory, USA

Francis C.M. Lau, The University of Hong Kong, China

Wang-Chien Lee, Penn State University, USA

Jianzhong Li, Harbin Institute of Technology, China

Kuan-Ching Li, Providence University, Taiwan

Ming-Lu Li, Shanghai Jiaotong University, China

Damon Shing-Min Liu, National Chung Cheng University, Taiwan

Pangfeng Liu, National Taiwan University, Taiwan

Celso L. Mendes, University of Illinois at Urbana-Champaign, USA

Matt Mutka, Michigan State University, USA

Mohamed Ould-Khaoua, University of Glasgow, UK

Yi Pan, Georgia State University, USA

Ronald Perrott, Queen's University, UK

Cynthia A. Phillips, Sandia National Laboratories, USA

Ali Pinar, Lawrence Berkeley National Laboratory, USA

Cristina M. Pinotti, University of Perugia, Italy

Omer F. Rana, Cardiff University, UK

Sanjay Ranka, University of Florida, USA

Liria Matsumoto Sato, University of Sao Paulo, Brazil

Mitsuhisa Sato, Tsukuba University, Japan

Ce-Kuen Shieh, National Cheng Kung University, Taiwan

Seung-Jung Shin, Hansei University, Korea

Siang Wun Song, University of Sao Paulo, Brazil

Ivan Stojmenovic, University of Ottawa, Canada

John Pui-fai Sum, Chung Shan Medical University, Taiwan

Putchong Uthayopas, Kasetsart University, Thailand

Chien-Min Wang, Academia Sinica, Taiwan

XII Organization

Cho-Li Wang, University of Hong Kong, China

Frank Zhigang Wang, Cranfield University, UK

Sheng-De Wang, National Taiwan University, Taiwan

Andrew Wendelborn, University of Adelaide, Australia

Weng Fai Wong, National University of Singapore, Singapore

Jingling Xue, University of New South Wales, Australia

Chao-Tung Yang, Tunghai University, Taiwan

Guangwen Yang, Tsinghua University, China

Laurence T. Yang, St. Francis Xavier University, Canada

Table of Contents

Session 1: Best Paper Awards

Optimizing Server Placement in Hierarchical Grid Environments
Chien-Min Wang, Chun-Chen Hsu, Pangfeng Liu, Hsi-Min Chen,
Jan-Jan Wu . 1

Using OGRO and CertiVeR to Improve OCSP Validation for Grids
Jesus Luna, Manel Medina, Oscar Manso . 12

Efficient Target Detection for RNA Interference
Shibin Qiu, Cundong Yang, Terran Lane . 22

Smart Instant Messenger in Pervasive Computing Environments
Chun-Fai Law, Xiaolei Zhang, Sung-Ming Chan,
Cho-Li Wang . 32

Session 2: Grid Scheduling

Negotiation Strategies for Grid Scheduling
Jiadao Li, Ramin Yahyapour . 42

An Enhanced Grid Scheduling with Job Priority and Equitable Interval
Job Distribution

HyoYoung Lee, DongWoo Lee, R.S. Ramakrishna 53

Average Schedule Length and Resource Selection Policies on
Computational Grids

Uei-Ren Chen, Chien-Hsun Wang, Woei Lin . 63

A Performance-Based Approach to Dynamic Workload Distribution for
Master-Slave Applications on Grid Environments

Wen-Chung Shih, Chao-Tung Yang, Shian-Shyong Tseng 73

Session 3: Peer-to-Peer Computing

The Peering Problem in Tree-Based Master/Worker Overlays
Hung-Chang Hsiao, Hao Liao . 83

XIV Table of Contents

MUREX: A Mutable Replica Control Scheme for Structured
Peer-to-Peer Storage Systems

Jehn-Ruey Jiang, Chung-Ta King, Chi-Hsiang Liao 93

The Subscription-Cover Based Routing Algorithm in Content-Based
Publish/Subscribe

HongLiang Yuan, ChangGuo Guo, Peng Zou . 103

Alliatrust: A Trustable Reputation Management Scheme for
Unstructured P2P Systems

Jeffrey Gerard, Hailong Cai, Jun Wang . 115

Session 4: Web/Grid Services

A Fault-Tolerant Distributed Scheme for Grid Information Services
Ming-Jeng Yang, Chin-Lin Kuo, Shih-Hsiang Lin,
Yao-Ming Yeh . 126

A Market-Oriented Model for Grid Service Management
Huan Wang, Zhihui Du, Lei Wu, Suihui Zhu, Erfan Shang 137

Pricing Web Services
Kevin Ho, John Sum, Gilbert S. Young . 147

A Performance Improvement of Web Service System Based on the
Probability Distribution Characteristics

Il Seok Ko, Yun Ji Na . 157

Session 5: High Performance Computing

An Optimal Scheduling Algorithm for an Agent-Based Multicast
Strategy on Irregular Networks

Yi-Fang Lin, Zhe-Hao Kang, Pangfeng Liu, Jan-Jan Wu 165

Methods for Partitioning Data to Improve Parallel Execution Time for
Sorting on Heterogeneous Clusters

Christophe Cérin, Jean-Christophe Dubacq, Jean-Louis Roch 175

Detecting Unaffected Message Races in Parallel Programs
Mi-Young Park, Yong-Kee Jun . 187

A Combined Technique of Non-uniform Loops
Sam Jin Jeong, Kun Hee Han, Young Chul Park 197

Table of Contents XV

Session 6: Ad Hoc Networks

Neighbor-Aided Multicast Protocol for Streaming Transmission on
MANETs

Min-Ping Lin, Chung-Ta King, Ming-Tsung Sun 207

An Entropy-Based Stability QoS Multicast Routing Protocol in Ad
Hoc Network

Baolin Sun, Layuan Li, Qiu Yang, Yang Xiang . 217

On the Performance of a Hybrid Routing Protocol for Blueweb: A
Bluetooth-Based Multihop Ad Hoc Network

Chih-Min Yu, Chia-Chi Huang . 227

An Adaptive and Scalable Resource Advertisement and Discovery
Strategy for Mobile Ad Hoc Networks

Donggeon Noh, Heonshik Shin . 237

Session 7: Wireless Sensor Networks

Binding Multiple Applications on Wireless Sensor Networks
Ali Hammad Akbar, Ahmad Ali Iqbal, Ki-Hyung Kim 250

Model-Aided Metadata Management for Wireless Sensor Networks
Chongqing Zhang, Haibing Guan, Minglu Li, Min-You Wu,
Wenzhe Zhang, Feilong Tang . 259

Availability Considerations for Wireless Sensor Grids
Ali Hammad Akbar, Ki-Hyung Kim, Seung-Jin Bang,
Waleed Mansoor, Won-Sik Yoon . 269

An Energy-Aware Position-Based Routing Strategy
Linfeng Yuan, Zongkai Yang, Liang Ou, Wenqing Cheng, Xu Du 279

Session 8: Grid Applications 1

Introduction of Grid Computing Application Projects at the NASA
Earth Science Technology Office

Kai-Dee Chu, Liping Di, Peter Thornton . 289

Modeling Message-Passing Overhead on NCHC Formosa PC Cluster
Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang,
Shou-Cheng Tcheng . 299

XVI Table of Contents

Evaluation of the Device Driver Availability in Dawning4000A
Yuanxia You, Dan Meng, Gang Xue, Jie Ma . 308

HyMPI – A MPI Implementation for Heterogeneous High Performance
Systems

Franciso Isidro Massetto, Augusto Mendes Gomes Junior,
Liria Matsumoto Sato . 314

Session 9: Data Grid

Performance Improvement by Data Management Layer in a Grid RPC
System

Yoshiaki Aida, Yoshihiro Nakajima, Mitsuhisa Sato, Tetsuya Sakurai,
Daisuke Takahashi, Taisuke Boku . 324

Effective Dynamic Replica Maintenance Algorithm for the Grid
Environment

Rashedur M. Rahman, Ken Barker, Reda Alhajj 336

A Lightweight Cyclic Reference Counting Algorithm
Chin-Yang Lin, Ting-Wei Hou . 346

Distributed Garbage Collection for Mobile Actor Systems: The Pseudo
Root Approach

Wei-Jen Wang, Carlos A. Varela . 360

Session 10: Pervasive Applications 1

A Grid-Based Node Split Algorithm for Managing Current Location
Data

Jae-Kwan Yun, Seung-Won Lee, Dong-Suk Hong, Dong-Oh Kim,
Ki-Joon Han . 373

Cicada: A Highly-Precise Easy-Embedded and Omni-Directional Indoor
Location Sensing System

Hongliang Gu, Yuanchun Shi, Yu Chen, Bibo Wang,
Wenfeng Jiang . 385

Searchable Virtual File System: Toward an Intelligent Ubiquitous
Storage

YongJoo Song, YongJin Choi, HyunBin Lee, Donggook Kim,
Daeyeon Park . 395

Table of Contents XVII

A Collaborative Privacy-Enhanced Alibi Phone
Hsien-Ting Cheng, Ching-Lun Lin, Hao-hua Chuinst 405

Session 11: Semantic Web / Semantic Grid

The Semantic Grid: Requirements, Infrastructure and Methodology
Kashif Iqbal, Stefan Decker, Mark Baker . 415

MPLS Inter Domain Services Routing Architecture and Model Based
on P2P Semantic Grid

Chongying Cao, Jing Yang, Guoqing Zhang . 427

Semantic Metadata Models in References Sharing and Retrieval System
SemreX

Hao Wu, Hai Jin . 437

Clustering Large Scale of XML Documents
Tong Wang, Da-Xin Liu, Xuan-Zuo Lin, Wei Sun,
Gufran Ahmad . 447

Session 12: Grid Load Balancing

QoS-Driven Grid Resource Selection Based on Novel Neural Networks
Xianwen Hao, Yu Dai, Bin Zhang, Tingwei Chen, Lei Yang 456

Towards Decentralized Load Balancing in a Computational Grid
Environment

Kai Lu, Riky Subrata, Albert Y. Zomaya . 466

A Resource-Autonomy Based Monitoring Architecture for Grids
Meizhi Hu, Guangwen Yang, Weimin Zheng . 478

Machine Learning-Based Adaptive Load Balancing Framework for
Distributed Object Computing

Tarek Helmy, S.A. Shahab . 488

Session 13: Wireless Ad Hoc/Sensor Networks

VWMAC: An Efficient MAC Protocol for Resolving Intra-flow
Contention in Wireless Ad Hoc Networks

Wanrong Yu, Jiannong Cao, Xingming Zhou, Xiaodong Wang,
Keith C.C. Chan, Alvin T.S. Chan, H.V. Leong 498

XVIII Table of Contents

A Coloring Based Backbone Construction Algorithm in Wireless
Ad Hoc Network

Zhiwei Lin, Li Xu, Dajin Wang, Jianliang Gao . 509

Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN
Won-Do Jung, Shafique Ahmad Chaudhry, Young-Ho Sohn,
Ki-Hyung Kim . 517

Are Low PANs a PAN or an Internet of PANs?
Ki-Hyung Kim, Ali Hammad Akbar . 527

Session 14: Grid Applications 2

Ensuring Secure and Robust Grid Applications – From a Formal
Method Point of View

Ke Xu, Yuexuan Wang, Cheng Wu . 537

Supporting the OpenMP Programming Interface on Teamster-G
Tyng-Yeu Liang, Shih-Hsien Wang, Jyh-Biau Chang,
Ce-Kuen Shieh . 547

Key Techniques of Software Sharing for on Demand Service-Oriented
Computing

Xiaoshe Dong, Yinfeng Wang, Fang Zheng, Zhongsheng Qin,
Hua Guo, Guofu Feng . 557

Embedding a Middleware for Networked Hardware and Software Objects
David Villa, Felix Jesús Villanueva, Francisco Moya,
Fernando Rincón, Jesús Barba, Juan Carlos López 567

Session 15: Mobile Computing

Mechanism of Authenticating a MAP in Hierarchical MIPv6
Jonghyoun Choi, Youngsong Mun . 577

Reducing Binding Updates in High Speed Movement Environment
Based on HMIPv6

Dae Won Lee, Kwang Sik Jung, Sung-Ju Roh, KwangHee Choi,
Heon Chang Yu . 587

Table of Contents XIX

A Low-Overhead Non-block Checkpointing Algorithm for Mobile
Computing Environment

Bidyut Gupta, Shahram Rahimi, Rishad A. Rias,
Guru. Bangalore . 597

Applying Dynamic Handoff to Increase System Performance on
Wireless Cellular Networks

Chow-Sing Lin, Cheng-Chi Lu . 609

Session 16: Pervasive Applications 2

A Paradigm of a Pervasive Multimodal Multimedia Computing System
for the Visually-Impaired Users

Ali Awde, Manolo Dulva Hina, Chakib Tadj, Amar Ramdane-Cherif,
Yacine Bellik . 620

Context-Aware Adaptation for Media Delivery in Pervasive Computing
Environment

Wenzhe Zhang, Haibing Guan, Minglu Li, Min-You Wu,
Chongqing Zhang, Feilong Tang . 634

CAMPS: A Middleware for Providing Context-Aware Services for
Smart Space

Weijun Qin, Yue Suo, Yuanchun Shi . 644

A Novel Power Management Scheme for E-Textiles
Nenggan Zheng, Zhaohui Wu, Zhigang Gao, Yanfie Liu 654

Author Index . 665

Optimizing Server Placement in Hierarchical

Grid Environments

Chien-Min Wang1, Chun-Chen Hsu1, Pangfeng Liu2,
Hsi-Min Chen3, and Jan-Jan Wu1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
{cmwang, tk, wuj}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

pangfeng@csie.ntu.edu.tw
3 Department of Computer Science and Information Engineering,

National Central University, Taoyuan, Taiwan
seeme@selab.csie.ncu.edu.tw

Abstract. In this paper, we address some problems related to server
placement in Grid environments. Given a hierarchical network with re-
quests from clients and constraints on server capability, the minimum
server placement problem attempts to place the minimum number of
servers that satisfy clients requests. Instead of using a heuristic approach,
we propose an optimal algorithm based on dynamic programming to
solve the problem. We also consider the balanced server placement prob-
lem, which tries to place a given number of servers appropriately so that
their workloads are as balanced as possible. We prove that an optimal
server placement can be achieved by combining the above algorithm with
a binary search of workloads. We extend this approach to deal with con-
strains on network capability. The simulation results clearly show an
improvement in the number of servers and the maximum workload. Fur-
thermore, as the maximum workload is reduced, the waiting times are
reduced accordingly.

1 Introduction

Grid technologies, which enable scientific applications to utilize a wide vari-
ety of distributed computing and data resources, classified into two categories:
Computing Grids and Data Grids [1, 2]. A Data Grid is a distributed storage in-
frastructure that integrates distributed, independently managed data resources.
It addresses the problems of storage and data management, data transfers and
data access optimization, while maintaining high reliability and availability of
the data. In recent years, a number of Data Grid projects have emerged in various
disciplines, for instance, EU Data Grid [3], PPDG [4], iVDGL [5], GriPhyN [6]
and BIRN [7].

One way of solving the data access optimization problems is to distribute
multiple copies of a file across different server sites in the grid system. It has

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 C.-M. Wang et al.

been shown that file replication can improve the performance of the applica-
tions [8, 9, 10, 11]. The existing works focus on how to distribute the file repli-
cas in a data grid in order to optimize different criteria such as I/O operation
costs [11], response time and bandwidth consumption [9].

In this paper, we focus on some server placement problems in Data Grid
environments. Given a hierarchical network with requests from clients and con-
straints on server capability, the solution to minimum server placement problem
attempts to place the minimum number of servers that can satisfy clients re-
quests. Instead of using a heuristic approach, we propose an optimal algorithm
based on dynamic programming to solve this problem. We also consider the bal-
anced server placement problem, which tries to place a given number of servers
appropriately so that their workloads are as balanced as possible. We prove
that an optimal server placement can be achieved by combining the above algo-
rithm with a binary search on workloads. We extend this approach to deal with
constrains on network capability. The experiment results clearly show the im-
provement in the number of servers and the maximum workload. Furthermore,
as the maximum workload is reduced, waiting times are also reduced.

2 Background

In this paper, we use a hierarchical Grid model, one of the most common ar-
chitectures in current use [8, 9, 12, 13, 14]. Consider Fig. 1 as an example. Leaf
nodes represent client sites that send out I/O requests. The root node is as-
sumed to be the I/O server that stores the master copies of all files. Without
loss of generality, we assume that root node is the site 0. Intermediate nodes
can be either routers for network communications or I/O servers that store file
replicas. Edges represent communication channels between nodes. We further
assume that, initially, only one copy (i.e., the master copy) of a file exists at the
root site, as in [9, 13].

Associated with each client site i, there is a parameter ri that represents the
arrival rate of read requests for client site i. A data request travels upward from
a client site and passes through routers until it reach an I/O server on the path.

Site 0

Site 5Site 4 Site 6 Site 7

Site 10 Site 11 Site 12 Site 13

Site 3

Site 2

Site 8

Site 1

Site 9

Fig. 1. The hierarchical Grid model

Optimizing Server Placement in Hierarchical Grid Environments 3

Upon receiving the request, the I/O server sends data back to the client site if it
owns a copy of the requested file. Otherwise, it forwards the request to its parent
server. This process continues up the hierarchy recursively until a node that has
the requested file is encountered or the root node is reached. The root server
might update the contents of the file. For each update, corresponding update
requests are sent to the other I/O servers to maintain file consistency. Let u be
the arrival rate of update requests from the root server.

Associated with each server site j, there is a parameter λj that represents
the arrival rate of I/O requests; λj can be written as: λj =

∑
i∈Cj

ri + u, where
Cj is the set of clients served by server site j. The first term represents the
read requests generated by clients in Cj . The second term denotes the update
requests that will be sent to server site j. We can further generalize this model
so that each edge has its own connectivity bandwidth constraints.

In the absence of file replicas, all I/O requests must be served by the roots
node. However, the request arrival rate is usually much higher than the service
rate of the root node so that clients have to wait indefinitely for service. By
placing I/O servers between client sites and the root node, some of I/O requests
can be served by these I/O servers thereby alleviating the workload on the
root node. According to Queueing Theory, the workload of I/O servers is the
dominant factor in the waiting time of I/O requests. Therefore, to benefit from
file replicas, it is important to place I/O servers at appropriate locations in a
hierarchical Grid system.

3 The Minimum Server Placement Problem

I/O requests generated by client sites and data transfer requests served by server
sites can be modeled as queueing systems. According to Queueing Theory, the
queue length and the waiting time of a queueing system will eventually reach
infinity if the arrival rate of data is greater than the service rate. Hence, there
is a hard constraint on the arrival rate of each I/O server in a Grid system. File
replicas present a natural solution to this problem. By placing the replicas with
more I/O servers, it is possible to share I/O requests along servers and balance
their workload. However, it is quite expensive to set up I/O servers in a Grid
system, as having more servers usually lead to lower utilization, which means a
waste of the systems resources and increased maintenance costs. Therefore, our
first problem is to place the minimum number of I/O servers that will balance
the workload of I/O requests.

Definition 1. Given the network topology, request arrival rates and I/O ser-
vice rates, the minimum server placement problem tries to place the minimum
number of I/O servers such that the arrival rate of requests that reach each I/O
server isless than its service rate.

To solve this problem, we intuitively employ a greedy method, similar to that
in [12], by placing I/O servers one by one until all the servers including the root
server meet their constraints. Although this algorithm is rather fast and easy to

4 C.-M. Wang et al.

implement, we found that it did not always generate the minimum number of
servers in our experiments. Therefore, instead of employing a heuristic approach,
we try to find an optimal algorithm based on the dynamic programming approach
as shown in the remainder of this section.

Definition 2. Let L(i, m) be the minimum arrival rate of leakage requests that
pass through node i when at most m servers are placed in the sub-tree rooted
at node i, and the arrival rate of requests that reach each I/O server is less than
its service rate.

Leakage requests that pass through node i are requests generated by leaf nodes in
the sub-tree rooted at node i, but not served by the I/O servers in that sub-tree.
Such requests must be serviced by an I/O server above node i in the hierarchy.
Hence, it is desirable to minimize the arrival rate of these leakage requests.
Depending on the server placement, the arrival rate of the leakage requests may
change. L(i, m) represents the minimum arrival rate of leakage requests among
all possible placements of at most m servers. Let n be the number of nodes in
the Grid system. Based on the following theorems, such a minimum arrival rate
can be computed in a recursive manner.

Theorem 1. L(i, m + 1) ≤ L(i, m) for any node i and m ≥ 0.

Theorem 2. If node i is a leaf node, then L(i, m) = λj for 0 ≤ m ≤ n.

Proof. Since a leaf node cannot be an I/O server, all I/O requests generated
by a client site will travel up the tree to the leaf nodes parent. By Definition,
L(i, m) = λj for 0 ≤ m ≤ n. ��
Theorem 3. For an intermediate node i with two child nodes j and k, we can
derive:

L(i, m) = 0 if min0≤r≤m−1{L(j, r) + L(k, m − r − 1)} ≤ μi

L(i, m) = min0≤r≤m{L(j, r) + L(k, m− r)}, otherwise

Proof. Case 1: A server is placed on node i. Consequently, at most, m−1 servers
are placed on sub-trees rooted at node j and node k. This happen if and only
if min0≤r≤m−1{L(j, r) + L(k, m − r − 1)} ≤ μi. The “if” part can be proved as
follows. Suppose that the minimum can be obtained when there are p servers on
the sub-tree rooted at node j and q servers on the sub-tree rooted at node k as
shown in Fig. 2(a). By Definition, the minimum arrival rate of leakage requests
that pass through node j and node k will be L(j, p) and L(k, q) respectively.
Since node i has only two child nodes, j and k, the arrival rate of I/O requests
that reach node i must be the sum L(j, p) + L(k, q). Accordingly, we can derive:

L(j, p) + L(k, q) = min0≤r≤m−1{L(j, r) + L(k, m − r − 1)} ≤ μi

Hence, a server can be placed on node i. In this case, L(i, m) = 0 and must be
optimal. The “only if” part can be proved similarly. Suppose that, in an optimal

Optimizing Server Placement in Hierarchical Grid Environments 5

Site j Site k

j0Site

j1Site

j2Site

L(j ,p)0 1

L(j ,q)1 1

L(j ,q)2 2

iSite
L (i ,m), otherwisek−1

L (i ,m−1)k−1

L (i ,p)k−1k−2

k−1 k−1L (i ,p +q)k−1

Site jk−1

Site j Site k

j0Site j1Site j2Site Site jk−1

iSite

L(j , q) k−1k−1

Site i

L(j, p) L(k, q)

L(i, m) = L(j, p)+L(k, q)

(b) No server is placed on node i

i

...

L (i ,p)1 2

0L (i ,p)1

L(i, m)

L(i, m)

= 0 if

=

(d)

<

Site i

L(j, p) L(k, q)

L(i, m) = 0

iμ

(a) A server is placed on node

...
(c)

μ i

Fig. 2. (a). (b) Illustrate two possible server placements on node i. (c). (d) Illustrate
the basic concept of Theorem 4.

server placement, there are p servers on the sub-tree rooted at node j and q
servers on the sub-tree rooted at node k. Obviously, we have the inequalities
0 ≤ p, q ≤ m − 1 and p + q ≤ m − 1. Since node i has only two child nodes,
j and k, the arrival rate of I/O requests that reach node i must be the sum
L(j, p)+L(k, q) and must meet the constraint L(j, p)+L(k, q) ≤ μi . According
to Theorem 1, we can derive: μi ≥ L(j, p)+L(k, q) ≥ L(j, p)+L(k, m−1−p) ≥
min0≤r≤m−1{L(j, r) + L(k, m − r − 1)}. This completes the proof of case 1.

Case 2: No server is placed on node i. Consequently, at most m servers are
placed on sub-trees rooted at nodes, j and k. Suppose that, in an optimal server
placement, there are p servers on the sub-tree rooted at node j and q servers
on the sub-tree rooted at node k, as shown in Fig. 2(b). Obviously, we have
the inequalities 0 ≤ p, q ≤ m and p + q ≤ m. Since node i has only two child
nodes, j and k, the arrival rate of I/O requests that reach and pass through
node i can be computed as: L(i, m) = L(j, p)+L(k, q) ≥ L(j, p)+L(k, m− p) ≥
min0≤r≤m{L(j, r)+L(k, m− r)}. According to above the assumption, this is an
optimal server placement. Hence, all the equalities must hold. This completes
the proof of case 2. ��

Theorem 4. For an intermediate node i with k child nodes j0, j1, . . . , jk−1,
the minimum arrival rate of leakage requests that pass through node i can be
computed iteratively as follows:

6 C.-M. Wang et al.

L0(i, m) = L(j0, m),

Lq(i, m) = min0≤r≤m{Lq−1(i, r) + L(jq, m − r)}, 1 ≤ q ≤ k − 1,

L(i, m) = 0 if Lk−1(i, m − 1) ≤ μi; and

L(i, m) = Lk−1(i, m), otherwise.

Proof. Fig. 2(c), 2(d) illustrate the basic concept of this theorem. To find an
optimal server placement, we can view an intermediate node with k child nodes
in Fig. 2(c) as the sub-tree in Fig. 2(d). Then, the minimum arrival rate of leakage
requests, L(i, m), can be computed recursively along the sub-tree. As the detailed
proof of this theorem is similar to that of Theorem 3, it is omitted here. ��
Theorem 5. The minimum number of I/O servers that meet their constraints
can be obtained by finding the minimum m such that L(0, m) = 0.

Based on Theorems 2 to 4, we can compute the minimum arrival rate of leakage
requests that start from leaf nodes and work toward the root node. After the
minimum arrival rate of leakage requests that reach the root node has been
computed, the minimum number of I/O servers that meet their constraints can
be computed according to Theorem 5. The proposed algorithm is presented in
Fig. 3.

Algorithm Minimum Leakage
Input: 1. the arrival rate λi for all leaf nodes.

2. the service rate μi for all intermediate nodes.
Output: the minimum arrival rate L(i, m) for 0 ≤ i, m ≤ n.
Procedure:

1. sort all nodes according to their distance to the root node in decreasing order.
2. for each node i do
3. if node i is a leaf node then
4. compute L(i, m) = λi for 0 ≤ m ≤ n
5. else
6. Let the child nodes of node i be nodes j0, . . . , jk−1
7. compute L0(i, m) = L(j0, m) for 0 ≤ m ≤ n
8. for q from 1 to k − 1 do
9. compute Lq(i, m) = min0≤r≤m{Lq−1(i, r) + L(jq, m − r)} for 0 ≤ m ≤ n
10. endfor
11. for m from 0 to n do
12. if Lk−1(i, m − 1) ≤ μi then L(i, m) = 0 else L(i, m) = Lk−1(i, m) endif
13. endfor
14. endif
15. endfor

Fig. 3. An optimal algorithm for the minimum server placement problem

In the first line of the algorithm, we sort all nodes according to their distances
to the root node in decreasing order. This ensures that child nodes will be com-
puted before their parents so that Theorems 2 to 4 can be correctly applied. The
execution time of this step is O(n log n). The loop in line 2 iterates over every
node in the system. For each leaf node, it takes O(n) execution time in line 4.
For an intermediate node that has k child nodes, it takes O(n2) execution time

Optimizing Server Placement in Hierarchical Grid Environments 7

in line 9, and iterates k−1 times in line 8. This results in O(kn2) execution time
for lines 8 to 10. Lines 11 to 13 also take O(n) execution time. Consequently, the
complexity of lines 3 to 13 is O(kn2); and the complexity of the whole algorithm
is O(n3), where n is the number of nodes in the Grid system.

4 The Balanced Server Placement Problem

As mentioned in section 2 (the last paragraph), a major factor in the performance
of a queuing system is the workload of the servers. Since each server may have
a different capability, a servers workload is defined as the ratio of the arrival
rate over the service rate. The minimum server problem sets a lower bound on
the number of I/O servers. However, usually we would like to set up more I/O
servers to reduce the workload. In this case, we are concerned with the maximum
workloads of the I/O servers. In other words, we try to place a given number
of servers appropriately so that the workload of the servers is as balanced as
possible. We call this the balanced server placement problem.

Definition 3. The workload of a server i, denoted by ρi, is defined as the ratio
of its arrival rate over its service rate: ρi = λi/μi.

Definition 4. The maximum workload of a system is defined as the maximum
workload among all servers in the system.

Definition 5. Given the network topology, request arrival rates and I/O service
rates, the balanced server placement problem is: How to place a given number of
I/O servers such that the maximum workload of the grid system is minimized?

Let m0 represent the lower bound on the number of I/O servers, assume there
are m ≥ m0 servers to be placed. Our goal is to place at most m servers such
that the maximum workload is minimized. First, we present an algorithm to find
a server placement when the maximum workload is known. Instead of solving
this problem directly, we transform it into a minimum server placement problem
discussed in section 3.

Theorem 6. There exists a placement of at most m servers such that max{λi

μi
}

≤ ρ if and only if the minimum number of servers needed for arrival rates λi and
service rates μ′

i = ρ · μi is less than or equal to m.

Proof. First, suppose that the minimum number of servers needed for arrival
rates λi and service rates μ′

i = ρ · μi is less than or equal to m. By Definition,
there must exist a placement of at most m servers such that λi ≤ μ′

i = ρ · μi for
all server nodes i. Thus, λi/μi ≤ ρ for all server nodes i. Accordingly, we can
derive max{λi/μi} ≤ ρ. This completes the proof of the “if” part.

Next, suppose there exists a placement of at most m servers such that
max{λi/μi} ≤ ρ. We can derive λi/μi ≤ ρi and λi ≤ ρ · μi for all server
nodes i. Therefore, the minimum number of servers needed for arrival rates λi

and service rates μ′
i = ρ ·μi must be less than or equal to m. This completes the

proof of the only if part. ��

8 C.-M. Wang et al.

Theorem 7. If there is no placement of at most m servers such that max{λi/μi}
≤ ρ and ρ′ ≤ ρ, then there cannot be a placement of at most m servers such
that max{λi/μi} ≤ ρ′.

Proof. We prove this theorem by contradiction. Assume that there is no place-
ment of at most m servers such that max{λi/μi} ≤ ρ and ρ′ ≤ ρ, there ex-
ists a placement of at most m servers such that max{λi/μi} ≤ ρ′. Accordingly,
we can derive that there must exist a placement of at most m servers such that
max{λi/μi} ≤ ρ′ ≤ ρ. However, this contradicts the assumption. Therefore, there
cannot be a placement of at most m servers such that max{λi/μi} ≤ ρ′. ��
According to Theorem 6, we can determine if there exists a placement of at most
m servers such that max{λi/μi} ≤ ρ by using the algorithm for the minimum
server placement problem in section 3. The main difficulty with this approach
is that we do not know the optimal value of the maximum workload yet. For-
tunately, Theorem 7 provides a foundation for searching the optimal value of
the maximum workload. It implies that if there is no server placement for a
maximum workload ρ, then the optimal value must be greater than ρ. On the
other hand, if there is a server placement for a maximum workload ρ, then it
is possible to further minimize the value of the maximum workload. Combining
Theorem 6 and 7 allows us to find the optimal value through a binary search of
the maximum workload.

Before applying a binary search, however, we have to determine an upper
bound and a lower bound. It is rather easy to get an upper bound and a lower
bound on the maximum workload. So long as m ≥ m0, there always exists an
upper bound of 1 on the maximum workload. A lower bound can be computed
by assuming that the fastest m servers are chosen and I/O requests are dis-
tributed to these servers evenly. Next, we can combine a binary search of the
maximum workload and the algorithm for the minimum server placement prob-
lem to find the optimal value of the maximum workload. Because the upper
bound of the binary search is a constant and the lower bound is a function of
the input parameters, the workload-balance algorithm is strongly polynomial.

Our algorithm can be further generalized to consider network bandwidth.
Take Fig. 2(a) and 2(b) as examples. The arrival rate of I/O requests that pass
through the communication channel between node j and node i is denoted as
L(j, p). Let μji be the service rate of this communication channel. To meet the
constraint of the communication channel, it is desirable that L(j, p) ≤ μji in the
minimum server placement problem and L(j, p) ≤ ρ · μji in the balanced server
placement problem.

5 Experimental Results

To evaluate the performance of the proposed algorithms, we conducted several
experiments in which 1000 test cases based on the proposed Grid model are
randomly generated. The number of nodes in each case is approximately 1000.
The arrival rates for the leaf nodes and the service rates for intermediate nodes

Optimizing Server Placement in Hierarchical Grid Environments 9

 0

 50

 100

 150

 200

 250

 300

 350

 400

76543210

N
um

be
r

of
 te

st
 c

as
es

Improvement on the number of servers

Fig. 4. Performance comparison for the minimum server problem

are generated from a negative exponential distribution. We also implemented a
heuristic-based greedy method similar to that proposed in [12] as a reference.

The experimental results for the minimum server placement problem, shown
in Fig. 4, compare the performance of the proposed optimal algorithm with the
heuristic-based greedy method. The performance metric is the difference in the
number of servers by the proposed optimal algorithm and the greedy method.
The vertical axis shows the number of test cases, while the horizontal axis shows
the difference in the number of servers used by the two methods.

According to the experimental results, the greedy method can only generate
an optimal solution for 22.1% of the test cases. The optimal solution generated
by our algorithm uses one less server than the greedy method in 38% of the test
cases and two or less servers than the greedy method in 39.9% of test cases.
Based on the results in Fig. 4, we classified the 1000 test cases into seven sets
for use in the following experiments. Thus, test set Si contains those test cases
in which our algorithm uses i less servers than the greedy method.

Fig. 5(a) shows the workloads of the greedy method and the optimal algo-
rithm. For each test set, the optimal algorithm and the greedy method use the
same number of servers, and we take the average of maximum workloads of the
optimal algorithm and the greedy method as the performace metric in this ex-
periment. It is obvious that the the difference of the workloads becomes larger
when the difference of the minimum numbers of servers required by the two
algorithms increases. This means that, when using the same number of I/O
servers, the optimal algorithm can actually reduce the maximum workload of

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

S7S6S5S4S3S2S1S0

W
or

kl
oa

d

Test sets

(a)

DP
Greedy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

S7S6S5S4S3S2S1S0

A
ve

ra
ge

 w
ai

tin
g

tim
e

Test sets

(b)

DP
Greedy

Fig. 5. (a) The workloads of the optimal algorithm and the greedy method (b) The
average waiting times of different test sets

10 C.-M. Wang et al.

the I/O servers and therefore balance their workload better than the greedy
method.

Next, we compare the average waiting times of the two algorithms. The results
are shown in the Fig. 5(b). This experiment demonstrates the major benefit of
our optimal algorithm. The results show that, using the same number of servers
as the greedy method, our algorithm reduces the average waiting time of the
grid system dramatically compared to the greedy method.

Fig. 6(a) shows the maximum workload of the optimal algorithm as the num-
ber of I/O servers increases, where m0 is the lower bound on the number of I/O
servers for test cases in S0. It is clear that the maximum workload decreases as
the number of I/O servers increases. This data can help us determine an ap-
propriate number of servers in a grid system. Fig. 6(b) also shows the average
waiting time of the optimal algorithm as the number of I/O servers increases. It
can also help us to determine an appropriate number of servers in a grid system
when the average waiting time is the major concern.

 0

 0.2

 0.4

 0.6

 0.8

 1

m
0+

15

m
0+

14

m
0+

13

m
0+

12

m
0+

11

m
0+

10

m
0+

9

m
0+

8

m
0+

7

m
0+

6

m
0+

5

m
0+

4

m
0+

3

m
0+

2

m
0+

1

m
0

W
or

kl
oa

d
of

 s
er

ve
rs

Number of I/O servers

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

m
0+

15

m
0+

14

m
0+

13

m
0+

12

m
0+

11

m
0+

10

m
0+

9

m
0+

8

m
0+

7

m
0+

6

m
0+

5

m
0+

4

m
0+

3

m
0+

2

m
0+

1

m
0

A
ve

ra
ge

 w
ai

tin
g

tim
e

Number of I/O servers

(b)

Fig. 6. The workload and the average waiting time versus the number of I/O servers

6 Conclusions

In this paper, we focus on some server placement problems in Data Grid environ-
ments. Given a hierarchical network with requests from clients and constraints
on server capability, the minimum server placement problem attempts to place
the minimum number of servers that can deal with clients requests. As our model
allows servers have different I/O capabilities, it is more general than similar work
in the literatures. Instead of using a heuristic approach, we propose an optimal
algorithm based on dynamic programming as a solution to this problem.

Next, we consider the balanced server placement problem, which tries to place
a given number of servers appropriately so that the workload of the servers is as
balanced as possible. We show that optimal server placement can be achieved by
combining the above algorithm with a binary search of workloads. Finally, we
extend the above approach so that constraints on network capability can also be
dealt with. The experiment results clearly show an improvement on the number
of servers and the maximum workload. As the maximum workload is reduced,
the waiting time is also reduced.

Optimizing Server Placement in Hierarchical Grid Environments 11

Acknowledgments

The authors would like to thank the anonymous referees for their helpful sugges-
tions. The authors also acknowledge the National Center for High-performance
Computing in providing resources under the national project, “Taiwan Knowl-
edge Innovation National Grid”. This research is supported in part by the Na-
tional Science Council, Republic of China, under Grant NSC 94-2213-E-001-023.

References

1. Foster, I.T., Kesselman, C., Tuecke, S.: The Anatomy of the Grid : Enabling Scal-
able Virtual Organizations. The International J. of High Performance Computing
15(3) (2001)

2. Johnston, W.E.: Computational and data Grids in large-scale science and engi-
neering. Future Generation Computer Systems. 18(8) (2002) 1085–1100

3. EU DataGrid. (http://www.edg.org)
4. PPDG: Particle Physics Data Grid. (http://www.ppdg.net)
5. iVDGL: International Virtual Data Grid Laboratory. (http://www.ivdgl.org)
6. Deelman, E., Kesselman, C., Mehta, G., Meshkat, L., Pearlman, L., Blackburn, K.,

Ehrens, P., Lazzarini, A., Williams, R., Koranda, S.: GriPhyN and LIGO, Building
a Virtual Data Grid for Gravitational Wave Scientists. In: HPDC 2002. (2002)

7. BIRN: The Biomedical Informatics Research Network. (http://www.nbirn.net)
8. Hoschek, W., Jaén-Mart́ınez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data

Management in an International Data Grid Project. In: GRID 2000. (2000) 77–90
9. Ranganathan, K., Foster, I.T.: Identifying Dynamic Replication Strategies for a

High-Performance Data Grid. In: GRID 2001. (2001) 75–86
10. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data

Grid: Towards an architecture for the distributed management and analysis of
large scientific datasets. Journal of Network and Computer Applications 23(3)
(2000) 187–200

11. Lamehamedi, H., Shentu, Z., Szymanski, B.K., Deelman, E.: Simulation of Dy-
namic Data Replication Strategies in Data Grids. In: IPDPS 2003. (2003) 100

12. Abawajy, J.H.: Placement of File Replicas in Data Grid Environments. In: Inter-
national Conference on Computational Science. (2004) 66–73

13. Bell, W.H., Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Stockinger, K.,
Zini, F.: Evaluation of an Economy-Based File Replication Strategy for a Data
Grid. In: International Workshop on Agent based Cluster and Grid Computing at
CCGrid 2003. (2003) 120–126

14. Grid Physics Network (GriphyN). (http://www.griphyn.org)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 12 – 21, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using OGRO and CertiVeR to Improve OCSP
Validation for Grids

Jesus Luna1, Manel Medina1, and Oscar Manso2

1 Polytechnic University of Catalonia, Computer Architecture Department,
Jordi Girona 1-3 08034 Barcelona, Spain
{jluna, medina}@ac.upc.edu

2 CertiVeR, Technical Director,
Diputacion 238 08007 Barcelona, Spain

o.manso@certiver.com

Abstract. Authentication and authorization in many distributed systems rely on
the use of cryptographic credentials that in most of the cases have a defined
lifetime. This feature mandates the use of mechanisms able to determine
whether a particular credential can be trusted at a given moment. This process is
commonly named validation. Among available validation mechanisms, the
Online Certificate Status Protocol (OCSP) stands out due to its ability to carry
near real time certificate status information. Despite its importance for security,
OCSP faces considerable challenges in the computational Grid (i.e. Proxy Cer-
tificate’s validation) that are being studied at the Global Grid Forum’s CA
Operations Work Group (CAOPS-WG). As members of this group, we have
implemented an OCSP validation infrastructure for the Globus Toolkit 4, com-
posed of the CertiVeR Validation Service and our Open GRid Ocsp (OGRO)
client library, which introduced the Grid Validation Policy. This paper summa-
rizes our experiences on that work and the results obtained up to now. Further-
more we introduce the pre-validation concept, a mechanism analogous to the
Authorization Push-Model, capable of improving OCSP validation performance
in Grids. This paper also reports the results obtained with OGRO’s pre-
validation rules for Grid Services as a proof of concept.

1 Introduction

Many distributed environments (i.e. the computational Grid, Web services, etc.) base
their authentication and authorization mechanisms on the life cycle management of
cryptographic electronic credentials, with special focus on the issuing and revocation
processes. Let us take for example the X.509 digital certificates [1] which may open
the door to a distributed system for its owner only when he is authorized to process
the operation being requested. In order to do so, at a very basic security level the sys-
tem verifies the credential (i.e. issuer’s digital signature, validity period, etc.) together
with the purpose by which such credential was issued (i.e. roles and attributes). How-
ever, this mechanism is not enough to ensure complete security. If a higher level of
security has to be reached the system should also validate the credential. Through this
paper we will use the term “validation” as the process in charge of verifying that the

 Using OGRO and CertiVeR to Improve OCSP Validation for Grids 13

credential has not been reported by its owner as stolen, lost or compromised. In most
of the cases the entity issuing the credentials – in a PKI such entity is named Certifi-
cation Authority (CA) – is in charge of providing such validation information to any
relying party requesting it. On top of that, it is also necessary to iteratively validate
the issuer’s credentials until a trust anchor has been found; this process is often called
Certificate Path Validation. The validation process is traditionally done via the
placement of Certificate Revocation Lists (CRL1) on a public directory accessible
through protocols like HTTP, LDAP and FTP. However this solution tends to be
cumbersome for both the CA and the application. In terms of the CA it is difficult to
manage because it involves providing revocation information efficiently (in some
scenarios near real time notification is a must). Also on the client side such a solution
penalizes efficiency, because it becomes forced to periodically download and parse
the whole list of revoked certificates – which can be extremely large –in order to per-
form the validation process. In consequence, more efficient mechanisms to allow for
the provision of real time certificate status information to relying parties have begun
to be adopted in some demanding environments, where highly efficient and secure so-
lutions are required.

Proposed in 1999 on RFC 2560 [2], the Online Certificate Status Protocol (OCSP)

is one such mechanisms. In this paper we will focus our analysis into one distributed
system, which due to its special features poses strong security and performance chal-
lenges on OCSP: the computational Grid. Take for example the Globus Toolkit 4
(GT4) [3], which uses Proxy Certificates (defined in RFC3820 [4]) as short-lived
cryptographic authentication credentials, acting on behalf of their issuer (typically the
user itself) and implementing mechanisms that provide a secure framework for Grid’s
relying parties. Integration of OCSP into GT4 requires not only the implementation of
special mechanisms not available in other distributed systems (i.e. Proxy Certificate
validation), but also tailored and efficient solutions for others particular issues (i.e.
OCSP Responder discovery, fault tolerance, high performance, etc.). This problem
has been considered so important that communities like the Global Grid Forum
(GGF) are actively studying the adoption of OCSP into the Grid very closely. Pre-
cisely, as members of the GGF’s CA Operations Workgroup (CAOPS-WG) and
co-authors of the document “OCSP Requirements for Grids” [5] we have designed -
based on the guidelines of such document- and developed the Open GRid Ocsp
(OGRO) Java API, which provides OCSP support for Grid relying parties through a
set of customizable validation rules, named the Grid Validation Policy.

Based in that work this paper proposes a completely functional OCSP validation
infrastructure for Grids that uses OGRO and the CertiVeR OCSP service [6]. Fur-
thermore, we also introduce a new mechanism called pre-validation, consisting of
OGRO-enabled Grid clients embedding the OCSP Response received from CertiVeR
into a non-critical extension from the Proxy certificate, in such a way that while
OCSP security level is kept, the overall validation performance is greatly improved.

This paper presents our proposal in the following manner: section 2 explains and
shows the results obtained with our first proposal on the use of CertiVeR and OGRO

1 Files digitally signed by a CA, containing the serial numbers of those certificates which have

been revoked, cancelled or suspended in the PKI.

14 J. Luna, M. Medina, and O. Manso

to provide a validation infrastructure for the Grid. Next section 3 mentions and also
presents the results of a further OCSP validation improvement by introducing
OGRO’s pre-validation mechanism. The related work can be seen in section 4 and fi-
nally section 5 contains our conclusions and planned future work with OGRO and
CertiVeR.

2 Using CertiVeR and OGRO to Provide an OCSP Infrastructure
for Grids

In this section we will introduce an OCSP infrastructure for the Grid, based on the
CertiVeR service for the Trusted Responder and the OGRO Java API integrated into
the GT4 client.

2.1 CertiVeR

CertiVeR is an EU funded project that offers a comprehensive validation service that,
on top of providing validation information of a X.509 certificate in real time through
the Online Certificate Status Protocol –OCSP- it also implements a CRL Updater
module, which is in charge of retrieving revocation information directly from the
CA’s CRL through protocols like LDAP and HTTP. This information is stored in a
local cache.

A DeltaCRL connector has been also developed, which is used by the CRL Up-
dater modules to remotely push any new revocation information from the remote CA
into the Cert Status DB. Support for proxy certificate validation has been also imple-
mented in such a way that the Grid client may decide to securely revoke such creden-
tial. Through a customizable set of extensions on the OCSP response CertiVeR can
report information at several levels, such as technological – e.g. the reliability of the
degree of trust in the issuing authority of the certificate- or commercial – e.g. infor-
mation provided by the Chambers of Commerce about a company-. Such type of in-
formation may dramatically increase security and e-Trust.

For each organization member of the Grid’s VO, CertiVeR OCSP responder can be
configured in trusted or authorized mode as defined in [2]. Finally fault tolerance
(through replication techniques, backup sites and load balancers) and high perform-
ance (using cryptographic hardware) are also provided for those organizations requir-
ing them.

2.2 The Open GRid OCSP (OGRO): An Open Source OCSP Library for GT4

In previous work [7] we introduced the basis of an OCSP client for GT4, able to use
CertiVeR for proxy certificate’s OCSP path validation and also to request authoriza-
tion information in OCSP extensions from such service. This client has evolved since
then and now it has been published as open source, with the name of OGRO -Open
GRid OCSP– [8]. OGRO implements the one-message proxy certificate validation, a
mechanism able to validate the whole Proxy Certificate Path with just one OCSP Re-
quest/Response pair. Furthermore by being Open Source and 100% Java, OGRO is
suitable for integration into Grid applications, also it is easily configurable through

 Using OGRO and CertiVeR to Improve OCSP Validation for Grids 15

the so-called Grid Validation Policy which has been defined as a flexible set of XML
rules. The next section covers in detail this feature.

2.2.1 Customizing OGRO: The Grid Validation Policy
OGRO is configured through a set of rules -written in XML- called the Grid Valida-
tion Policy, which customizes relying parties’ validation behavior. Figure 1 shows the
DTD of such policy.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <!ELEMENT ocsppolicy (issuerdn+) >
3 <!ELEMENT issuerdn (source?,unknownstatus?,
 errorhandler?,request?,proxycert?) >
4 <!ATTLIST issuerdn dn CDATA #REQUIRED>
5 <!ATTLIST issuerdn name CDATA #REQUIRED >
6 <!ATTLIST issuerdn hash CDATA #REQUIRED >
7 <!ELEMENT revsources (source+) >
8 <!ELEMENT source EMPTY >
9 <!ATTLIST source order CDATA #REQUIRED >
10 <!ATTLIST source signingcert CDATA #IMPLIED >
11 <!ATTLIST source location CDATA #REQUIRED >
12 <!ATTLIST source type (trusted|authorized) "trusted" >
13 <!ATTLIST source timeout CDATA #IMPLIED >
14 <!ELEMENT unknownstatus EMPTY >
15 <!ATTLIST unknownstatus action (good|revoked) "revoked">
16 <!ELEMENT errorhandler (action+) >
17 <!ELEMENT action EMPTY >
18 <!ATTLIST action order CDATA #REQUIRED >
19 <!ATTLIST action type
 (tryLater|setFinalResp)"setFinalResp">
20 <!ATTLIST action value (good|revoked) "revoked" >
21 <!ATTLIST action maxRetries CDATA #IMPLIED >
22 <!ELEMENT request (signreq?, usenonce?, prot?, ext*) >
23 <!ELEMENT signreq EMPTY >
24 <!ATTLIST signreq value (true|false) "false" >
25 <!ELEMENT usenonce EMPTY >
26 <!ATTLIST usenonce value (true|false) "true" >
27 <!ELEMENT prot EMPTY >
28 <!ATTLIST prot value (http|https) "http" >
29 <!ELEMENT ext EMPTY >
30 <!ATTLIST ext order CDATA #REQUIRED >
31 <!ATTLIST ext oid CDATA #REQUIRED >
32 <!ATTLIST ext value CDATA #REQUIRED >
33 <!ELEMENT proxycert (unknownstatus, prevalidation) >
34 <!ELEMENT prevalidation EMPTY>
35 <!ATTLIST prevalidation value (true|false) "false" >
36 <!ATTLIST prevalidation noprevalinfo (ocsp|ommit) "ocsp" >

Fig. 1. DTD of OGRO’s Grid Validation Policy

From previous figure we can observe at line 2 that the OGRO’s policy allows per
issuer validation rules customization or even the option to configure a default issuer,
that is, rules applying to any user whose issuer is not referenced anywhere else in the
policy.

16 J. Luna, M. Medina, and O. Manso

A set of revocation sources (lines 8-13) can be also defined, which means that the
relying party may be able to consult more than one OCSP Responder thus providing
fault tolerance and high availability. Moreover a customizable meaning of the “Un-
known” OCSP status –line 15- can be defined for any certificate on the path (Proxy or
non-Proxy). Also at lines 16-19, error handling mechanisms may be declared to take a
certain action if for example an OCSP Responder could not be contacted. The current
set of error handlers can be extended to fulfill special requirements of VOs.

Customization of OCSP Requests (i.e. use of signatures and nonces) is provided
also by OGRO –lines 22 to 32- .

Important to note are Proxy Certificate’s pre-validation rules (lines 34-36), which
will be explained in the next section.

More than being a set of configuration directives, OGRO’s Grid Validation Policy
represents a mechanism to tailor validation process’ security level. For example a VO
may decide to use only a defined set of internal OCSP Trusted Responders benefiting
performance (i.e. not using digital signatures, nonces nor HTTPS), while other VO
may use external OCSP Authorized Responders but compelling its clients to use
strong OCSP Requests (i.e. digitally signed, using a nonce and HTTPS).

The following section compares several Grid Validation Policies for an OCSP in-
frastructure based in CertiVeR and OGRO, with the purpose to help potential users in
deciding which policy best fits their security requirements.

2.3 Performance Results Obtained for the Globus Toolkit 4 with CertiVeR and
OGRO

In this section we show our results for a validation architecture based on the CertiVeR
Service and the OGRO client implemented into the Globus Toolkit 4. The setup used
for the tests is described next:

• CertiVeR Validation Service configured as Trusted Responder at http://ta-
car.certiver.com and http://globus-grid.certiver.com:
− Installed on a server with one Xeon processor @2.9 GHz, 1.5 Gb RAM and

Windows 2000. An Oracle database is being used by the Responder.
− No cryptographic hardware is being used in the Responder.
− One OCSP extension is being handled: the "CA_RATING_EXTENSION" (reg-

istered with the OID "1.3.6.1.4.1.4710.2.454.10.1.1").
− Proxy certificate revocation was not configured to simulate a typical OCSP ser-

vice. Also no precomputed OCSP Responses were used.
• OGRO client:

− Integrated into the ProxyPathValidator class of the Java CoG version 4
[9], so that it could be used with the ProxyInit class from the same package.
Remember that the same classes are used by the Globus Toolkit 4 (Java Core).

− Apache Ant’s script to run 50 Grid clients concurrently (each one under a dif-
ferent instance of the Java Virtual Machine) in a server with 4 Xeon processors
using RedHat Linux 7.2.

− OGRO always verifies the OCSP Response’s nonce and digital signature.

 Using OGRO and CertiVeR to Improve OCSP Validation for Grids 17

Before the tests we were expecting to identify a policy with the best performance
(presumably the NoNonce-NoSign-HTTP which generates OCSP Requests without
nonce, not being signed and using HTTP) and also the most secure policy (in theory
the Nonce-Signed-HTTPS generating OCSP Requests with nonce, digitally signed and
using HTTPS). However from the results obtained we found that on the client-side
there is really no big difference among any of them (in fact only a 2%-6% of variation
was observed). It is also interesting to note that the use of HTTPS did not imply a
visible overhead neither in OGRO nor CertiVeR. A policy commonly used by relying
parties in environments like Web Services is the Nonce-NoSign-HTTP (which pro-
tects against replay attacks, does not identify the client to the OCSP Responder and
goes over clear-text HTTP), which resulted in a fair balance between security and per-
formance. Figure 2 shows obtained results over HTTP, even though the use of HTTPS
produced similar conclusions.

From a performance point of view, the use of nonces in the OCSP Request is al-
most irrelevant and it would be advisable only if CertiVeR was using precomputed
Responses. Otherwise, for security reasons, it should be enabled.

Similar to the above observation is the use of digital signatures on the OCSP Re-
quest (its use is only advisable if a special reason to justify it exists –i.e. service ac-
countability or access control purposes-).

On the OCSP service-side we observe that CertiVeR kept sustained response times
for all the clients. In other words, no bottlenecks were evident even though all OCSP
Requests were launched in parallel.

OGRO-CertiVeR-GT4 Results over HTTP

0

20000

40000

60000

80000

100000

120000

140000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Client

T
im

e
(m

s)

No OGRO NoNonce-NoSign-HTTP Nonce-NoSign-HTTP Nonce-Sign-HTTP

Fig. 2. Proxy Cert initialization with CertiVeR and different OGRO Policies over HTTP

We have to notice that the use of OGRO is more time-expensive for Grid clients,
than when OCSP validation is not performed at all because obviously more process-
ing is required (i.e. Grid Validation Policy parsing, cryptographic operations for the
OCSP message, disk access and response validation just to name a few). Further re-
search in OCSP validation performance took us to find that important improvements
could be done through a mechanism named pre-validation, which is explained next.

18 J. Luna, M. Medina, and O. Manso

3 Improving OCSP Validation: Pre-validating with OGRO

3.1 The Problem

As mentioned in previous section, Grid Validation Policies created with different Re-
quest rules (in particular combining the digital signature, nonce and protocol parame-
ters) kept similar performances in OGRO and GT4. Although the OCSP validation
overhead on the server-side represents approximately 30% (i.e. when the Coun-
terService Grid Service is invoked) it becomes far more critical for overall
performance. Such conclusion raised the following question: are we able to sacrifice
client’s performance prior to invoking a Grid Service to benefit WSRF Container’s
overall performance? Our novel pre-validation mechanism in OGRO took this direc-
tion to provide a secure and high-performance OCSP validation solution for Grid
environments.

3.2 Introducing OCSP Pre-validation

When we faced the challenge of improving the performance of OCSP validation in
Grids without affecting its overall security, a concept from the authorization area [10]
came to our mind: the push model. Here we use the OCSP Response itself as a valida-
tion ticket to be exchanged between the user and the service. The rationale behind this
is very simple given the fact that such message is authenticated (digitally signed by
the OCSP Responder which is a trusted third party), tamper protected (again thanks to
the digital signature) and includes a validity period. In other words, the OCSP Re-
sponse can be presented by the user as a proof of pre-validation to any other Grid
relying party. The other challenge in designing the pre-validation mechanism was
deciding how to transport the OCSP Response along with the user identity. We solved
this by implementing a solution used by the CAS [11], VOMS [12] and PRIMA [13]
authorization systems, where the attributes assertions are embedded as Proxy Certifi-
cate’s extensions.

The results obtained with OGRO’s pre-validation mechanism, under the same con-
ditions described in section 2.3 are shown in Figure 3. Just as expected in the client
side, the time consumed by OGRO’s validation and pre-validation processes, was
almost 100% above the time that elapsed when such mechanisms were not used.
However it is interesting to note that embedding the OCSP Response into the Proxy
Certificate did not result in a visible overhead. On the other hand, the results obtained
with the Grid WSRF container –server side- (figure 4) showed that the pre-validation
process reduced in little more than 30% the time required to validate with OCSP a
Proxy Certificate. Even more important to note is that the pre-validation checking at
the server side did not introduce a visible overhead (in fact less than 1%). On the
other hand, even though a bottleneck at the WSRF Container itself was noticeable as
the number of concurrent invocations increased (around the 9th invocation in figure 4),
again it does not deny the fact that pre-validating improves OCSP performance and in
the best of the cases (if no bottleneck was generated at the WSRF Container) the gap
between the OCSP No Prevalidated and OCSP Prevalidated series
(figure 4) could be reduced, but would never be the same.

 Using OGRO and CertiVeR to Improve OCSP Validation for Grids 19

Concurrent Proxy Initialization (Client-side)

0

20000

40000

60000

80000

100000

120000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Concurrent Proxy Instance

T
im

e
(m

s)

No OGRO OCSP No Prevalidated OCSP Prevalidated

Fig. 3. Results obtained with the Grid client when creating the Proxy Certificate

Concurrent CounterService Invocation (WSRF Server-side)

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Concurrent Invocation

T
im

e
(m

s)

No OGRO OCSP No Prevalidated OCSP Prevalidated

Fig. 4. Results obtained with the WSRF Container when validating the Proxy Certificate

4 Related Work

Even though there are several standalone OCSP clients currently available (maybe
one of the most commonly used is the OpenSSL [14], which also includes a set of C
libraries), as far as we know OGRO is the first one adapted for the Globus Toolkit
(and very likely for any other Grid software) and thus the only client providing a pre-
validation mechanism as presented in this paper. However, there are a couple of solu-
tions that, even if they do not provide OCSP validation, make use of fresh CRLs to
validate certificates: the first one is MyProxy [15] which implements a remote service
that stores user certificates automatically populated from a CA. The second imple-
mentation is the Data Grid’s edg-fetch-crl [16] script which can be scheduled to
periodically download remote CRLs. Regarding pre-validation we have to mention
that the idea of embedding information into Proxy Certificate’s extensions is not new,
and in fact it has been used by solutions implemented in the Authorization field like

20 J. Luna, M. Medina, and O. Manso

CAS [11], VOMS [12] and PRIMA [13]. In the OCSP service-side it is worth to men-
tion Sytrust’s OpenValidation [17] which implements several of the functionalities
also presented in CertiVeR. However, it does not support the Authorized Responder
mode with the same cryptographic key-pair nor the Proxy Certificate’s revocation
service.

5 Future Work and Conclusions

This paper has introduced the Open GRid Ocsp –OGRO- client API which imple-
ments the requirements of OCSP infrastructures in order to be suitable for Grid envi-
ronments, just as proposed by the GGF’s CA Operations Workgroup (CAOPS-WG).
OGRO’s functionality can be easily customized by a set of XML rules in the form of
a Grid Validation Policy. To provide some insight into the security and performance
effects of different Grid Validation Policies, an OCSP infrastructure based in the Cer-
tiVeR Validation Service, OGRO and the Globus Toolkit 4 was setup. We observed
that the overall response time of the policies was pretty much the same, therefore
from the client’s performance point of view there is no big difference if nonces, digi-
tal signatures or secure channels are used when connecting to a service like the one
we have tested (which does not preprocess OCSP responses). Our tests have also
show that the architecture OGRO-CertiVeR greatly improves Grid security, but over-
loads such environments with the delay generated by the OCSP validation mecha-
nism. For this reason was introduced the concept of pre-validation as a mechanism
capable of improving OCSP validation performance in Grid environments. This has
been done by embedding the OCSP Request in a Proxy Certificate extension in such a
way that the overhead introduced by traditional OCSP has been moved from the
server to the client. In doing so the overall system security is not affected, because the
Grid server is enforced to perform a series of security verifications over the pre-
validated data contained in the Proxy Certificate to ensure its correctness (verification
of Responder’s digital signature, OCSP Response’s validity period, etc.). As a proof
concept we have modified the Open GRid Ocsp –OGRO– client to support pre-
validation through a new rule introduced in the client’s Grid Validation Policy being
defined. This API was then tested with the Globus Toolkit 4 in such a way that pre-
validation is performed by the Grid user when creating a Proxy Certificate, and then
enforced at the WSRF Container when a Grid Service was being invoked through the
secure messaging mechanism. Results showed that important improvements could be
obtained at the Grid server without any extra overhead introduced at the client’s
OCSP validation process. Even though obtained results were affected by external fac-
tors (the throughput of the OCSP validation service being accessed, the WSRF Con-
tainer, and OGRO itself –policy parsing-) we believe that general conclusions about
the overall advantages of the pre-validation mechanism were not influenced by them
and moreover future work will be aimed to enhance performance by using new algo-
rithms (i.e. use of precomputed OCSP Responses in CertiVeR and inclusion of an
OCSP cache in OGRO) and cryptographic hardware.

We expect that the use of OCSP in Grids will be very common in the near future.
In consequence, the practical experience that the Grid community will acquire with
software like OGRO and services like CertiVeR may prove very useful in building
OCSP architectures fully optimized for such environments. Current research on Grid
OCSP in general and the CertiVeR-OGRO-GT4 architecture in particular, will

 Using OGRO and CertiVeR to Improve OCSP Validation for Grids 21

continue over topics like future uses of OCSP extensions as we have also begun a new
research line using the concepts of pre-validation and the OGRO API to build the
Unified AAI introduced in [7], by conveying not only the OCSP Response but also
Authorization information into the Proxy Certificate’s extensions.

Finally it is worth highlighting that OGRO is in the process of being integrated into
the next release of the Globus Toolkit, which may bring further improvements as a re-
sult of the Grid community’s testing and comments.

References

1. “RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile”. Housley R, et. al., April 2002.

2. “RFC 2560: X.509 Internet Public Key Infrastructure, Online Certificate Status Protocol –
OCSP”. Myers M, et. al. June 1999.

3. “The Globus Toolkit 4”. http://www.globus.org
4. “RFC 3820: Internet X.509 Public Key Infrastructure (PKI), Proxy Certificate Profile”.

Tuecke S, et. al. June 2004.
5. “OCSP Requirements for Grids”. Global Grid Forum, CA Operations Work Group. Work-

ing Document. May 2005. https://forge.gridforum.org/projects/caops-wg
6. “CertiVeR: Certificate Revocation and Validation Service”. http://www.certiver.com
7. “Towards a Unified Authentication and Authorization Infrastructure for Grid Services:

Implementing an enhanced OCSP Service Provider into GT4”. Luna J., Manso O., Medina
M., 2nd EuroPKI 2005 Workshop. To be published in the Proceedings by Springer in Lec-
ture Notes in Computer Science series. July 2005. http://sec.cs.kent.ac.uk/europki2005/

8. “OGRO - The Open GRid Ocsp client API”. http://grid-globus.certiver.com/info/ogro
9. “A Java Commodity Grid Kit” Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter

Lane, Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9, pp. 643-
662, 2001, http:/www.cogkit.org/

10. “RFC 2904: AAA Authorization Framework”. Vollbrecht J, et. al. August 2000.
11. “A Community Authorization Service for Group Collaboration”. L. Pearlman, et.al. IEEE

3rd International Workshop on Policies for Distributed Systems and Networks, 2002.
12. “VOMS, an Authorization System for Virtual Organizations”. R. Alfieri,. et. al. Presented

at the 1st European Across Grids Conference, Santiago de Compostela, Spain. February
2003. http://infnforge.cnaf.infn.it/voms/VOMS-Santiago.pdf

13. “The PRIMA Grid Authorization System”. M. Lorch and Dennis Kafura. Journal of Grid
Computing, 2004, Vol. 2, Pages 279-298

14. “The OpenSSL software”. http://www.openssl.org
15. “An online credential repository for the Grid: MyProxy”. V. Welch, et. al. In 10th IEEE In-

ternational Symposium on High Performance Distributed Computing. San Francisco, CA.
IEEE Computer Society Press, Los Alamitos, CA, 2001.

16. “Data Grid: Security for the RLS”. http://edg-wp2.web.cern.ch
17. “The Openvalidation service”. http://www.openvalidation.org

Efficient Target Detection for RNA Interference

Shibin Qiu1, Cundong Yang2, and Terran Lane1

1 Dept. Computer Science, University of New Mexico, Albuquerque, NM, 87131
{sqiu, terran}@cs.unm.edu

2 Dept. Electrical and Computer Eng., University of New Mexico, USA
cundongyang@ece.unm.edu

Abstract. RNA interference (RNAi) is a posttranscriptional gene si-
lencing mechanism used to study gene functions, inhibit viral activi-
ties, and treat diseases. Due to the nonspecific effects of RNAi, target
validation through target detection is crucial for the success of RNAi ex-
periments. Since target detection involves large amounts of transcriptome-
wide searches, computational efficiency is critical. To efficiently detect
targets for RNAi design, we develop both sequential and parallel search
algorithms using RNA string kernels, which model mismatches, G-U wob-
bles, and bulges between siRNAs and target mRNAs. Based on tests in
S. pombe, C. elegans, and human, our algorithms achieved speedups of 6
orders of magnitude over a baseline implementation. Our design strategy
also leads to a framework for efficient, flexible, and portable string search
algorithms.

1 Introduction

RNAi is an intracellular mechanism for posttranscriptional gene silencing used
to study gene functions, inhibit viral activities, and treat diseases therapeuti-
cally [1, 2, 3, 4]. RNAi is initiated by short interfering RNA (siRNA) of about 21
nucleotides (nt) long, either generated from a dsRNA by the enzyme Dicer, or
directly transfected. Associating with a silencing complex (RISC), siRNA targets
complimentary mRNA molecules for destruction, preventing expression of the
associated proteins. RNAi has been regarded as a highly effective means of gene
repression[2, 5]. However, its effectiveness can be compromised by nonspecific,
or off-target knockdown, which is the unintentional silencing of a gene other
than the target. In this paper, we develop efficient algorithms searching whole
transcriptomes to detect targets of siRNA and dsRNA for target validation.

Although RNAi is predominantly considered highly specific [5], significant
nonspecific gene knockdowns have been reported [6, 7, 8]. Experiments in human
cells found silencing of nontarget genes containing only 11 nt identity to the
siRNA [6]. A computational study reported that using dsRNA of length 200 nt,
there existed a 30% chance of silencing incorrect genes in human by permitting
exact matches only [8]. If mismatches of 3 nt were allowed, more than 50% chance
of false positive knockdown existed. This level of off-target error rate suggested
that silencing one gene would silence at least one nontarget gene. Because RNAi
specificity is critical [3, 4], it is important to detect and verify the targets of a
dsRNA or siRNA before it is used in a biological experiment.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 22–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Target Detection for RNA Interference 23

The recommended procedure for target validation is BLAST [9, 10]. However,
BLAST misses targets in some cases, and is not suitable for accurate sequence
matching, such as RNAi [11]. The sequence binding between an siRNA and its
target allows for mismatches, G-U wobbles, and bulges[7]. Though BLAST al-
lows for deletion, insertion and substitution, it cannot control the exact patterns
of imperfect matches encountered in RNAi. Due to their quadratic complex-
ity, algorithms based on dynamic programming are not feasible for large scale
searching. Alignment algorithms align the input sequences into whatever pat-
tern needed to get an optimal score based on a cost model and do not guarantee
generating the desired patterns[12, 13]. To simulate siRNA-target binding, we de-
velop search algorithms based on string kernels that accurately control matching
patterns by adjusting the length and position of the patterns. To search for im-
perfectly matched targets, we develop algorithms using search trees constructed
with reverse strings and shuffled strings. Furthermore, we exploit parallelism in
our algorithms for parallel target detection. Our algorithms have demonstrated
superior quality in target detection and achieved substantial speedups.

Related to RNAi, computational methods exist to predict microRNA genes
and targets[14], and putative RNAi[15]. An algorithm for string searches with
single letter mismatch was developed[16]. However, single-length mismatch is
not enough for RNAi. A multiple instruction stream-single data stream (MISD)
architecture was developed for fast sequence matching[17]. But this hardware
solution is not flexible and its proprietary architecture is expensive. String ker-
nels provide flexibilities for evaluating the similarity between the sequences
based on input patterns[18, 19]. But these string kernels were not specifically
designed for RNA biology and their computational performances were unsatis-
factory. Previously, we have developed the RNA string kernels and used them
for RNAi off-target studies focusing on computational models and biological
implications[8, 20]. In this work, we use the RNA string kernels to allow flex-
ible imperfect matches, focusing on high performance sequential and parallel
implementations. We develop a series algorithms of increasing sophistication for
computing the kernels to efficiently detect targets of a dsRNA or siRNA for
RNA interference.

2 Target Detection by RNA String Kernels

We formulate a computational representation for RNAi using the RNA string
kernels including mismatches, bulges, and G-U wobbles[8, 20]. The destruction of
an mRNA is caused by hybridization between the binding strand of the siRNA
and the target, which can be modelled by sequence matching between the sense
stand and the target [5]. Thus, a sequence matching signifies a gene knockdown.

2.1 Target Search by Exact Match String Kernel

We describe each gene by its contiguous subsequences of length n (∼ 21 nt),
called n-mers, or n-grams, representing siRNAs. A gene, gx, represented in the

24 S. Qiu, C. Yang, and T. Lane

input space X , consisting of sequences drawn from the alphabet A={A, C, G, U},
is mapped into an n-gram feature space R

4n

by the feature map of exact match

Φex(gx) = (φa(gx))a∈An , (1)

where φa(gx) is the number of times n-gram a occurs in gx[8]. Therefore, the
image of gx is the coordinates in the feature space indexed by the number of
occurrences of its constituent n-mers.

A dsRNA d matches gx if the following condition is met,

K(d, gx) = 〈Φex(d), Φex(gx)〉 ≥ T, (2)

for a threshold T , where 〈., .〉 is the standard inner product. The similarity
measure K(d, gy) in (2) defines a kernel as used for a support vector machine
classifier [21]. Instead of classifying, we use this kernel to match a dsRNA and
its target. Since any match between an siRNA from a dsRNA and an mRNA
will silence the gene, we choose T = 1.

2.2 String Kernels of Mismatches, Bulges, and Wobbles

An siRNA is able to silence its target despite the presence of a limited number
of mismatches, bulges, and wobbles[6, 7]. To detect the targets when imperfect
matches exist, we use string kernels defined through the notion of similarity
neighborhoods. Since these imperfect matches frequently exist in RNA biology,
these kernels are called RNA string kernels. The RNA kernels first define con-
tiguous imperfect match patterns and parameterize their positions, then permute
the positions, so that imperfect matches occur everywhere[20].

For an n-mer a from an alphabet A, we define its mismatch neighborhood,
Nmis

m,p (a), as the set of n-mers γ from A that differ from a by at most m contiguous
mismatches starting at position p in a. And we define the mismatch feature map
of a as Φmis

m,p(a) = (φγ(a))γ∈An , where φγ(a) = 1 if γ ∈ Nmis
m,p (a), and φγ(a) = 0,

otherwise. The feature map of a gene gx is defined as the sum of the feature
maps of its n-mers,

Φmis
m,p(gx) =

∑
a∈gx

Φmis
m,p(a). (3)

The bulge neighborhood N bulge
b,q (a) for n-mer a is defined as all (n + b)-mers

γ from the target that match a exactly everywhere except by a bulge of b nt
long starting at position q on γ. And the bulge feature map of a is defined as
Φbulge

b,q (a) = (φγ(a))γ∈An+b , where φγ(a) = 1 if γ ∈ N bulge
b,q (a), and φγ(a) = 0,

otherwise. The feature map of gx is defined as the sum of the feature maps of
its n-mers,

Φbulge
b,q (gx) =

∑
a∈gx

Φbulge
b,q (a). (4)

The wobble feature map Φwobble
w,r (.) is defined similarly to Φmis

m,p(.) in (3), except
only G-U wobbles exist in its neighborhood. By defining the similarity neigh-
borhood for the combination of mismatches, bulges, and wobbles as the union
of the separate neighborhoods, we can define the feature map of simultaneous
mismatches, bulges and wobbles Φmbw

m,p,b,q,w,r(.) accordingly. Thus to evaluate the

Efficient Target Detection for RNA Interference 25

RNA string kernel between a dsRNA d and a gene gx, we calculate the inner
product using the above feature maps,

K(d, gx) = 〈Φmbw
m,p,b,q,w,r(d), Φmbw

m,p,b,q,w,r(gx)〉. (5)

To allow imperfect matches to exist at all possible positions, we sum up over
all positions within the strings, as done for the mismatch feature map below.

Km(d, gx) =
∑n−m+1

p=1 〈Φmis
m,p(d), Φmis

m,p(gx)〉. (6)

3 Efficient Implementations for RNA String Kernels

The RNA string kernels defined above characterize imperfect match patterns
in RNAi. However, since these kernels need substantial processing and target
validation requires large scale scan, we develop their efficient implementations.

3.1 Computing the Exact Match String Kernel

Calculating the similarity of (2) directly in a vector space requires O(DF4n)
time, where F is the number of n-grams in the genome (40× 106 for C. elegans
and 60×106 for human) and D = |d|−n+1 is the number of n-mers in the dsRNA
of length |d|. For whole genome searches, this computing time is prohibitive and
can be improved by taking advantage of the sparsity of the feature space. We
use an inverted file where the n-mers serve as identifiers and their gene names
serve as attributes. In the inverted file, the records for gx contains the pairs
(a1, gx), (a2, gx),...,(akx , gx), where aj , 1 ≤ j ≤ kx, is the jth n-gram of gx, and
kx = |gx| − n + 1 is the number of n-mers in gx. The inverted file for a genome
is the collection of the pairs of its genes. To speed up computation, we sort the
inverted file on the n-mer field using a binary search tree (BST).

The exact match similarity K(d, gx) in (2) can be computed using the SS0
algorithm in Algorithm 1. After the BST T1 is built, the matched genes are
collected in C at Step 2. K(d, gx) is the number of occurrences of gx among
the matched genes. Each search in the BST takes O(log F) time, resulting in an
O(D log F) time for computing K(d, gy). An alignment algorithm would need
O(n2DF) time. SS0 gains a speedup of O(n2F/ logF).

Algorithm 1 Algorithm 2
Search by Exact Match, SS0(d) Single Tree Search, SS1(d, m)

Input: dsRNA d, BST T built
for the inverted file using n-
mers.

Output: Target genes
matched by d.

1: for each n-mer sj in d do
2: C ← C matched nodes

in T
3: end for

4: Return C

Input: dsRNA d, length of mismatch m, BST T
built for the inverted file using n-mers.

Output: Target genes matched by d.
1: for each n-mer sj in d do
2: for each p ∈ [1, n − m + 1] do
3: R ← p − 1 leading range of sj from T
4: C ← C nodes in R satisfying ending

criterion
5: end for
6: end for

7: Return C

26 S. Qiu, C. Yang, and T. Lane

3.2 Target Search Using Reverse Strings

Since mismatches dominate off-target chances among the imperfect matches and
the wobble and bulge kernels can similarly be implemented, we focus on imple-
menting mismatch kernels[20]. First, we need some notation.

For a BST populated with strings from a set S = {s1, s2...sN} of strings of
length k drawn from an alphabet A, we define a u (u < k) leading range of a
string s ∈ S searched in the BST as the set of nodes returned by a search that
only matches the first u letters of s. The u leading range of a string s0 can be
searched from a BST by first finding s0, followed by retrieving the nodes among
the neighbors of s0 (equivalently along the sorted array) as long as the first u
letters are matched. If s0 is not found, the closest location returned by a binary
search is used as the center point of the neighborhood.

The SS1 algorithm in Algorithm 2 performs target detection with mismatches.
In the loop starting at Step 2, targets are searched allowing mismatches at
all positions. At Step 4, the ending criterion collects those genes in C whose
n-mers in R are matched with sj at the last n − m − p + 1 positions. However,
the search in SS1 is not always efficient. At Step 3, the size of the neighborhood
subtree for the leading range is O(4n−m−p+1) if the tree is fully populated. It
is small if the mismatch is at the end of the sequence, and gets exponentially
larger as the mismatch moves to the beginning of the string. Its worst case size is
O(4n−m). Therefore, SS1 uses O(pD4n−m log F) time. However, if we can keep
the mismatches at the end of the strings, then our searches are always fast.

Suppose string si = a1...ak has reverse string si = ak...a1. We define a mir-
rored tree of a BST populated with strings from S as the BST populated with

Algorithm 3 Algorithm 4
Search by Reverse String, SS2(d, m) Search by Shuffled String, SS3(d, m)

Input: dsRNA d, length of
mismatch m, BST T1 and
mirrored BST T2 for the in-
verted files using n-mers.

Output: Target matched by d.
1: for each p ∈ [1, n−m+1]

do
2: for each n-mer sj in d

do
3: if p ≥ �n/2� then
4: R ← p − 1 leading

range of sj from T1

5: else
6: R ← n − m − p + 1

leading range of sj

from T2

7: end if
8: C ← C

⋃
nodes in R

satisfying ending crite-
rion

9: end for
10: end for

11: Return C

Input: dsRNA d, length of mismatch m, BST TR

built with s, TL with s, and TM with sM using
n-mers.

Output: Target matched by d.
1: for each p ∈ [1, n − m + 1] do
2: for each n-mer sj in d do
3: if p ≥ 2�n/3� then
4: R ← p − 1 leading range of sj from TR

5: else if p ≤ �n/3� then
6: R ← n − m − p + 1 leading range of sj

from TL

7: else
8: R ← �n/3�+ p− 1 leading range of sM

from TM

9: end if
10: C ← C

⋃
nodes in R satisfying ending

criterion
11: end for
12: end for

13: Return C

Efficient Target Detection for RNA Interference 27

reverse strings s1,...,sN . The SS2 algorithm in Algorithm 3 first builds BST T1

and a mirrored BST T2. If the mismatch is in the ending half of the string,
T1 is queried in Step 4 to obtain the leading range. If it is in the beginning
half, T2 is searched using its reverse string in Step 6. Since the sizes of the sub-
trees used to retrieve the leading ranges are bounded by O(4n/2−m), SS2 takes
O(pD4n/2−m log F) time. The speedup of SS2 over SS1 (baseline) is O(4n/2).

3.3 Target Search Using Shuffled Strings

We can further improve search performance by dividing the string into three
segments and shuffling the mismatches to the end of the sequences. SS3 in Al-
gorithm 4 shows this implementation by building three trees. Let s=s1+s2+s3,
where s1, s2, and s3 are the left, middle and right substrings. Each of them has
a length of about one third of s. The tree TR is inserted with s, and facilitates
searches with mismatches at the end. Tree TL is inserted with the inverse se-
quences s for searches with mismatches at the beginning. TM is inserted with the
shuffled sequence sM=s3+s1+s2 for searches with mismatches in the middle.

In Algorithm 4, if a mismatch is at the right end, p ≥ 2
n/3�, then R collects
the leading range of sj searched in TR. If the mismatch is on the left, then R
collects the leading range of sj searched in TL. Otherwise, the mismatch is in
the middle and R stores the leading range of sM searched in TM . Since the
sizes of the subtrees used to retrieve the leading ranges (Steps 4, 6, and 8) are
bounded by O(4n/3−m), SS3 takes O(pD4n/3−m log F) time. SS3’s speedup over
SS2 is O(4n/6). Its speedup over SS1 is O(42n/3). However, SS2 and SS3 use
more memory space than SS1.

Although we only implemented up to SS3, it is not difficult to construct ρ =
n/m trees, so that each search is exactly at the end of the string. This extension
yields a time complexity of O(pD log F) and a speedup of O(4n−m) over SS1,
achieving speedups of more than 8 orders of magnitude for human genome.
Thus our design strategy provides a framework for fast searching algorithms
with easy extensions. This extended design will benefit special purpose software
and hardware architectures that pursue extremely fast target detection.

3.4 Parallel Target Detection

Due to the popularity and cost decline of parallel computers, improving compu-
tational performance through parallelism becomes practical. In this section, we
parallelize our algorithms to further enhance the speed of target detection and
prepare them for large throughput searches required by a server.

To parallelize SS3 using an input partition scheme on a shared memory ma-
chine, we first build the trees TR, TL, and TM for a organism. We then share
these trees among the processors during the search stage. Assuming there are
P processors, we partition the dsRNA into P parts and assign one part to each
processor for searching. The output targets are the union of the targets returned
by each processor. We can also partition the transcriptome into P parts and
assign one part to each processor, which in turn builds three trees. In the search
stage, each processor searches its own shuffled trees for the entire input sequence.

28 S. Qiu, C. Yang, and T. Lane

4 Experiments

We test our algorithms for dsRNA target detection in S. pombe, C. elegans, and
H. sapiens.

4.1 Performance of Target Detection

We searched targets for dsRNAs of 500 nt long from genes SPAC664.06,
F52C9.8b, and Kua-UEV (gi|40806189) in S. pombe, C. elegans, and H. sapiens,
respectively. Fig. 1 (a) shows that the number of targets increased dramatically
with mismatches. In the case of human, when only exact match was allowed, the
dsRNA targeted 3 variants of the ubiquitin-conjugating enzymes (gi|40806189,
gi|40806191, and gi|40806192). When one mismatch existed at every position
in the siRNAs (21 nt), it matched 6 genes, additional targets being FLJ20512,
AZI1, and KIAA1984. Fig. 1 (a) also suggests that larger genomes (human and
C. elegans) yielded more targets than smaller ones (S. pombe).

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4

#

o
f

t
a
r
g
e
t
s

mismatch length

 human
 worm

 yeast

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

s
p
e
e
d
u
p

input size (1000 nt)

 m=1
 m=2
 m=3
 m=4
 m=5
 m=6
 m=7
 m=8

Table 1. Search times
D(nt) SS1 SS2 SS3
500 7,718.7 0.092 0.062
2000 39,146 0.443 0.313
4000 * 0.933 0.647
8000 * 1.916 1.305
10000 * 2.432 1.654

Sp 1.0 88,285 125,107

(a) (b) (c)

Fig. 1. Performance comparison. (a) Number of targets increases with m in S. pombe,
C. elegans, and H. sapiens (D = 500 nt, m = 0− 4 nt). (b) Speedups of SS3 over SS2
for D = 500 − 10000 nt, m = 1 − 8, n = 21 nt in C. elegans. (c) Comparison of search
times (in seconds) in C. elegans. D=500–10000 nt, m = 2, n = 21 nt, ∗ unavailable
(too long). Speedup Sp is relative to SS1, for D=2000 nt.

To handle high throughput required by a server, we tested SS1, SS2, and SS3
for dsRNAs of 10,000 nt long, although < 1000 nt dsRNAs are commonly used
in biological experiments. We used a computer with a 1.6GHZ CPU and an 8GB
RAM. Table 1 in panel (c) of Fig. 1 shows that SS2 and SS3 gained speedups of
88,285 and more than 105 folds over SS1 respectively, for the case of D = 2000
nt, m = 2, and n = 21, in C. elegans. As the table shows, for dsRNAs of 500–
10000 nt long, SS3 found the targets in 0.06–1.7 seconds. For the same input sets,
BLAST took 21–121 seconds. SS1 took hours to finish, but faster than alignment
searching (time not shown). Fig. 1 (b) shows that SS3 gained a speedup of about
80 fold over SS2 and this speedup increased with m. The speedup’s increase with
m is because that the number of possible mismatch positions is n − m + 1 and
larger m yields fewer positions to search and less overhead for the partition and

Efficient Target Detection for RNA Interference 29

combining. The figure also indicates that the speedups did not change much with
the input size (D), suggesting that the algorithms are scalable.

We noticed that the speedup of SS3 over SS2 was lower than its theoretical
estimation O(4n/6). This is because real genomes are much smaller than 4n. It
was also related to the overhead in SS3 incurred by dividing the strings and
combining the results. In addition, more trees caused more memory segmenta-
tion, which slowed down memory accesses. While our algorithms used BSTs and
were written in C++ language, they can also be implemented using B-Trees in
database tables. Our web tool for target detection, using the search strategy
of SS2 and two MySQL database tables, works with reasonably fast response
(http://rnai.cs.unm.edu/projects/).

4.2 Parallel Speedups

Our parallel experiments were conducted on a Sun E4500 shared-memory ma-
chine with 14 Ultra SPARC II 400MHz CPUs, each having 16KB L1 cache and
4MB L2 cache. Programs were written in C++ using p–threads. Fig. 2 displays
SS3’s speedups using input-partition, indicating that more than 8 fold speedups
were achieved. However, the speedups were less than linear and even decreased
with more processors in some cases. This decrease of speedup is attributed to
the drawbacks of the computer architecture. Since our BSTs were shared by
all processors, bus contention and deep cache hierarchy deteriorate performance
greatly with the increase of processors. The figures also show that more speedups
were achieved for longer mismatches. This is because longer mismatches yielded
fewer possible mismatch positions in the siRNAs and fewer searches, which re-
duced the chances of bus contentions and undesirable cache behaviors. Although
the speedups dropped with more processors for short mismatches, this drop was
not serious in human as shown in Fig. 2 (c), suggesting that our parallel im-
plementations were more efficient for larger genomes. Parallelizing SS3 with
genome-partition gained only 3 fold speedups, due to large amount of cache
misses and bus contentions incurred when more trees were accessed.

Combining the parallel speedup and that gained by SS3 (> 105), a total
speedup of 6 orders of magnitude over SS1 was achieved. If the strings are shuffled
into more segments using more trees SS3, higher speedups can be achieved.

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

s
p
e
e
d
u
p

of processors

 m=1
 m=2
 m=3
 m=4
 m=5
 m=6
 m=7
 m=8

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

of processors

 m=1
 m=2
 m=3
 m=4
 m=5
 m=6
 m=7
 m=8

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

of processors

 m=1
 m=2
 m=3
 m=4
 m=5
 m=6
 m=7
 m=8

(a) (b) (c)

Fig. 2. Parallel speedups. (a) S. pombe, D = 10000 nt. (b) C. elegans, D = 5000 nt.
(c) H. sapiens, D = 5000 nt. n = 21, m = 1 − 8 nt.

30 S. Qiu, C. Yang, and T. Lane

5 Conclusions

Target detection in RNAi must meet the requirements of the similarity model
and computational efficiency. To ensure the quality of target detection and cap-
ture the matching patterns in RNAi, we used RNA string kernels character-
izing sequence similarity, allowing for mismatches, G-U wobbles, and bulges.
We developed algorithms of increasing sophistication for performance improve-
ment. First, we used searches based on sorted inverted files as a baseline im-
plementation. We then introduced searches using reverse strings and mirrored
trees, which improved search times dramatically, especially when mismatches are
present. Furthermore, we developed searching algorithms using shuffled strings
that yielded better performance. Finally, we used parallel processing and made
target detection even faster.

We have analyzed, compared, and tested the algorithms extensively for differ-
ent scenarios. Experiments in the genomes of S. pombe, C. elegans, and human
demonstrated that our algorithms achieved speedups of 6 orders of magnitude over
the baseline implementation. They were faster than BLAST and detected targets
that were otherwise missed by BLAST. They are flexible and can be implemented
using database tables. The parallel implementations are portable and practical
for commonly used multiprocessor systems. Moreover, our design strategy pro-
vides a framework of fast searching algorithms, which makes it easy to extend the
algorithm beyond what we have tested (SS3) for even better performance.

We need to point out that the multiprocessor system we used to test our
parallel implementations was made many years ago. On today’s multiprocessor
systems using high-speed switches, parallel performance can be improved sub-
stantially. On commonly used, low cost, small multiprocessor computers (<8
processors), we expect the parallel speedups will be close to linear. Although the
genome-partition scheme did not achieve the expected speedup on this system,
it might work well on a cluster of workstations, where memory accesses are inde-
pendent on each node. In the future, we will combine the two partition schemes
for better efficiency on a cluster and investigate load balancing issues.

Acknowledgement

This work is supported by NIH grant P20RR18754 from the Institutional De-
velopment Award Program of the National Center for Research Resource. The
authors thank David A. Bader for giving accesses to the shared-memory machine,
and Coenraad M. Adema for helpful suggestions.

References

1. Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S., Mello, C.: Potent and
specific genetic interference by double-stranded RNA in C. elegans. Nature 391
(1998) 806–811

2. Elbashir, S.M., Harborth, J., Weber, K., Tuschl, T.: Analysis of gene function in
somatic mammalian cells using small interfering RNAs. Methods 26 (2002) 199–213

Efficient Target Detection for RNA Interference 31

3. Check, E.: Hopes rise for RNA therapy as mouse study hits target. Nature 432
(2004) 136

4. Dillin, A.: The specifics of small interfering RNA specificity. Proc. Natl. Acad.
Sci. USA 100 (2003) 6289–6291

5. Tuschl, T., Zamore, P.D., Lehmann, R., Bartel, D.P., Sharp, P.A.: Targeted mRNA
degradation by double-stranded RNA in vitro. Genes Dev. 13 (1999) 3191–3197

6. Jackson, A., Bartz, S., Schelter, J., Kobayashi, S., Burchard, J., Mao, M., Li, B.,
Cavet, G., Linsley, P.: Expression profiling reveals off-target gene regulation by
RNAi. Nature Biotechnology 21 (2003) 635–637

7. Saxena, S., Jonsson, Z.O., Dutta, A.: Small RNAs with imperfect match to endoge-
nous mRNA repress translation. J. Bio. Chemistry 278(45) (2003) 44312–44319

8. Qiu, S., Adema, C., Lane, T.: A computational study of off-target effects of RNA
interference. Nucleic Acids Research 33 (2005) 1834–1847

9. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local
alignment search tool. J. Mol. Biol. 215 (1990) 403–410

10. Khvorova, A., Reynolds, A., Jayasena, S.: Functional siRNAs and miRNAs exhibit
strand bias. Cell 115 (2003) 209

11. Ola Snøve, J., Holen, T.: Many commonly used siRNA risks off-target activity.
Biochemical and Biophysical Research Communications 319 (2004) 256–263

12. Needleman, S.B., Wunsch, C.D. J. Mol. Biol. 48 (1970) 443–453
13. Smith, T.F., Waterman, M.S. Journal Molecular Biology 147(1) (1981) 195–197
14. Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B., Bartel, D.P.: Vertebrate

microRNA genes. Science 299 (2003) 1540
15. Horesh, Y., Amir, A., Michaeli, S., Unger, R.: A rapid method for detection of

putative RNAi target genes in genomic data. Bioinformatics 19 (2003) ii73–ii80
Suppl. 2.

16. Amir, A., Landau, G., Keselman, D., Lewenstein, M., Lewenstein, N., Rodeh, M.:
Text indexing and dictionary matching with one error. J. Algorithms 37 (2000)
309–325

17. Halaas, A., Svingen, B., Nedland, M., S.ætrom, P., O. Snøve, J., Birkeland, O.: A
recursive MISD architecture for pattern matching. IEEE Trans. Very Large Scale
Integr. Syst. 12(7) (2004) 727–734

18. Leslie, C., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels
for discriminative protein classification. Bioinformatics 1(1) (2003) 1–10

19. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classi-
fication using string kernels. Journal of machine learning research 2 (2002) 419–444

20. Qiu, S., Lane, T.: String kernels of imperfect matches for off-target detection in
RNA interferance. In Sunderam, V., et al., eds.: Proc. 5th Int’l Conf. Computa-
tional Sci., Atlanta, GA, USA, LNCS 3515, Springer-Verlag (2005) 894–902

21. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)

Smart Instant Messenger in Pervasive

Computing Environments�

Chun-Fai Law, Xiaolei Zhang, Sung-Ming Chan, and Cho-Li Wang

Department of Computer Science,
The University of Hong Kong,
Pokfulam Road, Hong Kong

Abstract. In this paper, we explore the potential of extrapolating the
instant messaging paradigm into pervasive computing environments. Un-
der this vision, an instant messenger is regarded as a unified interface for
all communications among human, software services and various devices.
To meet the demands, we introduce a novel instant messenger system
i.e., Smart Instant Messenger, with original features of context-aware
presence management, dynamic grouping, and resource buddy services.
This system is built atop a context-aware supporting middleware, which
adopts an ontology-based context model and handles the chore of re-
trieving and managing context information. Jabber protocol is exploited
as the underlying message exchange format for extensibility. The system
prototype is implemented and evaluated with respect to the responsive-
ness of queries and memory usage of the middleware.

1 Introduction

Instant messaging (IM) has been booming since its birth and gradually becoming
the most popular communication tool [15]. IM is charasteristic of instantaneous
message delivery and presence awareness. In particular, presence awareness dif-
ferentiates IM from other communication paradigms. We believe such features
fit natually into pervasive computing environments, where communication and
awareness are essential. Under this vision, “chat” would no longer be the priv-
ilege of human; rather, interactions between human-software, software-device
and device-device could freely take place. We envision the potential of extrapo-
lating IM paradigm as a unified interface for all communications. Aiming this,
we have identified several new design concepts including context-aware presence
management, resource buddy services and dynamic grouping.

Presence information shows a user’s responsive status, i.e., availability to be
involved in a conversation. Current IM products predefine a set of options such
as online, busy, and away. This coarse-grained categorization of user status,
however, is incompetent under the pervasive vision. We propose a context-aware
presence management approach and introduce improvements from three aspects:
(1) Context should be used as presence information. Apparently, when a user is
� This research is supported in part by a CERG grant (HKU 7146/04E) from the

Hong Kong Government.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 32–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Smart Instant Messenger in Pervasive Computing Environments 33

aware of the other’s situation such as her location, activity, security level and
mood, they could communicate more appropriately. An imperative case is the
mobile IM system, where showing “online” is meaningless if the user just keeps
the connected device in pocket. (2) Presence information should be disseminated
in a context-aware manner. Current IM products show the same status of a user
to all her buddies. In reality, however, a user’s availability is affected not only by
her own situation, but also by the relationship with the corresponding buddy.
For example, we ought to be “online” among the discussion members, yet appear
“busy” to the outliers. (3) Presence information should be set automatically by
the system. Nowadays an IM user needs to manually change her status, which
tends to be burdensome and fallible. For a mobile user, things would be even
more intractable, as her status might change frequently and in an arbitrary way.
It is therefore appropriate for the system to handle this task, provided that the
presence information can be automatically induced.

In pervasive computing environments, all smart artifacts can “talk” with you.
Should they each adopt their own “dialects”, a human user would be obliged to
master a multitude and burdened in shifting the “language” to and fro. Also,
it would involve a great deal of human attention to monitor, control and uti-
lize various resources. Reflecting on the success of IM, we borrow the idea of
“buddy” and view human, software and all sorts of devices uniformly as parties
of communication. We also propose to use IM as the unified interface. Via IM, a
user may include all usable resources in her contact list and “talk” with them in
a personalized way. Another advantage of this approach is that, the user and the
resource buddies could mutually stay aware of each other’s status. The user can
quickly tell which resource is near and ready for use, and select a “best” buddy
to serve her purpose. Vice versa, the resource buddies could observe the user’s
situation and decide on the most appropriate way to interact with the user. For
example, a notification service could choose to call the user’s office phone if she
is there, or email a reminder if she is temporarily away.

Grouping mechanism is commonly adopted in IM products to organize the
buddy list for the user. In current situation, strategies for grouping are typically
framed by the producer and remain unchanged after distribution. Groups are
set by the user once for all. In real life senarios, however, human relationships
might be temporary, impromptu and varying. We devise a novel dynamic group-
ing mechanism so that: (1) Grouping should be adaptive i.e., able to change
automatically according to the real situation; (2) Grouping should pertain to
the user’s requirement. For example, grouping the buddies by their locations
can help a user “bump into” an acquaintance in a crowded hall, and grouping
the relevant members of the same task can speed up the collaboration efficiency.

In this paper, we present our Smart Instant Messenger (SIM) system which
fulfills the new concepts listed above. Section 2 overviews the SIM system design,
elaborates on how the new features are realized and then introduces the context-
aware supporting middleware, which underlies the SIM framework. Details of
system implementation and experimental results are given in Section 3, followed

34 C.-F. Law et al.

by a comparison with related work in Section 4. The paper is concluded with a
discussion and outlook on future work.

2 System Design

2.1 System Overview

We have designed and prototyped the Smart Instant Messenger (SIM) system to
extrapolate the IM paradigm into pervasive computing environments. This is ap-
proached from two layers. The IM Framework layer extends the existing Jabber
[8] Instant Messaging platform and prepares for incorporating the new features.
The context-aware supporting middleware (CASM) underlies the IM framework
and handles the chore of context provision, including retrieving context infor-
mation from various context providers, interpreting and reasoning over context,
and monitoring the context changes on behalf of applications. The main compo-
nents of SIM system and their interactions are shown in Figure 1. Inside the SIM
client, the Instant Message module provides the basic message exchange func-
tions. The roster module is extended to include the presence, dynamic grouping
and resource buddy features. The context interface module interacts with the
context-aware supporting middleware either by direct query or by subscription
to interested events. It also monitors the user’s conversational behavior, collects

Fig. 1. Interactions between the SIM components

Smart Instant Messenger in Pervasive Computing Environments 35

the IM context (i.e., context inferred from chatting and typing) and supplies this
information to CASM.

The Jabber message protocols are extended. Three types of messages are
defined including chat message, presence update message and context message.
The SIM server adds three message handlers to handle them respectively, i.e., the
instant message handler module, the presence handler module and the context
handler module. A resource manager module is also included for resource buddy
registration.

2.2 Realizing the Features

SIM supports two types of presence information. The first follows conventional
status options i.e., “online, away, busy”. However, the status is distributed adap-
tively. A user’s availability displayed to a specific buddy is inferred from both
her situation and their relationship. Different buddies might, therefore, observe
different status of the same user. This inherently considers the user’s preferences
and enables fine control over how a user’s availability is distributed. Figure 2
shows the adaptive presence notification process. Upon initialization, the SIM
client first registers user preference rules to the CASM describing the condition
under which the presence should be updated. It also prescribes the different sta-
tus that should be displayed to different groups of buddies. When the relevant
events happen, the change handler in SIM client is notified and dispatches the
updated presence to the SIM server, which in turn broadcasts the presence to
the buddies.

The second type of presence information embodies the subset of a user’s
context which she is willing to disclose, including for example her current activity,
location and the people nearby. This is enabled by CASM, which actively collects

SIM Client 1 CASMSIM Server Context
Provider

getRoster()

associateRules() & registerListener(presence)
subscribe() & update()

roster()

update()

updatePresence(status)

User 2 updates
presence
automatically
when context
changes.

changePresence()

SIM Client 2

changePresence(buddyID, status)

getPresence(buddyID_1, buddyID_2)

reasoning
reasoning

changePresence()

User 2 informs
User 1 through
IM Server.

User 1 replies
her presence to
User 2.

Fig. 2. Sequence diagram showing adaptive presence notification process

36 C.-F. Law et al.

user context on behalf of applications. When a user’s context is inquired by a
buddy as presence information, her context is encapsulated in an XML-formatted
message, routed to the buddy’s client, parsed and displayed on the roster.

In SIM, human users and resource buddies are conceptually identical. One
slight difference is that, upon initialization, the resource client uses its resource
module to register to the local SIM server, while the user client performs service
discovery on whenever necessary. There are two ways to communicate with the
resource buddy. One is to use the original chat window and type the user-defined
commands; the other is to download a UI from the resource, which is described
in an XML DataForm format. According to devices’ configurations and users’
preferences, the UI may be rendered in different customized ways.

The SIM system provides an extensible set of grouping mechanisms, including
location, activity, hobby and relationship. In the current stage, we specifically
investigate the location-based grouping and activity-based grouping. Location-
based grouping retrieves from CASM the most updated user locations and groups
the buddies of the same location. This is especially useful to help a mobile user,
when entering a place, to “bump into” an acquaintance and to initiate a serendip-
itous interaction. It will also keep the user informed of the surrounding resources.
Activity-based grouping reflects on the ”distraction-free” tenet, aiming at facil-
itating the user’s activity (or task) by grouping the relevant people, materials
and resources together. For example, suppose a user is involved in preparing a
project presentation, SIM will dynamically group the project memebers, docu-
ments, applications, printer and projector in her buddy list, forming a virtual
collaboration environment, so that she could easily reach what she needs to
contact or utilize. Current implementation assumes the user’s activity can be
inferred and the relevant information are stored in the context knowledge base.
Upon request, CASM will retrieve the information of all possible buddies (hu-
man as well as resources) and return the result to the roster module in the SIM
client, which in turn updates the grouping.

2.3 The Context-Aware Supporting Middleware

The SIM system explicitly separates the context processing routines from appli-
cation logic. A generic context-aware supporting middleware (CASM) handles
the chore of processing, interpreting and reasoning over context information re-
trieved from various context providers. This separation principle not only relieves
the burden of context-aware application programmers, but also fosters the reuse
of context and context reasoning processes.

CASM centers an ontology-based context model for a formal context represen-
tation, which facilitates knowledge sharing in the open, heterogeneous pervasive
environments, and enables various logic-based context reasoning mechanisms.
Contexts are classified into five categories: Device, Person, Location, Time, and
Activity. There are also relationship properties among these main classes. For ex-
ample, an instance of class “Person” can have a relationship called “hasLocation”
which links to an instance in the “Location” class. All classes and relationships
can be added or removed as needed.

Smart Instant Messenger in Pervasive Computing Environments 37

CASM
Interface

Change
Monitor

CASM
Skeleton

Change
Handler

CASM
Interface

CASM
Stub

Context Reasoner Context Updater

Context Interpreter

Context
knowledge

base

Rule File
Rule File

Context Provider

Sensor Sensor Sensor

CASM
Skeleton

CASM
Stub

CASM
Skeleton

CASM
Stub

Fig. 3. Detailed design of context-aware middleware

Figure 3 shows the detailed design of CASM. The Context Interpreter trans-
lates the context from heterogeneous sources to form an OWL instance data,
which stores all the dynamic context information (e.g. location, time, current
activity) in OWL files. The Context Updater directly manipulates the context
model. When the context model is first created, the schema file will be parsed
and data type of the domain and range for each property are specified. The
Context Updater validates the data type for that particular context statement
each time an add/remove request is received. Upon a context query, it inquires
the context model and formulates the answer in a regular format that can be
used by the client side easily. The Context Reasoner provides two kinds of rea-
soning over the context ontology, i.e. the transitive reasoning and the rule-based
reasoning. The former is used to store and traverse class and property lattices.
The latter supports user-defined rule set. Depends on the schema and domain
of the ontology bound to the context model, rules can be written to derive the
existence of some implicit information or map information to a standard format
for applications.

CASM also provides a set of standard methods for application developers
to update, query and register context event listeners to the middleware. An
application registers interested context events to CASM, and relies on the latter
to monitor the environment on its behalf. Notifications will be fired when the
events happen, and the Change handler module in the application will invoke
the corresponding event handling methods.

3 Implementation and Experiments

We have implemented SIM server and two versions (PC and PDA) of SIM clients.
The SIM server uses and extends the Jabber open source server. We extends

38 C.-F. Law et al.

Jabber’s Extensible Messaging and Presence Protocol (XMPP), which is cur-
rently an Internet Engineering TAsk Force draft, to report the state of buddies
and to handle the interaction among human, software and devices through XML
messages. SIM clients modify the open source Jabber client program “JBother”
[9] to introduce context-aware presence management, resouce buddy and dy-
namic grouping. Figure 4 shows the client-side GUIs running on the PDA (HP
iPAQ H5500). Figure 4 (a) shows the message dialog, Figure 4 (b) illustrates the
SIM’s roster, which groups the buddies relating to the SIM project, including 6
members and a printer. Figure 4 (c) shows the location-based grouping, where
the buddies are organized under the groups of canteen, lab and office.

(a) Message Dialog (b) Group by activity (c) Group by location

Fig. 4. Client-side GUI

We built up several ontologies for pervasive computing environments. Figure 5
shows one ontology used for modeling the basic concepts of campus life. The
Web Ontology Language (OWL) has been selected as the ontology language for
its expressivity and standardization. Reasoning and inference over the context
models are based on the Jena [10] framework. A set of rules has been developed
to infer high-level context from low-level facts.

We notice the major time-consuming part of the system (wireless delay ex-
cluded) is related to operations on CASM middleware. As more context instances
are added into the context knowledge base, the overhead of the middleware grows
accordingly. To test the performance, we evaluate the responsiveness and mem-
ory consumption with the increase of the number of instances. The experiment
proceeds as follows. A PC (Intel Pentium4 2.26GHz, 512MB memory, Linux FC
3.0) which runs Jena version 2.2. A typical sequence of operations is compiled
as a sample test, including 2 add (adding instance data into the ontology), 1
remove (removal of instance data), 1 class query and 1 instance query. We in-
crease the instance at the number of 300, 700, 1000 and 1800. At each stage,
the sampling sequence is performed and the total processing time and memory

Smart Instant Messenger in Pervasive Computing Environments 39

isActivityLocationOf

CurrentActivity
 …………
ScheduledActivity
 …………

hasLocation isLocationOf

hasActivity

isActivityOf

hasDevice isDeviceOf
isDeviceLocationOf

hasBuddy

hasActivityLocation

hasDeviceLocation

hasTimeInterval

Owl: Context Entity

Device
Activity

Location

Time
Person

ComputerLab
Meeting Room
LectureRoom
 …………

CurrentTime
TimeInterval

Speaker
MediaPlayer
Computer
…………

Lecturer
Student
Tutor
…………

relationship
isSubClassof

Fig. 5. Diagrammatic view of the campus ontology model

usage are measured. The result reports an approximately linear growth of mem-
ory usage varying from 17MB to 22MB and an average processing time of 3.4s
with variations within 0.2s. The performance of the system is tolerable for non-
crisis scenarios and the increase of instance will not cause much degradation.

4 Related Work

The idea of combining awareness with communication originates in computer
supported cooperative work (CSCW) and human-computer interaction (HCI).
Researchers in media space research [1][18] and awareness systems [3][6] have
identified the importance of shared context to facilitate conversation. For ex-
ample, social awareness has been explored in [7] and [14]. However, this stream
of research mainly targets an efficient group collaboration among human users.
Our work, on the other hand, considers all types of interactions including human,
software and hardware resources.

The distinctive features of IM have been gaining more attention in recent years.
Nardi [12]suggestedthat,beyondinformationexchange,IMcouldimplicitlybeused
to negotiate availability, maintaining the sense of social connection and switching
media. There’ve also been several research projects on extending IM with context-
aware features.Theycouldbebroadlycategorized intotwogroups.Thefirstexploits
context for conditionalmessagedelivery.For example,CybreMinder [2] allowsusers
to associate the contextual information with to-do items and delivers them upon
pre-definedcondition.Thiscanbeviewedasaspecial typeofcontext-awareone-way
message delivery. Similarly, a handheld IM system descibed in [11] also empowers
users to specify a set of situations that must be met before the system delivers
the message. The second group explicitly uses context information to broaden the
communication spectrum. ConChat [16], for example, supports two conversational
parties to exchange or query each other’s context. The AwareNex [17] system from
Sun Laboratories displays location and activity information of the users on the
contact list.Similar toSIM,theseprojectsemphasizemoreonthe“outeraction” [12]
functionality of IM. However, the issues of contextual presence and context-aware

40 C.-F. Law et al.

presence distribution are not sufficiently explored. Meanwhile, there tends to be
little discussion on grouping mechanism, which we believe is also a tool of potential
yet has been underused.

5 Discussion and Future Work

In this research, we have explored the vision of extrapolating instant messaging
paradigm into the pervasive computing environments. We have designed and
implemented the Smart Instant Messenger system, which transcends current
IM products with new features including context-aware presence management,
resource buddy services and dynamic grouping support. The system is built
on top of a context-aware supporting middleware, which centers an ontology-
based context modeling approach. Though at the prototype stage, it has already
demonstrated the advantages for being used in pervasive computing environ-
ments. Experiments on performance evaluation also suggest its feasibility.

Our design fulfilled the following principles: Separation of context provision
from context consumption. The chore of retrieving and managing context should
not be directly integrated in an application; rather, a separate middleware layer
or the systems infrastructure should be responsible for providing context infor-
mation. SIM adopts a context-aware supporting middleware approach. It not
only relieves the burdens of programmers and the small devices; the generic
middleware could potentially support more applications.

Design for extensibility. Extensibility is essential in pervasive environments
as users, applications, devices and sensors might all come and go dynamically.
Also, the users’ requirements might change over time. SIM chooses the Jabber
protocol for its extensibility consideration, adopts a distributed architecture, and
exploits an ontology-based context modeling solution to facilitate the re-use and
integration of knowledge.

Prototype for real life usage. Pervasive computing is still in the germinal stage.
We believe live applications will stimulate and inspire the research. Therefore
this version of SIM is designed for using on campus, with resources, users and
use cases rich enough for a real system.

We believe such an attempt is of great potential, both in practical usage
and in research. Future work includes supporting user-level mobility of instant
messenger among different devices, improving the performance of context-aware
supporting middleware and exploring the SIM usage in hospital scenarios.

References

1. S. Bly, S. Harrison and S. Irwin. Media spaces: Bring people together in a video, au-
dio and computing environment. Communications of the ACM, 36 (1), 28-46, 1993.

2. A. K. Dey and G. D. Abowd. CybreMinder: a context-aware system for supporting
reminders. In 2nd International Symposium on Handheld and Ubiquitous Comput-
ing, volume 1927 of Lecture Notes in Computer Science, 172-186. Springer, 2000.

Smart Instant Messenger in Pervasive Computing Environments 41

3. P. Dourish, S. Bly. Portholes: supporting awareness in a distributed work group.
Proceedings of CHI’93 Human Factors in Computing Systems, 541-547, New
York: ACM Press.

4. J. Fogarty, J. Lai and J. Christensen. Presence versus availability: the design
and evaluation of a context-aware communication client. International Journal of
Human-Computer Studies (IJHCS), Vol. 61, No. 3, September 2004, pp. 299-317.

5. D. Greene and D. O’Mahony. Instant messaging and presence management in
mobile ad-hoc networks. Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops. March 14-17, Orlando,
Florida, pp. 55-59, 2004.

6. C. Gutwin, S. Greenberg. Design for individuals, design for groups: Trade-offs
betwwn power and workspace awareness. In Proceedings of CSCW96 Conference
on Computer Supported Cooperative Work, 207-216, New York: ACM Press.

7. S. E. Hudson and I. Smith. Techniques for addressing fundamental privacy
and disruption tradeoffs in awareness support systems. Proc. Comp. Supported
Cooperative Work, 1996, pp. 248C57.

8. Jabber Instant Messaging. Online resource. http://www.jabber.org/
9. JBother Homepage. Online resource. http://www.jbother.org/

10. Jena: a semantic Web framework for Java. Online resource. http://jena.sourceforge.
net/

11. Miguel A. Munoz, Marcela Rodriguez, Jesus Favela, Ana I. Martinez-Garcia,
Victor M. Gonzalez. Context-aware mobile communication in hospitals. IEEE
Computer, vol. 36, no. 9, pp. 38-46, Sept., 2003.

12. B. Nardi, S. Whittaker, E. Bradner. Interaction and outeraction: instant messag-
ing in action. In Proceedings of ACM 2000 Conference on Computer Supported
Cooperative Work, 2000.

13. A.J.H. Peddemors, M.M. Lankhorst, J. de Heer. Presence, location and instant
messaging in a context-aware application framework. 4th International Conference
on Mobile Data Management (MDM2003), Melbourne, Australia, Jan 2003.

14. E. R. Pedersen and T. Sokoler. AROMA: abstract representation of presence
supporting mutual awareness. Proc. SIGCHI Conf. Human Factors in Comp. Sys.
, Atlanta, GA, Mar. 22C27, 1997, pp. 51C58.

15. Pew Internet & American Life Project. How americans use instant messaging,
Sept 2004. Online resource.
http://www.pewinternet.org/pdfs/PIP Instantmessage Report.pdf

16. A.Ranganathan, Roy H. Campbell, A. Ravi, and A. Mahajan. ConChat: a context-
aware chat program. Pervasive Computing, 1(3):51-57, July-September 2002.

17. J.Tang, N. Yankelovich et al. ConNexus to AwareNex: extending awareness to
mobile users. Proc. SIGCHI Conf. Human Factors in Comp. Sys., Apr. 1998, pp.
566-73.

18. S. Whittaker, G. Swanson, J. Kucan and C. Sidner. Telenotes: managing
lightweight interactions in the desktop. Transactions on Computer Human
Interaction, 4(2):137-168, 1997.

Negotiation Strategies for Grid Scheduling

Jiadao Li and Ramin Yahyapour�

Institute for Robotics Research - Information Technologies,
University Dortmund, 44221 Dortmund, Germany

{jiadao.li, ramin.yahyapour}@udo.edu

Abstract. Grid computing is considered the next step of distributed computing
architectures. For such Service Oriented Architectures (SOAs) resource manage-
ment is an important component that has to cope with the challenges of
heterogeneous, decentralized and autonomous resources. The use of agreements
is expected to become a key technology for the reliable interaction between
resource providers and consumers. Negotiation is the process of creating agree-
ments in which the different and typically conflicting objectives of the negotia-
tion parties are taken into account. For the broad proliferation of Grids and the
efficient use of Grids, this negotiation process must be automated and should
only require minimal interaction from the actual providers and users. To this end,
strategic negotiation models are required that can be used to perform this task.
In this paper, a strategic negotiation model is proposed for Grid computing. Dis-
crete event based simulation is used to evaluate this model. The simulation results
demonstrate that it is suitable and effective for Grid environments.

1 Introduction

Grid computing [1, 2] is considered a cornerstone of next generation distributed com-
puting, as it tackles many issues to dynamically interact between autonomous and de-
centralized resources from different providers. It is the infrastructure model which is
typically envisioned as a Service Oriented Architecture (SOA [3, 4]), in which resources
are virtualized into services. In this scenario, a resource user typically expects a certain
service quality given by a service provider. As in Grids usually autonomous and inde-
pendent parties interact, the a priori information of quality of service (QoS) prior to
using the resource is becoming a crucial requirement for Grid resource management;
here, agreement based resource management [5] is generally considered as a suitable
means to the problem. Prior to service usage the parties have to negotiate towards ser-
vice level agreements (SLA) that define what kind of services will be provided and what
the obligations of the user will be.

Of course, the resource providers and the resource consumers have typically con-
flicting objectives which need to be considered during the negotiation. The whole task
of negotiation is challenging as the resources are heterogeneous and the service pro-
visioning is not a standardized good but depends on the individual requirements and
preferences of the user for a particular task. During the negotiation process, the con-
flicts of the different objectives and policies between the resource users and resource

� Member of CoreGRID.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 42–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Negotiation Strategies for Grid Scheduling 43

providers must be reconciled. However, this process must be automated as it cannot be
expected that the actual service/resource consumer and the corresponding provider per-
sonally perform this task. For efficient Grid computing, this task must be frequently be
performed. Here, suitable negotiation models are required that take the different policies
and objectives into account and produce suitable service level agreements in reasonable
time with minimized or even no user and provider interference. In this paper, such nego-
tiation models and strategies for agreement negotiation are considered. Currently, there
are no mature and accepted negotiation models nor infrastructures available for the Grid
computing scenario.

However, there are efforts for a general Grid architecture like the Open Grid Ser-
vices Architecture (OGSA) by the Global Grid Forum [6]. There are also first steps
towards core protocols that can be used for agreement management, like the “WS-
Agreement” [7] draft proposed by the GRAAP working group in the GGF. This pro-
tocol can be used as a simple negotiation protocol. But in the current WS-Agreement
proposal, the negotiation process is a one-shot approach in which negotiation parties
can only accept or reject opponent’s proposals. This one-shot negotiation process can be
quite unsatisfying for actual implementations as the negotiating parties have not means
to steer a negotiation towards an agreement if the first proposal is unacceptable [8].
In order to make negotiation efficiently, the process should be multi-rounded. (Some
discussion on creating negotiation frameworks have been given by Dash et.al.[9].)

In this paper, we focus only on the negotiation process in which a user agent ne-
gotiates with a set of resource providers. This is considered the one to many negotia-
tion type. Usually, this negotiation type can be treated as reversed auctioning. However,
there are some drawbacks of using auction mechanisms, for instance, there is no flexible
way of exercising different strategies with different negotiation opponents. Moreover,
auctions do not support bidirectional offers with counter offers between the parties. We
propose a strategic negotiation model which includes utility functions /preferences for
the negotiation parties. Moreover, we propose and evaluate first negotiation strategies
for Grids. This paper is organized as follows: In Section 2, the related work in the area of
resource management in Grid computing is reviewed. In Section 3, the strategic negoti-
ation model which includes the bilateral negotiation model and the concurrent bilateral
model in the Grid computing environment is explained. The simulation configuration
and the simulation results are presented and analyzed in Section 4. Conclusions and
information on future works are given in Section 5.

2 Strategic Negotiation Model

There are many approaches proposed for the Grid resource management problems, for
example, economic method and matchmaking approach. Economic methods for com-
putational tasks in Grids have been subject of research for some time. An overview of
such models is, for example, given by Buyya et.al. in [10] or Ernemann et.al. in [11],
or Wolski et.al. in [12]. Matchmaking approach is adopted in the Condor project [13].
The matchmaker performs scheduling in a Condor pool, resource requests and offers
are described in the Condor classified language and the matchmaker is responsible for
finding suitable resources to satisfy the needs of the job users. To this end, a lot of

44 J. Li and R. Yahyapour

efforts have been made on the Grid resource management considering the Service level
agreement (SLA), e.g. in paper [14], a Grid resource usage SLA broker called GRU-
BER is presented and evaluated in a real grid, GRID3; in paper [15], an architecture for
specifying, monitoring and validating Service Level Agreements (SLA) for use in Grid
environments is presented.

However, strategies for conducting the negotiation between the participating parties
are not yet well understood. There have been several efforts in discipline of economics
which are not yet well analyzed to the Grid scenario. Here, additional work in regards
of the influences of the strategies is required. In our work we selected the bilateral
negotiation model as a suitable the building block for concurrent negotiation model.
Therefore we will briefly introduce these in the following.

2.1 Bilateral Negotiation Model

There are three parts in the bilateral negotiation model that have to be considered, [16]:
1) the negotiation protocol, 2) the used utility/preference functions for the negotiating
parties, and 3) the negotiation strategy that is applied during the negotiation process. In
our approach, we adopted and modified Rubinstein’s sequential alternating offer proto-
col for Grids, see [17].

In Rubinstein’s alternating offers bilateral negotiation protocol, the bargaining pro-
cedure is as follows: The players can take actions only at certain times in the (infinite)
set T = {1, 2, 3, ...t}. In each period t ∈ T , one of the players, say i, proposes an
agreement, and the other player j either accepts the offer or rejects it. If the offer is
accepted, then the bargaining ends, and the agreement is implemented. If the offer is
rejected, then the process passes to period t + 1; in this period player j proposes an
agreement, which player i may accept or reject. The negotiation process will go on in
this way.

In the Grid resource management scenario, time plays an important role as every
negotiation party has only limited negotiation time available. Therefore, the number
of the negotiation rounds is limited. In our scenario, the above time set T is finite. In
the negotiation process, when either one negotiation side times out or an agreement is
created, the negotiation process will end. An offer is assumed to be valid until a counter
offer is received. Therefore the consistent state problem between the negotiation parities
can be avoided.

As mentioned before, we support utility functions to express the objectives of the
users; preferences relationships are used to indicate the preferences of resource providers.
Usually, the objectives of the user request minimizing the job waiting time or to get
cheaper resources; on the other side, the resource providers expect to gain higher profit
and higher utilization. However, the real weighting of the utility factors depend on the
individual user or resource provider. In real Grid systems, there can be many different
negotiation objectives, that are interdependent and should be dealt simultaneously which
yields to a multi-criteria optimization problem [18]. Depending on the specific applica-
tion domain, cost for service/resource usage can be supported.

In the following we consider as first examples the expected waiting time of the jobs
and the expected cost per cpu time as the negotiation issues. However, the model can be
applied and extended to other criteria as well. In this model, Uprice(P t

c) (E.q.1) is the

Negotiation Strategies for Grid Scheduling 45

job’s utility function of the price and Utime(T t
c) (E.q.2) is job’s utility function of the

waiting time.

Uprice(P t
c) =

Pmax
c − P t

c

Pmax
c − Pmin

c

(1)

Utime(T t
c) =

T max
c − T t

c

T max
c − T min

c

(2)

The variables are explained as follows: Wprice is the weight of the price utility.
Wtime is the weight of the time utility. Pmax

c (Pmin
c) is the maximum (minimum)

acceptable price of the user offered by the negotiation opponent at the time t. T max
c

(T min
c) is the maximum (minimum) acceptable waiting time of the user.
This leads to the following aggregate utility function of the job user:

Ujob = Wprice ∗ Uprice + Wtime ∗ Utime (3)

Because the negotiation time in this scenario is usually short, the utilities in this scenario
are not discounted as negotiation time goes on. The weights of different negotiation
issues are normalized, so we assume that

∑n
j=1 wj = 1 if the number of the negotiation

issues is n. In the negotiation process, an agent can change its preference for an issue by
changing the weight associated to that issue. Different agents can have quite different
preferences over different issues.

For the resource providers, there are also two corresponding negotiation issues which
are: the expected waiting time of the job T t

s(Job), and the expected price P t
s(Job). The

expected waiting time for the newly incoming job can be obtained from the current
resource status and the future schedule plan considering the created agreements which
have to be fulfilled. The expected price will be obtained via the negotiation process.

The zone of possible agreement denotes the overlap in the negotiation issues between
the participating parties [19]. If there is no zone of possible agreement, an agreement
can not be achieved. For the negotiation issue j, the acceptable value range of the job is
[Cj

min, Cj
max], the acceptable value range of the resource provider is [Sj

min, Sj
max]. If

Cj
max > Sj

min and Cj

min < Sj
max, then the agreement zone exists.

In the negotiation process, our negotiating parties act rationally. Disagreement is
treated as the worst outcome, therefore the negotiation party always avoids opting out
of the negotiation process. One of the principles of good-faith bargaining is that once
a concession is made, it is usually not easily reversed [19]. On the basis of the initial
values, successive offers by sellers are monotonically decreasing while successive offers
by the buyers are monotonically increasing. It is important that the negotiating parties
provide suitable initial values for the negotiation issues.

In the negotiation model, the negotiation parties must not know the opponents’ pri-
vate reservation information and their preferences/utility functions. Without this restric-
tion, the parties could exploit the condition of the corresponding negotiating partners.
That means, a negotiation scenario with incomplete information is considered. In the ne-
gotiation process, the negotiation parties should make reasonable reservation values of
different negotiation issues in order to make sure that it is possible to create agreements.

46 J. Li and R. Yahyapour

2.2 Negotiation Strategies

In the strategic negotiation model there are no rules that bind the negotiation parties to
any specific strategy. The essence of the negotiation strategy for the negotiation party
is to create suitable offers in its acceptable value range of specific negotiation issue
in order to create the agreement and make its utility as much as possible at the same
time. There already exist several general negotiation strategies, for example [8], argu-
mentation based approach, game theoretic models, heuristics approaches in the agent
community. These different strategies have advantages and disadvantages and they can
be applied in several scenarios. As shown before, the negotiation parties do not know
the reservation values and the utility functions/preferences of the opponents in our sce-
nario. Therefore, heuristic based negotiation strategies are adopted for this paper. The
negotiation process in the Grid computing domain is time-limited, the strategies of the
negotiation parties are considered to change dynamically based on the remaining avail-
able negotiation time. Typically, a user will not negotiate and wait for the negotiation
result for a long time, if he/she has a very urgent job needed to be executed. To this end,
we limit our scope on time dependent negotiation strategies [20]. However, note that
there are also other negotiation strategies available which are based on other assump-
tions, for example, if there are many resources available for a job, then the job user may
become very tough during the negotiation process.

We assume that Vj is the utility function of the negotiation party which associates
with the negotiation issue j and the xt

a→b[t] is the offer provided by one party (denoted
by a) to another negotiation party (denoted by b).

If Vj is decreasing:

xt
a→b[t] = mina

j + αa
j (t)(maxa

j − mina
j), (4)

if Vj is increasing:

xt
a→b[t] = mina

j + (1 − αa
j (t))(maxa

j − mina
j), (5)

Equations (4) and (5) represents the job user’s strategy and the resource provider’s
strategy respectively.

There are many ways of defining the function for αa
j (t). For the initial bargaining

value ka
j is used, for which the following relation holds 0 ≤ ka

j ≤ 1.
We use the following function for αa

j (t):

αa
j (t) = ka

j + (1 − ka
j)(

t

tamax

)1/β , (6)

where tamax is the deadline of the negotiation party a for the completion of negotiation, t
denotes the current time instant in the negotiation time set, the parameter β is the degree
of convexity that determines the type of the negotiation party in the time dependent
strategy. Different β values yield different negotiation strategies.

There are three typical strategies for different negotiation parties [20]. When 0 <
β < 1, the negotiator will be tough (Boulware), which means that he will maintain
the offered value longer until the time is almost exhausted. Close to the deadline he
will concede up to the reservation value. In contrast, for β > 1 the negotiator will

Negotiation Strategies for Grid Scheduling 47

be the type of Conceder and will concede to its reservation value very quickly at the
beginning of the negotiation, while its concession rate become flattened as the time
limits approached. For β = 1, the negotiator will linearly concede to its reservation
value.

2.3 Concurrent Bilateral Negotiation Model

To this end, in the Grid environment, it is assumed that after a resource discovery phase
there are a number of available resources which are capable of fulfilling the constraints
of the job. These constraints include, e.g., the required number of CPU nodes, the
needed memory capacity, etc. The user or a corresponding scheduling component will
contact different resource providers and initiate the negotiation process for the actual
resource allocation.

We just assume that the negotiation process is started by the user, more precisely
by the job agent, who contacts different resource providers and begins the negotiation
process. In the concurrent negotiation threads in which the same user is involved, the
reservation values of the negotiation issues and preferences of the user are the same.
However, the user may adopt different strategies with respect to different negotiation
opponents. Furthermore, they might change the negotiation strategies during the nego-
tiation process according to the types of opponents and their behavior. Because these
negotiation threads are progressed concurrently, it is very difficult to predict whether
the user might achieve a better offer from another negotiation thread if there is already
a suitable offer found that could be committed to an agreement. For now we assume
that once there is an agreement available, the agreement is made. This limitation will
be reviewed in future work.

3 Evaluation

For a first analysis of the approach we use discrete event simulation. Currently, there
is no real data from the Grid computing environments that include suitable informa-
tion for negotiation models. Therefore, we use high performance computing workload
traces from actual machine installations. However, negotiation information are not in-
cluded in this data as none of the real system supported negotiation models. To this end,
the missing information can only be modeled based on first assumptions. Note, that
the presented results may vary for practical implementations with different workloads.
The impact of the workload and the verification of modeling assumption will be part
of the future work. In the following the simulation configuration is described and the
simulation results are analyzed.

3.1 Simulation Configuration

We use the exploratory studies method introduced in the book [21]. In the simulation,
we investigated different negotiation parameters which possibly has some kind of in-
fluence in the negotiation result. In the beginning of the negotiation, the negotiation
parties will always make the offers which are most favorable to themselves, at the first

48 J. Li and R. Yahyapour

assumption, we assume that the initial values of kj of all the negotiation parties are 0.
We assume that the negotiation interval between every negotiation round is 1s. In the
following we describe the modeling of the user and the resource providers.

User Model. In our simulation we consider parallel batch jobs in an online scenario.
We assume types of user behavior are quite different. For our simulation, we just as-
sume that there are two different kinds of user objectives: time-optimization and cost-
optimization. Other user preference will be subject of future research. Below are the
parameters of the user modeling which have been applied for the simulation.

– Negotiation span is uniformly distributed in [0, 30]s.
– Maximum price of the different job user is uniformly distributed in [4.0, 9.0].
– Acceptable waiting time for the job users are uniformly distributed in [0, 36000]s.
– For the tough negotiator, β value is uniformly distributed in [0.02, 0.2].
– For the conceder negotiator, β value is uniformly distributed in [20, 40].
– Weights of waiting time and price for the time-optimization are 0.8 and 0.2, while

the weights of the time and price for the cost-optimization are 0.2 and 0.8.

Resource Provider Model. Currently there are many local resource management sys-
tems available. Here, we use the common FCFS scheduling strategy with backfill-
ing [22]. There is no preemption allowed. In this evaluation we do not yet consider
the co-allocation and combination of different agreements from different providers. For
the moment, the resources are considered to be homogeneous only differing in the num-
ber of available CPU nodes at each site. We assume that the job users will contact with
the resource providers in a Round Robin fashion. The simulated Grid configurations
for the resource providers are consistent with the actual configurations of the systems
from which the real traces originated. In this paper, we used traces from the Cornell
Theory Center [23] which had 512 CPU nodes. In our simulation we assumed a Grid
scenario with 6 different machines and therefore 6 resource providers. However, to stay
consistent with the available workload from the CTC traces, the number of nodes for all
simulated machines is again 512 nodes. The number of nodes on each machine is given
below. The following list also includes the negotiation parameters for each resource
provider in this scenario.

– The numbers of the CPU nodes are {384, 64, 16, 16, 16, 16}.
– Their different maximum prices per CPU time are {8.2, 8.0, 7.5, 7.6,
7.4, 7.5}.

– Their different minimum prices per CPU time are {2.4, 2.3, 2.0, 1.95,
1.90, 1.80}.

– Negotiation deadlines of different resource providers are all 30s, which means that
usually the resource provider will not opt out of the negotiation once the negotiation
thread is created.

– For the tough negotiator, β value is {32, 35, 34, 38, 40, 40}.
– For the conceding negotiator, β value is {0.03, 0.05, 0.04, 0.10,
0.05, 0.06}

Negotiation Strategies for Grid Scheduling 49

3.2 Evaluation Remarks

Without a reference benchmark for negotiation-based Grid scenarios, it is difficult to
compare and analyze the quantitative and qualitative output of such a scheduling model.
In the following we provide some first simulation results which give some information
about the performance of the model. The actual quality will have to be verified with
better workload models and in real implementations.

We use the following criteria for evaluation:

– Comparison between the negotiation result and the reference point [19], which is
the middle of the agreement zone of user and resource provider: [Cmax

j , Smin
j]. The

reference point is computed by the following function:

U ref
j =

Cmax
j + Smin

j

2
(7)

– The rate of successfully created agreement for all jobs.
– The negotiation overhead to create the agreement measured by the time taken to

create the agreement. In our case, we use the final negotiation rounds which rep-
resents the required number of messages exchanged. The actual network overhead
will depend on the actual network speed for this message exchange.

– In the Grid computing environment, the users will concern about the job response
time and the waiting time; while for the resource providers the utilization and the
profit will probably be the main objectives. We also compare these criteria to get
some feedback about the feasibility of the negotiation model.

3.3 Simulation Results

We used 5000 jobs from the CTC workload traces [23] to do our simulation. As men-
tioned before, the negotiation parties use different negotiation strategies and they have
different reservation values and utility functions/preferences. In the result figures we
use the following abbreviations: T, L, C denote the tough, linear, and conceding strate-
gies respectively. T-T means both parties act tough, T-C means that the job users are
tough, while the resource providers are conceding. We compared four different scenar-
ios for our simulations: L-L, C-C, T-C, T-T. Every simulation scenario is represented
by every group bar as shown in every result figure. Note, that, in every group bar of
the result figure except the first figure, there are six bars which represent the result
of resource one to resource six separately. We compare the on average required number
of negotiation rounds for successfully creating the agreements. In addition, we consider
the rate of successfully created the agreement in comparison to the total number of job
requests. Other criteria are the average weighted response time (AWRT), the average
weighted wait time (AWWT), the average price difference between the agreement price
and the reference price. For the weight in AWRT and AWWT we used the job resource
consumption [24].

In Figure 1, we can see that the C-C scenario provides the highest number of success-
fully created agreements, as well as the highest resource utilization. However, also the
AWWT and AWRT are high. This indicates that the conceding partners usually reach

50 J. Li and R. Yahyapour

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
The comparison of creation rate of the agreements

C
re

at
io

n
ra

te
(%

)

L−
L

C
−

C

T
−

C

T
−

T 1 2 3 4
0

10

20

30

40

50

60
The comparation of the utilization of the resources

U
til

iz
at

io
n(

%
)

L−
L

C
−

C

T
−

C

T
−

T

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

A
W

R
T

(s
)

Comparion of the AWRT

L−
L

C
−

C

T
−

C

T
−

T 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000
The comparison of AWWT

A
W

W
T

(s
)

L−
L

C
−

C

T
−

C

T
−

T

1 2 3 4
0

5

10

15

20

25

30
The comparison of negotiation rounds in different configurations

N
eg

ot
ia

tio
n

ro
un

ds

L−
L

C
−

C

T
−

C

T
−

T 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

A
ve

ra
ge

 d
iff

er
en

ce
 b

et
w

ee
n

th
e

ag
re

em
en

t p
ric

e
an

d
re

fe
re

nc
e

pr
ic

e

L−
L

C
−

C

T
−

C

T
−

T

Fig. 1. Comparison between different negotiation scenarios including the results for the individual
six resources were appropriate

an agreement for this strategy, while the service quality for the user is relatively low as
jobs are delayed. In the T-C scenario, the succeeding rate of the created agreement is
not so high, but the job users get on average cheaper offers from the resource providers.
In the L-L case, negotiation results are in the middle compared to the other cases. In the
T-T case, there are a very few number of successfully created agreements and the job
users still have to pay higher cost and incurred much communication cost, as shown in
the picture, the agreement can only be created at end of the user’s negotiation span.

In the time dependent negotiation strategies, the negotiation span can also influence
the result of negotiation strategies. For example, in the C-C case, if we change the time
span for negotiation for the resource providers to 20, the number of the successfully
created agreements are the same while the agreement prices are lower as the provider
concedes faster to his reservation value. Similarly, the resulting price is higher if the

Negotiation Strategies for Grid Scheduling 51

user has less time for negotiation. More simulations have been conducted, however due
to limited available space we present only these excerpts of the results which show the
feasibility of the model. From these simulations, we see that just insistent on using a
single strategy for the whole negotiation, may not necessarily provide a higher utility. In
order to get the most out of the negotiation, the negotiation parties will have to change
their strategies dynamically during the process which will be part of our future work.

4 Conclusions and Future Work

In this paper, we discussed the use of strategic negotiation model which includes util-
ity functions, preference relationships and time dependent negotiation strategies. This
model is reviewed for practical use in automatic job scheduling. The current research
in Grid computing shows that there is a trend for future resource management systems
to include automatic management features for quality of service and cost consideration.
As we can see from our experiments, the user can obtain quality of service and reliable
agreement for the Grid jobs by applying the presented negotiation strategies. In our sce-
nario, the expected waiting time is guaranteed by the resource provider. The simulation
results shows that the model can be used in the Grid scheduling environment. The pre-
sented results can be seen as first steps in analyzing the features and requirements for
automatic negotiation strategies. They indicate that the negotiation overhead in terms of
exchanged messages is manageable for practical application. The obtained agreement
results can also be considered to be good enough for real world scenarios. Future work
will include further investigation in different negotiation strategies and a broader basis
for evaluation results. Also the extension to more sophisticated negotiation features like
co-allocation are foreseen.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science 2150 (2001)

2. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann (2003)

3. The w3c web services architecture working wroup public draft (2004) http://www.w3.org/
TR/ws-arch/.

4. Czajkowski, K., Foster, I., Kesselman, C.: Resource and service management. In Foster,
I., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann (2003)

5. Czajkowski, K., I.Foster, C.Kesselman: Agreement-based resource management. Proceed-
ings of the IEEE 93(3) (2005) 631–643

6. The open grid services architecture, version 1.0 (2005) https://forge.gridforum.org/projects/
ogsa-wg.

7. Web services agreement specification (2005) https://forge.gridforum.org/projects/graap-wg.
8. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Auto-

mated negotiation: Prospects, methods and challenges. Int. J. of Group Decision and Nego-
tiation 10 (2) 199-215. 2(10) (2001) 199–215

9. R.K.Dash, N.R.Jennings, D.C.Parkes: Computational mechanism design: A call to arms.
IEEE Intelligent Systems 18(6) (2003) 40–47

52 J. Li and R. Yahyapour

10. Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid
Computing. PhD thesis, Monash University, Melbourne, Australia (2002)

11. Ernemann, C., Yahyapour, R.: ”Applying Economic Scheduling Methods to Grid Environ-
ments”. In: ”Grid Resource Management - State of the Art and Future Trends”. Kluwer
Academic Publishers (2003) 491–506

12. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource allocation
strategies for the computational grid. International Journal of High Performance Computing
Applications 15(3) (2001) 258–281

13. Raman, R.: Matchmaking Frameworks for Distributed Resource Management. PhD thesis,
University of Wisconsin-Madison (2000)

14. Dumitrescu, C., Foster, I.T.: Gruber: A grid resource usage sla broker. In: Euro-Par. (2005)
465–474

15. Padgett, J., Djemame, K., Dew, P.M.: Grid-based sla management. In: EGC. (2005) 1076–
1085

16. Kraus., S.: Strategic Negotiation in Multi-Agent Environments. MIT Press, Cambridge,
USA, (2001)

17. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50 (1982) 97–110
18. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: ”Multicriteria Aspects of Grid Re-

source Management”. In: ”Grid Resource Management - State of the Art and Future Trends”.
Kluwer Academic Publishers (2003) 271–295

19. Raiffa, H.: The Art and Science of Negotiation. Harvard Universtiy Press (1982)
20. Faratin, P.: Automated Service Negotiation Between Autonomous Computational Agents.

PhD thesis, Department of Electronic Engineering, Queen Mary College, University of Lon-
don, UK (2000)

21. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press (1995) Cambridge,
Massachusetts.

22. Lifka, D.: The ANL/IBM SP scheduling system. In Feitelson, D.G., Rudolph, L., eds.: Job
Scheduling Strategies for Parallel Processing. Springer-Verlag (1995) 295–303 Lect. Notes
Comput. Sci. vol. 949.

23. Standard workload format (2005) http://www.cs.huji.ac.il/labs/parallel/workload/index.html.
24. Schwiegelshohn, U., Yahyapour, R.: Analysis of first-come-first- serve parallel job schedul-

ing. In: Proceedings of the 9th SIAM Symposium on Discrete Algorithms. (1998) 629–638

An Enhanced Grid Scheduling with Job Priority

and Equitable Interval Job Distribution

HyoYoung Lee, DongWoo Lee, and R.S. Ramakrishna

Department of Information and Communications,
Gwangju Institute of Science and Technology,

1 Oryong-dong Buk-gu, Gwangju 500-712, Republic of Korea
{hyylee, leepro, rsr}@gist.ac.kr

Abstract. The scheduling service is an important component of large
scale computing environments. In this paper, we take a local and grid-
wise look at the scheduling problem. First an advance backfilling algo-
rithm based on the job square with a wide job priority is presented.
Experimental results show that the priority scheduler reduces the mean
waiting time to an extent that depends on the proportion of narrow jobs
within a workload. Subsequently, we consider a load sharing technique
that selects the site in the Grid that is executing the least number of jobs
of similar size as that of the current job. The adaptive sharing scheme
offers significant benefits in terms of the average weighted waiting time.

1 Introduction

Grid computing - a new paradigm involving distributed computing environments
- is a technology that allows the users and application programs to access a
large scale IT domain. Grid scheduling is a general middleware service and it
determines the order in which the jobs assigned to the distributed system are
processed. Job scheduling strategies that rely on load sharing have been proposed
as the core technique for grid services.

Job scheduling aims to optimize the performance of the computing environ-
ment. The performance is measured by the response time and the number of
processed jobs. We focus on a couple of scheduling issues in this paper. First,
we present a variant of the backfilling scheme, a well known general mechanism
for scheduling parallel supercomputers, considering the job set amenable to ex-
ecution at once. The product of the number of (needed) nodes and the user’s
estimated runtime is used in this regard. In addition, a wide job is given a priority
with a view to avoid long waiting time. Second, we propose a new load shar-
ing technique to be executed by the global dispatcher in the grid environment.
Our motivation is based on the fact that the entire system performance can be
strongly influenced by the distribution of the prevailing job size. Under this ar-
rangement, the global dispatcher collects the system information and derives a
stable distribution of jobs on the basis of size-level interval of the processor ca-
pacity. These two schemes improve scheduling performance in comparison with
the traditional approaches.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 53–62, 2006.
© Springer-Verlag Berlin Heidelberg 2006

54 H. Lee, D. Lee, and R.S. Ramakrishna

The remainder of this paper is organized as follows. Section 2 describes re-
lated work about job scheduling schemes in large-scale multiprocessors. Section 3
addresses the model and configurations of the simulations. In Section 4, we eval-
uate the results in the light of the proposed methodology. Section 5 contains
conclusions.

2 Related Work

2.1 Enhanced Backfilling Algorithms as a Job Scheduling

The backfilling algorithm was introduced by Lifka [7]. It adopted non-FCFS
strategy to increase system utilization for parallel job scheduling. The algorithm
has received widespread attention in the research community. These studies ad-
dressed differential policies that allow certain job priority and reservation under
an established backfilling rule. There are two common variations to backfilling -
conservative and EASY. The results showed that the performance depends on
the workload and the selected metric [9, 13]. There is considerable work on time
priority. Sorting the waiting jobs by estimated execution times [18]; assignment
of the requested jobs to a multiple job queue based on projected execution time
[6] may be mentioned here. Speculative approaches based on execution-time
have also been considered [10]. The results of average slowdown and response
time show an improved scheduling performance. Other approaches to backfilling
scheduling can be included in the job feature. A scheduler which assigns differ-
ential priorities to jobs based on the characteristic of each job has been proposed
in [14]. A high priority job can bypass a low priority job thereby improving the
system efficiency [12].

2.2 Enriched Approaches to the Grid Scheduling

Dynamic load sharing has already been considered in distributed systems. Tan et
al. [15] propose a load distribution that is proportional to the processing capacity
of servers. The mean waiting time is reduced by penalizing the large task. In grid
computing, the main focus is on scheduling with a global backfilling scheduler.
The proposals presented in [1, 17] emphasize the importance of job sharing in
the grid environment and provide a global scheduler that uses a snapshot that
carries the scheduling information of every cluster. In addition, the impact of the
global resources encompassing different time zones has also been investigated [2].
These proposals indicated that the overall system performance can be enhanced
with a judicious job sharing strategy.

3 The Backfilling Scheme with Wide Job Priority

In this section, we present the workload characteristics and the simulation model.
The simulation was performed under the open systems environment with real
workload traces for modeling an actual parallel and distributed system.

An Enhanced Grid Scheduling with Job Priority 55

3.1 Workload Model

Feitelson [5] showed that the characteristics of the workload influence the evalua-
tion of system performance. Therefore, to understand the effect of the proposed
algorithm with regard to the workload, we performed experiments using four
distinct workload traces which were collected over a year from real workloads
in large scale computer systems [19]. The arrival time, the requested number
of nodes, the runtime, and the estimated runtime demanded by each user are
represented in the workload trace. The workloads used in the simulation are
summarized in Table 1.

Table 1. Description of Workload Traces

Workload
Name

Max Nodes
Number of

Jobs
Period

Start Time End Time

CTC 512 79267 Jul. 1996 May 1997

KTH 100 26456 Oct. 1996 Jul. 1997

SDSC-SP2 128 37178 May 1998 Apr. 1999

SDSC-BLUE 1152 90492 Jan. 2001 Dec. 2001

3.2 Proposed Scheduling Scheme

EASY backfilling allows a short job to execute ahead as long as it does not
delay the job (reserved) at the head of the queue. Most scheduling models have
employed job partition in accordance with the required number of processors
and the estimated runtime and the jobs have been divided into narrow and wide
jobs based on processor size [13]. However, there are mainly two limitations to
the backfilling algorithm:
(1) The relatively long delay before a wide job makes a reservation.
(2) The unreliability of the user’s estimated runtime [9].
We intend to address the above issues. We have to take into account two factors
affecting the backfilling scheduling. The first refers to the ability to backfill with
narrow jobs which is the main reason for improved performance. The other is
concerned with shortening the waiting time of wide jobs.

The main characteristics of the proposed algorithm are described below.
• The creation of the job-set

We consider the square of a job to decide its order (of execution) for effi-
cient scheduling. Besides, to improve the system performance, the genetic
algorithm is employed to discover an optimal job-set that leaves as small
a number of idle nodes as possible at schedule time. Here the job set is
composed of jobs capable of backfill at schedule time.

• Differential priorities to wide jobs
The backfilling algorithm favors narrow jobs. Wide jobs wait for a relatively
longer time than do narrow jobs. For this reason, we distinguish the wide
job from among current jobs for prioritization. When creating a job-set, we

56 H. Lee, D. Lee, and R.S. Ramakrishna

evaluate the maximum waiting time of the first wide job in the queue. There-
after, if there are enough idle nodes capable of handling that job whose waiting
time exceeds the specified maximum waiting time, it can be executed right-
away. More specifically, we define the availability condition by the equation

j ∈ Wj and Twj ≥ (EstimatedT imej + (EstimatedT imej × R))

where Wj is a wide job , Twj is the waiting time of job j and R is the priority
proportion for maximum waiting time. The parameters are described below.

- Criterion of a wide job. This depends on the system characteristics such
as system capacity and the general use of power-of-two nodes [3]. A wide
job satisfies the inequality

Wj > 2�
log2N

2 �

where N is the system capacity.
- Setting up maximum waiting time. In queueing theory, jobs arrive at an

average rate of λ at a single processor CPU where they are served. It
has been shown [8] that the workload profile at a given site tends to
be fairly stable over time. So, we calculate the maximum waiting time
using the priority proportion, R, based on the historical information
and assign adaptive time to various jobs in each workload. When the
number of arriving jobs is large enough, the effect of a wide job priority
has to be reduced by increasing R. In contrast, if the proportion of wide
jobs is large (with the same λ), the value of R has to be reduced in
order to prevent long delay for a wide job. For example, suppose two
workloads have 20% wide jobs. Let the first and the second workload
have 20 wide jobs out of 100 jobs and 200 wide jobs out of 1000 jobs
respectively. Here the priority for a wide job of the second workload has
to be reduced because it has relatively many narrow jobs. In the end,
the priority ratio R is directly proportional to λ of a given site and is
inversely proportional to the ratio of wide jobs. That is, the equation is
formulated as follows.

R =
λ

proportion of wide jobs
× 100

4 Extensions to the Grid

There have been many attempts to extend the major features of parallel and
distributed systems to grid computing. The computational grid tries to enhance
the computing speed by capitalizing on the resources available all over the world.

4.1 Model Description

We carried out simulations with independent jobs to look for effective distribu-
tion in regard to job requests of diverse users. The grid architecture model used
here is shown in Figure 1. The synthetic workload was created by combining the
workloads mentioned above with due regard to job’s submission time.

An Enhanced Grid Scheduling with Job Priority 57

Fig. 1. A Simple Architecture for Grid Simulation

4.2 Impact of Load Sharing Based on the Job Size-Level Interval

The workload characteristic at an arbitrary site is quite involved. To illustrate,
Figure 2(a) shows an irregular job distribution of the above workloads in a
real system. Note that CTC and SDSC SP2 workloads represent extreme cases.

Fig. 2. Comparison of job distributions under real and SLI scheme

58 H. Lee, D. Lee, and R.S. Ramakrishna

More than 95% of jobs in the CTC workload requested only 0 to 51 nodes
(within 10% of system capacity) while merely 70% of jobs in the SDSC SP2
workload requested 0 to 13 nodes(the same percentage as before). That is, the
job distributions of the two workloads are quite different with respect to size-level
interval. Thus, it is clear that the job has to be assigned to the proper system
by taking into consideration the system capacity. It is uniformly distributed
to the same size-level interval of each site. In this proposed model, the global
dispatcher finds a target site that has the least proportion of busy nodes among
all the available sites for a given size-level interval and submits the requested job
to the local queue of that site. The load sharing algorithm is given in Algorithm1.

Algorithm 1. The Load Sharing Based on the Size-Level Interval
Require: S ← NumberofSites

1: while Global Dispatcher is up do
2: rj ← Number of Nodes the Job Requests
3: cs ← Site Capacity
4: ms ← Minimum Site Capacity Among Sites That rj can be Executed
5: i ← Interval of Involving rj When ms Capacity is Divided into 10 Ranges
6: Rs ← Ratio of the Interval i of Site s
7: Cul, Col ← ∞
8:
9: while termination condition not met do

10: if rj ≤ cs and idle nodes ≥ rj then
11: underloadedSite = s having the least ratio satisfied (Rs ≤ Cul)
12: Cul = Rs

13: else if rj ≤ cs and idle nodes < rj then
14: overloadedSite = s having the least ratio satisfied (Rs ≤ Col)
15: Col = Rs

16: end if
17: end while
18:
19: if underloadedSite is found then
20: targetSite = underloadedSite
21: else
22: targetSite = overloadedSite
23: end if
24: end while

5 Performance Analysis

5.1 Evaluation Metrics

The metrics for performance evaluation depend on the type of simulation. The
implemented simulation is the open online system and the scheduling system

An Enhanced Grid Scheduling with Job Priority 59

aims to ensure user satisfaction by reducing the waiting time. Hence, the user-
centric metrics - the waiting time and bounded slowdown [4] - have been used
in order to measure system performance. The metrics are defined as follows:

WaitingT imej = StartT imej − SubmitT imej

Bounded Slowdownj =
WaitingT imej + RunT imej

Max(RunT imej, 10)

In the same way, the metric used for estimating performance in the grid en-
vironment is the average weighted waiting time(AWWT) [11]. The amount of
resources consumed is indicated by the product of the number of nodes assigned
to the job and the execution time of the job:

Resource Consumptionj = (number of nodesj × execution timej)

The AWWT is defined by,

AWWT =

∑
j∈Jobs(Resource Consumptionj × Waiting T imej)∑

j∈Jobs(Resource Consumptionj)

The weighted waiting time is proportional to the resource consumption and this
formula gives an identical waiting time for the needed resources.

5.2 Backfilling Based on Wide Job Priority

Figure 3 depicts the overall waiting time and bounded slowdown of expanded
backfilling with a wide job priority in relation to four workloads. The system
load in the simulation environment is dealt with by multiplying the submit time
by a certain factor [9]. The simulation results indicate not only that the proposed
algorithm has better performance than that of traditional backfilling, but also
that the extent of performance improvement varies with the workload.

To understand the sensitivity of performance to workload characteristics, we
have to note that the workload presents anomalous distribution in job size, as
shown in Figure 2(a). Indeed, the performance with regard to the four workloads
improves on an average as follows:

CTC(19%) > SDSC BLUE(12%) > KTH(8%) > SDSC SP2(1%)

It is seen that the performance is closely connected with the proportion of nar-
row jobs. This is due to two main reasons. Firstly, an unexpected slow down of
narrow jobs brought about by wide jobs is largely reduced owing to the job-set
that is ready for execution. Secondly, even when we consider wide job priority,
the scheduling scheme based on the square can penalize wide jobs in the work-
load. Therefore, the workload having a larger proportion of narrow jobs shows
a greater improvement.

60 H. Lee, D. Lee, and R.S. Ramakrishna

Fig. 3. Performance comparison of backfilling scheme for four workloads : EASY vs.
EASY with wide job priority

5.3 Load Sharing Performance Under a Job Size-Level Interval

This subsection compares the load sharing technique for choosing the target site
that will process a job in the grid. The simulation tests were conducted without
regard to migration or costs of communication. The results of simulation of the
proposed load sharing algorithm are presented in Figure 4. A comparison with
the LLF [16] approach, which assigns requested jobs to the server with the least
amount of work remaining(LWR), and SLI(Size-Level Interval) is depicted in
the figure. The SLI determines the target site with the least proportion of jobs
in the same interval. An improvement by about 65% is effected by the simple
SLI scheme over the LLF approach. Furthermore, the SLI based on the new
backfilling scheme with the local scheduler shows a slight improvement by 6%
over traditional backfilling. The reason why the performance is enhanced can
be understood from Figure 2(b). As shown in this figure, we find that jobs are
distributed nearly with the same proportion in each SLI of the participant sites.
To conclude, a regular distribution of jobs on the system has a major impact on
the performance.

An Enhanced Grid Scheduling with Job Priority 61

Fig. 4. Comparison of AWWT based on the load sharing scheme

6 Conclusions

The scheduling service plays a very important role in computing systems. Indeed
it decides the number of jobs the system eventually processes. In our work, we fo-
cused on two schemes with a view to improve the scheduling performance. First,
we devised a new variant of backfilling by considering the job square based on
backfilling scheduling principle at a local system scheduler. We grant priority to
wide jobs because they can significantly affect the overall waiting time. By sim-
ulation studies, we found that the performance is better than that of traditional
EASY backfilling. The extent of improvement depends on the characteristics of
the workload, especially the proportion of narrow jobs. Second, we presented
the results on the impact of job sharing, wherein the global dispatcher assigns
the requested jobs to the proper site by comparing the proportion of jobs at the
same size-level interval at the participant sites. By doing so, we showed that a
fairly uniform distribution of jobs at the sites is possible and it has a considerable
impact on the performance.

References

1. C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “On
Advantages of Grid Computing for Parallel Job Scheduling,” Proc. of 2nd IEEE
Int’l Symposium on Cluster Computing and the Grid (CC-GRID 2002), Berlin,
Germany, IEEE ComputerSociety Press, pp. 39-46, 2002.

2. C. Ernemann, V. Hamscher, and R. Yahyapour., “Benefits of global grid computing
for job scheduling,” Proc. of 5th IEEE/ACM Int’l Workshop on Grid Computing,
in Conjunction with SuperComputing 2004, GRID 2004, IEEE Computer Society,
pp. 374-379, November 2004.

3. D.G. Feitelson, “Packing Schemes for Gang Scheduling,” In Proceedings of JSSPP,
pp. 89-110, 1996.

4. D.G. Feitelson, L. Rudolph, U. Schweigelshohn, K.C. Sevcik and P. Wong, “Theory
and Practice in Parallel Job Scheduling,” In Proceedings of JSSPP, pp.1-34, 1997.

62 H. Lee, D. Lee, and R.S. Ramakrishna

5. D.G. Feitelson, “Metric and Workload Effects on Computer Systems Evaluation,”
IEEE Computer, vol. 36, no.9, pp. 18-25, 2003.

6. B.G. Lawson and E. Smirni, “Multiple-Queue Backfilling Scheduling with Priorities
and Reservations for Parallel Systems,” In Proceedings of JSSPP, pp.72-87, 2002.

7. D. Lifka, “The ANL/IBM SP Scheduling System,” In Proceedings of JSSPP, pp.
295-303, 1995.

8. V. Lo, J. Mache, and K.Windisch, “A Comparative Study of Real Workload Traces
and Synthetic Workload Models for Parallel Job Scheduling,” In Proceedings of
JSSPP, pp. 309-314, 1998.

9. A.W. Mu’alem and D.G. Feitelson, “Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling,” IEEE Trans.
Parallel & Distributed Systems, vol. 12, no. 6, pp. 529-543, 2001.

10. D. Perkovic and P.J. Keleher, “Randomization, Speculation, and Adaptation in
Batch Schedulers,” In Proceedings of Supercomputing 2000, November 2000.

11. U. Schwiegelshohn and R. Yahyapour, “Analysis of First-Come-First-Serve Parallel
Job Scheduling,” Proc. of 9th SIAM Symposium on Discrete Algorithms, pp. 629-
638, 1998.

12. Q.O. Snell, M.J. Clement and D.B. Jackson,“Preemption Based Backfill,” In Pro-
ceedings of JSSPP, pp. 24-37, 2002.

13. S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan, “Characterization
of Backfilling Strategies for Parallel Job Scheduling,” In Proceedings of 2002 Intl.
Workshops on Parallel Processing, 2002.

14. D. Talby and D.G. Feitelson, “Supporting Priorities and Improving Utilization of
the IBM SP Scheduler Using Slack-Based Backfilling,” Proc. of 13th Int’l Parallel
Processing Symp., pp. 513-517, 1999.

15. L. Tan and Z. Tari, “Dynamic Task Assignment in Server Farm : Better Perfor-
mance by Task Grouping,” In Proc. of IEEE Computers and Communication, pp.
175-180, 2002.

16. Z.Tari, J. Broberg, A.Y. Zomaya, and R. Baldoni, “A least flow-time first load
sharing approach for distributed server farm,” Journal of Parallel and Distributed
Computing, vol. 65, no. 7, pp. 832-842, 2005.

17. J. Yue, “Global Backfilling Scheduling in Multiclusters,” In Asian Applied Com-
puting Conference (AACC 2004), pp. 232-239, 2004.

18. D. Zotkin and P.J. Keleher, “Job-Length Estimation and Performance in Backfill-
ing Schedulers,” Proc. of 8th Int’l Symp. High-Performance Distributed Computin,
IEEE CS Press, pp. 39-46, 1999.

19. Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 63 – 72, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Average Schedule Length and Resource Selection
Policies on Computational Grids

Uei-Ren Chen1,2, Chien-Hsun Wang1, and Woei Lin1

1 Department of Computer Science, National Chung Hsing University,
250, Kuo Kuang Road, Taiwan, R.O.C.

{s9356033, wlin}@cs.nchu.edu.tw
2 Department of Electrical Engineering, Hsiuping Institute of Technology,

11, Gungye Rd., Dali City, Taiwan, R.O.C.
urchen@mail.hit.edu.tw

Abstract. The computational grid provides many resources with powerful
computational ability; however, we need to select appropriate resources for re-
solving the problem. In this paper, several simple and fast resource selection
policies are presented. Under varying types of resource topologies and prob-
lems, the efficiency of these resource selection policies is compared. The
contribution of this research is following. To solve the undetermined resource
problem in the grid computing, the bottom level equation is modified in the list
scheduling algorithm. Average Schedule Length (ASL) is presented to ap-
proximate the schedule length of the improved list scheduling method, and
simulation result shows the accuracy of this approximation. The bounded num-
ber of the resources is found by performing the FindAlpha algorithm. Simula-
tion result shows that selection policies can achieve minimal schedule length
efficiently by choosing the limited number of the resources.

1 Introduction

The resources in the computational grid [1] are different in types and administrated by
their owners. A grid network topology is typically large in scale, and the communica-
tion is varied in speed. Resource selection (or node selection) policy is a mechanism
to select a number of suitable computing nodes from multiple available candidates.
Task scheduling is an assignment of a set of tasks to a certain number of resources,
and its goal is to minimize the schedule length. Task scheduling problem has been
proved to be NP-hard [2]. A resource selection policy should be able to reduce the
complexity of task scheduling. The traditional list scheduling algorithm is adopted in
the parallel processing system [3]. However, it can not be used directly in the grid
environment. The improved bottom level method in the list scheduling is proposed to
resolve this problem.

Some related resource selection schemes are summarized as follows. (1) Usage
Pattern Based: The node selection mechanism based on the usage pattern of computa-
tional nodes on Campus Grid is proposed [4]. The node usage pattern is represented
by a history of CPU load. The length of the usage pattern is a critical problem in
this scheme. (2) Communication Pattern Based: The method selects resources by

64 U.-R. Chen, C.-H. Wang, and W. Lin

analyzing network status and communication pattern used by the application [5]. The
drawback is that the method depends on the accuracy of network status information is
measured and future performance is predicted. (3) Mapping Strategy Based: The
Resource Selector Service (RSS) [6] selects a resource set that satisfies the require-
ments by adopting a mapping strategy. The problem is that an efficient general map-
ping algorithm suitable for all applications is difficult to find. (4) Random Based:
Resources are selected by a random policy. It is simple but hard to analyze. (5) Ge-
netic Algorithm (GA): A resource selection agent uses a genetic algorithm is devel-
oped [7]. The generating time of a genetic algorithm is an issue for resource selection.
(6) Multi-site Resource Selection: A clustering-based grid resource selection algo-
rithm is proposed by adopting multiple sites [8]. There is a critical issue that accuracy
of predicted execution time will determine the correctness of the algorithm. (7) Pull-
Based: A resource broker called Surfer [9] is implemented for resource selection and
ranking resources to meet constraints.

This paper is organized as follows. In Section 2, the system model is defined. Sec-
tion 3 discusses the performance criteria used in this research. Section 4 evaluates the
performance of these resource selection policies in different types of resource topolo-
gies. Our paper ends with a brief conclusion and future work in Section 5.

2 System Model

The system consists of five components. The grid resource model is represented by a
resource topology with resource information. The problem model is represented by a
directed acyclic graph (DAG) of tasks. Selected computational nodes are the re-
sources selected by means of resource selection policy from resource topology. The
routing model can provide the information about routing path to the scheduling
model. Scheduling model performs task assignment in the problem model to the se-
lected computational nodes.

2.1 Grid Resource Model

The computational grid includes a set of resources { }RrrrrR RCRC ∈= ,, and network

links { }LllL jiji ∈= ,, , used to connect these resources. The computational grid can

be modeled as an undirected connected graph ()LRG ,= with two elements, the re-

source set R and the link set L .
Resource: There are three types of resource nodes in the grid resource model, com-

putational node, switching node and original node.

 Computational node: It is the border term logically that may be a supercomputer, a
cluster of workstations or other computing devices practically. The computational
node () RirC ∈ , is specified by a triple, () TMCC PPPir ,,= , where

CP is the com-

putational ability,
MP is the memory size, and TP is the data transfer ability, re-

spectively. In this research, the memory size is assumed to be sufficient.
 Routing node: It is a routing device for its computational node. RrR ∈ .

 Average Schedule Length and Resource Selection Policies on Computational Grids 65

 Original node: It is s special computing node that issues sub-problems to other
computational nodes after performing problem decomposition, and the original
node is denoted as RrO ∈ .

Network Link: The link Ll ji ∈,
 is full duplex and used to connect two switching

nodes of computational node ()irC
 and ()jrC

. The link is defined as
LBji PPl ,, = ,

where the parameter
BP is the link capacity (or bandwidth) and

LP is the length of
link.

2.2 Problem Model

In this research, we assume that a problem can be divided into sub-problems called
tasks. A task is a basic job that is executed in a computational node.

A problem p is represented as a directed acyclic graph (DAG), ()ETDp ,= ,

where T is a finite set of tasks Tti ∈ , and E is a finite set of directed edges. Each

directed edge Ee ji ∈,
 expresses the execution order of adjoint tasks

it and
jt , and

task
it must be finished before task

jt . The task Tti ∈ , can be defined as ()iCi tVt ,=

()iM tV ,where ()iC tV is the computational volume of task
it , and ()iM tV is the mes-

sage volume of task
it .

2.3 Resource Selection Policy

Several simple selection policies are proposed as follows:

1. Fast Node First (FNF) Policy: The top n fast computing nodes are selected form
m available nodes in the topology, and m is greater than n . A computing node A
that has higher value of computational ability than a computational node B is as-
sumed to be faster than B in computing speed.

2. Near Node First (NNF) Policy: The top n near computational nodes are selected
from m available nodes in a resource model, where m is greater than n . A com-
puting node A is nearer than B, if the communicational cost of A is lower than B.

3. Fast Among Near (FAN) Policy: We select r nodes using NNF policy, Then we
select top n fast nodes from r nodes, where r is greater than n .

4. Near Among Fast (NAF) Policy: We select r nodes using FNF policy. Then we
select top n near nodes from r nodes, where r is greater than n .

5. Random Selection Policy: Select randomly n computing nodes from m available
nodes in the topology, where m is greater than n .

2.4 Routing Model

The routing model is used to determine the path form the source computational node
to the destination. We use the well-defined routing methods by Floyd-Warshall [10]
in the routing model. The method determines a path with the minimal communication
cost.

66 U.-R. Chen, C.-H. Wang, and W. Lin

A critical link, denoted as
ds,

 is the link with the minimal bandwidth in a routing

path. The critical link can be defined as follows.
ds ,Ρℜ is the routing path from the

source computational node ()srC
 to the destination ()drC

.

() (){ }dsjijiBdsB llPP ,,,, ,min Ρℜ∈∀= (1)

2.5 Scheduling Model

The list scheduling algorithm can achieve reasonable worst-case performance bound
in grid environments with large applications and the schedule length does not im-
pacted significantly by the heterogeneous communication [11]. The schedule length
SL of the list scheduling algorithm is the maximal execution time that is needed for
all selected computational nodes to finish their assigned tasks [12]. It can be defined
as follows:

()[] (){ }SCC RirirSLSL ∈∀= ,max (2)

The bottom level is used in the list scheduling algorithm to set the priority of the
tasks in the DAG. However, there is a problem that computational cost and communi-
cational cost are undetermined until each task is assigned to the computational nodes
in the computational grid environment. Our solution is to define these two parameters
before task scheduling is performed.

Computational Cost: After performing the node selection, there are
SN computa-

tional nodes selected from the grid resource model. The computational cost for each
task

it is defined as follows.

() () ()[]
()

=
∈∀ SC Rjr

CC
S

iCicomp jrP
N

tVtC
1 (3)

Communicational Cost: After
SN nodes are selected, the communicational cost for

each directed edge
dse ,

 from task
st to the task

dt in a DAG is defined as:

() () () ()
() ()

××=
∈∀ SCC Rjrir

jiB

S

soutsMdscomm P
N

tdtVeC
,

,2,

1 (4)

()sout td is the outgoing degree of the task
st ,and it is equal to the number of its

successors. ()jiBP ,
 is the bandwidth of the critical link in the path

ji ,Ρℜ . The path

ji ,Ρℜ is from the selected computational node ()irC
 to the selected node ()jrC

. The

communicational cost at the same computational node is neglected.
The bottom level ()stBL of task

st can be obtained by substituting ()scomp tC and

()dscomm eC ,
 into the bottom level equation recursively, where the task

dt is the suc-

cessor of the task
st :

 Average Schedule Length and Resource Selection Policies on Computational Grids 67

() () () (){ }ddscommscomps tBLeCtCtBL ++= ,max
(5)

We found that the number of resources needed to resolve a problem is bound by
the number of the independent tasks in a DAG. The maximal number of tasks could
be executed at the same time in the DAG is defined as the factor α referred to as
assignable factor, and

tN≤≤ α1 . The algorithm of finding the factor α for a DAG

is given below.

FindAlpha Algorithm
Begin
Input: A directed acyclic graph (DAG) with

tN tasks;

Output: Assignable factor α ;
Generate all combinations of r tasks form tN tasks in

the DAG (
tNr ≤≤1);

For(each combination of task
iCb)

 For(any two tasks and
it and jt in the iCb , and ji tt ≠)

 If not exist a path between tasks
it and jt , then

 Add this
iCb into the DisjGroup DG ;

 End If
 End For
End For
For(each combination

iCb in the DG)

 Count the number of tasks ()iCbN for this
iCb ;

End For
Factor α is assigned the largest for all ()iCbN ;

Return α ;
End

The complexity of FindAlpha algorithm increases exponentially with number of
tasks because it is required to generate all tasks combinations in the DAG. Our re-
search effort attempts to reduce the complexity of FindAlpha algorithm in the future.

The proposed Average Schedule Length (ASL) is a theoretical model used to ap-
proximate the schedule length of the improved list scheduling algorithm. The ASL is
derived by discussing the following two cases. Let

eN be the number of edges in the

DAG. Assume that tasks
it and

jt are assigned to the computational node ()srC
, and

is ()drC
 respectively after performing task scheduling. Let

ds,
 denote the link that

has the minimal bandwidth in the routing path
ds,Ρℜ from the source computational

node ()srC
 to the destination ()drC

. The outgoing degree ()sout td of the task
st is

equal to the number of its outgoing edges.

Case 1: If α≤≤ SN1 , then ASL is derived by calculating the sum of three terms,

average computational cost
compC , average communication cost

commC and average

idle cost
idleC , and the equations are given as follows.

68 U.-R. Chen, C.-H. Wang, and W. Lin

() ()[]()××=
∈∀∈∀ SCi Rjr CC

S
Tt iC

t
comp jrP

N
tV

N
C

11 (6)

() ()()[]
∈∀∈∀

××=
EeTt dsioutiM

e
comm

jii
tdtV

N
C

,, ,

1 (7)

()commcompidle CCC +×= μ (8)

The idle factor μ of task
it is the ratio of number of dependent edges from the task

it to the 1−tN edges of other tasks in the DAG. D
edgePr is edge probability.

() () D
edget

D
edget NN Pr1Pr1 =−×−=μ (9)

In this case, the ASL is represented as:

() ()idlecommcompSt CCCNNASL ++×= (10)

Case 2: If α>SN , then the ASL is expressed as follows:

() ()idlecommcompt CCCNASL ++×= α (11)

In Case 2, the schedule length becomes convergent while
SN is near to α and the

additional selected computational nodes does not help reduce the schedule length,
because of the limit of independent tasks in the DAG is reached.

3 Performance Criteria

There are four types of resource topologies defined as follows, where the average
computational volume of the problem ()

∈∀
×=

Tt iCtC
i

tVNV 1 , and the average mes-

sage volume of the problem ()
∈∀

×=
Tt iMtM

i

tVNV 1 .

1. Low Computation and Low Communication: If the average computational ability of
the resource topology is smaller than the average computational volume of the
problem

CC VP < and the average link capacity of the resource topology is smaller

than the average message volume of the problem
MB VP < .

2. High Computation and Low Communication: If
CC VP ≥ and

MB VP < .

3. Low Computation and High Communication: If
CC VP < ,

MB VP ≥ .

4. High Computation and High Communication: If
CC VP ≥ and

MB VP ≥ .

In this paper, the type of a problem can be defined as follows:

1. Computation-oriented Problem: The total computational volume for a problem is
great than the total message volume.

MC VV ˆˆ > , where ()
∈∀

=
Tt iCC

i

tVV̂ ,

()
∈∀

=
Tt iMM

i

tVV̂ , and T is the set of tasks in the problem.

 Average Schedule Length and Resource Selection Policies on Computational Grids 69

2. Message-oriented Problem: The total computational volume in a problem is less
than the total message volume,

MC VV ˆˆ < .

3. Equivalent Problem: The total computational volume in a problem is equal to the
total message volume,

MC VV ˆˆ = .

4 Experimental Performance Evaluation

To reduce the system complexity, we make a number of simplifying assumptions as
follows: (1) resource selection mechanism can get the information needed form all
computing nodes, (2) no congestion in the network, (3) no conflict on the resources,
(4) communication is reliable and no data will be lost, (5) all elements are fault-free,
(6) resources are sufficient to tasks, and (7) no switching or routing delay.

Our simulator is coded in Java. The resource topology is generated by GT-ITM
[13]. The resource topology is modified by adding proposed resource parameters.
Problem models are generated by the DAG generator [14] with required task parame-
ters. The combination algorithm is quoted from [15].

Efficiency Analysis of Resource Selection Policies. In Fig. 1, the schedule length is
convergent while the number of selected resources for selection policies increases.
The schedule length decreases more than 90% in the resource number range from 0 to
α . This means that more selected resources do not help reduce the schedule length.
The average assignable factor of all DAGs is 2.5 in this simulation. In Fig. 1, the
FNF policy is most outstanding; and the Random and NNF policy is worse than oth-
ers in this case.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Num. of Resources

S
ch

ed
ul

e
L

en
gt

h
(S

L
)

FastNodeFirst-SL NearNodeFirst-SL FastAmongNear-SL

NearAmongFast-SL Random-SL

Fig. 1. Schedule Length for Resource Selection Policies

Accuracy Analysis of ASL. In Fig. 2, because the schedule length decreases rapidly,
the average difference of ASL and SL is greater than 40% while the number of re-
sources is 2. These two measurements differ by less than 10% while the resource

70 U.-R. Chen, C.-H. Wang, and W. Lin

number is equal to α , less than 14% while resource number is from α to 10, and less
than 10% in the resource number range from 10 to 30.

Comparison of Selection Policies. Form Tables 1 to 4, five resource selection policies
are performed in four types of resource topologies, and problems with different com-
putation-message ratio (() 33,ˆˆlog ≤≤−= xxVV MC

)are studied. The schedule lengths

of these selection policies are compared. From Table 1 to 4, the FNF policy produces
smallest schedule length, if the problem is computation-oriented. Table 2 indicates
that if the problem is highly message-oriented (() 2ˆˆlog −<MC VV), and the type of

-20

-10

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Num. of Resources

D
if

fe
re

nc
e

of
 A

SL
 a

nd
 S

L
 (

%
)

Fig. 2. Average Difference of ASL and SL

Table 1. Low Comp. and Comm. (21010 ≤≤ CP , and 21010 ≤≤ LP)

()MC VV ˆˆlog FNF NNF FAN NAF Random
-3 137.31 141.48 144.31 147.00 143.31
-2 17.94 18.48 18.69 18.47 18.54
-1 2.39 2.52 2.51 2.48 2.59
0 0.69 0.78 0.73 0.72 0.79
1 6.41 7.35 6.95 6.78 7.47
2 59.03 68.54 64.17 62.35 70.10
3 634.12 734.43 690.26 671.70 748.62

Table 2. High Comp. and Low Comm. (43 1010 ≤≤ CP , and 21010 ≤≤ LP)

()MC VV ˆˆlog FNF NNF FAN NAF Random
-3 142.75 140.92 147.04 149.95 140.26
-2 16.94 17.93 18.41 18.39 17.59
-1 1.63 1.66 1.75 1.76 1.68
0 0.15 0.15 0.16 0.16 0.16
1 0.21 0.23 0.22 0.22 0.23
2 0.76 0.93 0.84 0.82 0.89
3 6.17 7.75 6.91 6.72 7.47

 Average Schedule Length and Resource Selection Policies on Computational Grids 71

resource topology is high computation and low communication, then the NNF selec-
tion policy outperforms others. Table 3 and 4 shows that if the resource topology is
high communicational, the NNF policy performs the worst. Overall, the schedule
length of random policy is worse. The schedule lengths of FAN and NAF policies
perform between those of FNF and NNF in the computation-oriented problem.

Table 3. Low Comp. and High Comm. (21010 ≤≤ CP , and 43 1010 ≤≤ LP)

()MC VV ˆˆlog FNF NNF FAN NAF Random
-3 2.20 2.44 2.27 2.21 2.40
-2 0.83 0.97 0.89 0.85 0.96
-1 0.52 0.63 0.58 0.54 0.62
0 0.47 0.56 0.51 0.49 0.55
1 6.23 7.36 6.77 6.44 7.19
2 58.07 69.35 63.56 60.24 67.99
3 624.15 745.45 682.54 648.00 726.47

Table 4. High Comp. and Comm. (43 1010 ≤≤ CP ,and 43 1010 ≤≤ LP)

()MC VV ˆˆlog FNF NNF FAN NAF Random
-3 1.42 1.48 1.44 1.38 1.40
-2 0.19 0.19 0.18 0.18 0.18
-1 0.02 0.03 0.02 0.02 0.03
0 0.01 0.01 0.01 0.01 0.01
1 0.06 0.07 0.07 0.06 0.07
2 0.56 0.70 0.62 0.58 0.69
3 5.97 7.46 6.65 6.18 7.34

5 Conclusion and Future Work

Conclusions of this paper are drawn as follows. The grid resource model and problem
model are established with resource and task parameters respectively. Several simple
and fast resource selection policies are proposed and studied in this paper. The num-
ber of selected resources can be found by adopting the FindAlpha Algorithm, and
using these resources can achieve the bound of schedule length above 90%. The Av-
erage Schedule Length is proposed to approximate the schedule length of improved
list scheduling algorithm. The accuracy of the Average Schedule Length is evaluated.
The maximal variation to schedule length drops below 14%, if the number of the
selected resources is greater than or equal to the assignable factor α . The perform-
ance of resource selection policies is compared in four types of resource topologies
with a variety of problems distinguished by the ratio of computation to message
volume.

There are a number of directions for future research: (1) consider the background
loading in the gird resource model, (2) perform multiple problems in the computa-
tional gird simulation, (3) improve the FindAlpha algorithm and reduce its complex-
ity, (4) establish the model of the communication congestion and routing delay, (5)
compare the communicational cost of different routing methods, (6) adopt other task

72 U.-R. Chen, C.-H. Wang, and W. Lin

scheduling algorithms, and evaluate their performance, (7) compare with other selec-
tion policy, such as usage pattern and genetic algorithm, and (8) improve the effi-
ciency of the resource selection policy.

References

1. Foster, I., and Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Francisco, CA, (1999)

2. Ulman, J. D.: NP-Complete Scheduling Problems, Journal of Computing System Science,
10 (1975)

3. Adam, T. L., Chandy, K. M., and Dickson, J. R.: Comparison of List Schedule for Parallel
Processing Systems, Communications of the ACM, 17 (1974)

4. Arikawa, H., Fujikawa, K., and Sunahara, H.: A Node Selection Mechanism based on the
Node Usage Pattern on Campus Grid, IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, (2003)

5. Goteti, S., and Subhlok, J.: Communication Pattern Based Node Selection for Shared Net-
works, Proceedings of the Autonomic Computing Workshop, (2003)

6. Liu, C., Yang, L., Foster, I., and Angulo, D.: Design and Evaluation of a Resource Selec-
tion Framework for Grid Applications, Proceedings of the 11th IEEE International Sym-
posium on High Performance Distributed Computing HPDC-11, (2002)

7. Lee, H., Chung, K., Chin, S., Lee, J., Lee, D., Park, S., and Yu, H.: A Resource Manage-
ment and Fault Tolerance Services in Grid Computing, Journal of Parallel and Distributed
Computing, 65 (2005)

8. Zhang, W., Fang, B., He, H., Zhang, H., and Hu, M.: Multisite Resource Selection and
Scheduling Algorithm on Computational Grid, Proceedings of the 18th International Paral-
lel and Distributed Processing Symposium, (2004)

9. Kolano, P. Z.: Surfer: An Extensible Pull-Based Framework for Resource Selection and
Ranking, IEEE International Symposium on Cluster Computing and the Grid, (2004)

10. Cormen, T. H., Leiserson, C. E., and Rivest, R. L.: Introduction to Algorithms, The MIT
Press, (1990)

11. Li, K.: Job Scheduling for Grid Computing on Metacomputers, Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (2005)

12. Sinnen, O., and Sousa, L. A.: Communication Contention in Task Scheduling, IEEE
Transactions on Parallel and Distributed Systems, 16 (2005)

13. GT-ITM project. http://www.cc.gatech.edu/projects/gtitm/.
14. Lloyd Allison’s web site. http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Graph/ DAG/.
15. Parberry, I., and Gasarch, W.: Problems on Algorithms, Second Edition, (2002)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 73 – 82, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Performance-Based Approach to Dynamic Workload
Distribution for Master-Slave Applications on Grid

Environments

Wen-Chung Shih1, Chao-Tung Yang2,*, and Shian-Shyong Tseng1,3

1 Department of Computer and Information Science,
National Chiao Tung University,
Hsinchu 30010, Taiwan, R.O.C.

{gis90805, sstseng}@cis.nctu.edu.tw
2 High-Performance Computing Laboratory,

Department of Computer Science and Information Engineering,
Tunghai University,

Taichung 40704, Taiwan, R.O.C.
ctyang@thu.edu.tw

3 Department of Information Science and Applications,
Asia University,

Taichung 41354, Taiwan, R.O.C.
sstseng@asia.edu.tw

Abstract. Effective workload distribution techniques can significantly reduce
the total completion time of a program on grid computing environments. In this
paper, we propose a dynamic performance-based workload partition approach
for master-slave types of applications on grids. Furthermore, we implement two
types of applications and conduct the experimentations on our grid testbed.
Experimental results showed that our method could execute more efficiently
than traditional schemes.

Keywords: Workload distribution, master-slave paradigm, grid computing,
parallel loop scheduling, data mining, Globus, NWS.

1 Introduction

As inexpensive personal computers and Internet access become available, much
attention has been directed to grid computing [2, 3, 4, 8, 9, 14, 21, 22, 23, 24, 25, 33].
The basic idea of grid computing is to share the computing and storage resources all
over the world via Wide Area Networks. In this way, computational jobs can be
distributed to idle computers far away, probably in other countries. Moreover, remote
data can be accessed for large-scale analysis.

Master-slave paradigms are commonly utilized to model the task dispatching
processes in parallel and distributed computing environments [38]. This model
designates one computing node as the master, which holds a pool of tasks to be
dispatched to other slave nodes. Divisible Load Theory (DLT) [1, 16, 17, 30] addresses

* Corresponding author.

74 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

the case where the total workload can be partitioned into any number of independent
subjobs. This problem has been discussed in the past decade, and a good review can be
found in [15]. In [19], a data distribution method was proposed for host-client type of
applications. Their method was an analytic technique, and only verified on
homogeneous and heterogeneous cluster computing platforms. In [20], an exact
method for divisible load was proposed, which was not from a dynamic and pragmatic
viewpoint as ours.

In this paper, we focus on the problem of dynamic distribution of workload for
master-slave applications on grids. We implement two types of applications, Parallel
Loop Self-Scheduling [18, 27, 34, 35, 36] and Association Rule Data Mining, with
MPI directives, and execute them on our grid testbed. Experimental results show that
effective workload partitioning can significantly reduce the total completion time.

Our major contributions can be summarized as follows. First, this paper proposes a
new performance-based algorithm to solve this dynamic workload distribution
problem. Second, we implement the algorithm and apply it to both loop self-
scheduling and data mining applications on our grid testbed. Consequently,
experimental results show the obvious effectiveness of our approach. To the best of
our knowledge, this is the first paper to consider dynamic workload distribution
within a program on grid environments.

Our previous work [31, 32] presents different heuristics to the parallel loop self-
scheduling problem. This paper generalizes their main idea and proposes to solve the
dynamic workload distribution problem. This approach is applied to both the parallel
loop self-scheduling application and the association rule mining application. There
have been a lot of researches of parallel and distributed data mining [12, 13, 26, 37].
However, this paper focuses on workload distribution, instead of proposing a new
data mining algorithm.

The rest of this paper is organized as follows. Our approach is proposed in Section 2.
Then, Section 3 shows the experimental results on our grid testbeds. Finally, we
conclude this paper in Section 4.

2 Our Approach

Our performance-based approach is based on the estimated performance of each
slave node and each link to distribute the corresponding workload. In this section,
the system model and the concept of performance ratio are explained first. Then, we
present the heuristics which the algorithm is based on. Finally, the algorithm is
described.

2.1 System Model

Our system model and cost model are extended from the framework in [15]. The
master-slave model for a grid is represented by a star graph G = {P0, P1,…, Pn}, as
shown in Figure 1. In this graph, P0 is the master node and the other n nodes, P1, …,
Pn, are slave nodes. In addition, there is a virtual communication link Li connecting
the master node and the slave node Pi.

 A Performance-Based Approach to Dynamic Workload Distribution 75

In our cost model, each node Pi is associated with a computing capacity Ci, a
memory capacity Mi, and a disk storage capacity Di. Furthermore, each link Li is also
associated with a transmission capacity Ti. In our linear cost model, it takes W×Ci
time units for the slave node Pi to conduct computation on W units of data. Besides, it
takes W×Ti time units for link Li to transmit W units of data. In this model, we assume
that the master can only communicate with one slave node at the same time.

Fig. 1. The system model

2.2 Performance Functions and Performance Ratio

We propose to partition the workload according to the performance ratio of all slave
nodes. Therefore, the effectiveness of this approach depends on the accuracy of
estimating the performance ratio. To estimate the performance of each slave node, we
define a Performance Function (PF) for a slave node j as

PFj (V1, V2, …, VM) (1)

where Vi , Mi ≤≤1 , is a parameter of the performance function. In more detail, the
parameters could include CPU speed, networking bandwidth, memory capacity, etc.
In this paper, our PF for node j is defined as

PFj =

∈∀∈∀

×+×

Snode
i

j

Snode
i

j

ii

B

B
w

t

t
w 21 1

1

(2)

where

• S is the set of all slave nodes.
• ti is the execution time (sec.) of node i for some benchmark application program,

such as matrix multiplication.
• Bi is the bandwidth (Mbps) between node i and the master node.
• w1 is the weight of the first term.
• w2 is the weight of the second term.

The Performance Ratio (PR) is defined to be the ratio of all performance functions.
For instance, assume the PFs of three nodes are 1/2, 1/3 and 1/4, respectively. Then,
the PR is 1/2 : 1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if

76 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

there are 13 transactions to be processed, 6 transactions will be assigned to the first
node, 4 transactions will be assigned to the second node, and 3 transactions will be
assigned to the last one.

2.3 Performance-Based Algorithms

Our algorithm is based on two heuristics to dispatch workload to slave nodes.

1. The total workload is divided in n chunks according to the PR of the n slave nodes.
2. Send the data chunk to the node with faster network bandwidth first. The network

bandwidth is estimated by

∈∀ Snode
i

j

i

B

B
.

In this paper, Bj is obtained from NWS (Network Weather Service) statistics [7].
Specifically, our network bandwidth estimation is extracted directed from [11].

Our algorithm is also a master-slave type of application. In the MASTER module,
the total workload is divided according to the PR of slaves, and the partitioned
workload is transmitted accordingly. In the SLAVE module, the workload is
computed. The algorithm of our approach is described as follows.

Module MASTER

1. Initialization

2. Calculate performance ratio of all slave nodes

3. Partition the total workload according to the PR

4. Get network bandwidth Bi of the link to node i

5. Send data to slaves in non-increasing order of Bi

6. //Master could does its own computation work here

7. Gather results from all slave nodes

8. Print the results

9. Finalization

END MASTER

Module SLAVE

1. Receive workload from the master node

2. Conduct computation on its local workload

3. Send the result to the master

END SLAVE

Without loss of generality, we assume the master node does not participate in
computation in our algorithm. However, the algorithm can be modified to utilize the
computing power of the master node by remove the comment notation (//) in line 6.

 A Performance-Based Approach to Dynamic Workload Distribution 77

3 Experimental Results

To verify our approach, a grid testbed is built, and two types of application programs
are implemented with MPI (Message Passing Interface) to be executed on this testbed.
This grid testbed consists of one master and three domains. We have built this grid
testbed by the following middleware:

• Globus Toolkit 3.0.2 [10]
• Mpich library 1.2.6 [5, 6]

In this experiment, the performance function and the performance ratio are the
same as those defined Section 2. Specifically, w1 is assigned as 1 and w2 is assigned as
0.5, suggested by our experiences in this testbed. Furthermore, Ti for node i is
obtained by executing Matrix Multiplication, for input size 512×512, while Bi for
node i is obtained by NWS statistics [7, 11]. The resulting performance ratio is shown
in Figure 2. For example, node 4 and node 5 have the same CPU speed. However, our
method assigns higher PR to node 4 because of its higher network bandwidth. In
addition, the execution time is an average of five repetitive measurements.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9

Node

R
a
ti

o CPU Ratio

Performance Ratio

Fig. 2. Performance ratio of 9 slave nodes for our grid testbed

3.1 Application 1: Parallel Loop Self-scheduling for Matrix Multiplication

We have implemented a series of application programs in C language, with message
passing interface (MPI) directives for parallelizing code segments to be processed by
multiple CPU’s. In this paper, the scheduling parameter is set to be 50 for all hybrid
schemes, except for the schemes by [36], of which is dynamically adjustable
according to cluster heterogeneity.

First, execution time on the grid for GSS [29] group is investigated. Figure 3(a)
illustrates execution time of static [28], dynamic [29] and our scheme, with input
matrix size 512×512, 1024×1024 and 1536×1536 respectively. Experimental results
show that our performance-based scheduling scheme got better performance than
static and dynamic ones. In this case, our scheme for input size 1536×1536 got 39%
and 23% performance improvement over the static one and the dynamic one
respectively.

Figure 3(b) illustrates execution time of previous schemes (ngss [35] and ngss2
[36]) and our scheme, with input matrix size 512×512, 1024×1024 and 1536×1536

78 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

0

50

100

150

200

250

300

512 * 512 1024 * 1024 1536 * 1536

Matrix Size

Ti
m

e
(s

) Static

Dynamic (gss)

Our

0

50

100

150

200

250

512 * 512 1024 * 1024 1536 * 1536

Matrix Size

Ti
m

e
(s

) ngss

ngss2

Our

Fig. 3. Matrix multiplication execution time on the grid for GSS group schemes. (a) Static,
dynamic (gss) and our scheme; (b) ngss, ngss2 and our scheme.

respectively. Experimental results show that our performance-based scheduling
scheme got better performance than static and dynamic ones. In this case, our scheme
for input size 1536×1536 got 32% and 28% performance improvement over the ngss
and the ngss2 respectively.

3.2 Application 2: Association Rule Mining

Traditional parallel data mining work assumes data is partitioned and transmitted to
the computing nodes in advance. However, it is usually the case in which a large
database is generated and stored in some station. Therefore, it is important to
efficiently partition and distribute the data to other nodes for parallel computation. As
the rising of parallel processing, parallel data mining have been well investigated in
the past decade. Especially, much attention has been directed to parallel association
rule mining. A good survey can be found in [37].

In this section, we implement the Apriori algorithm, and apply our approach to
conduct data distribution. Specifically, the parallelized version of Apriori we adopt is
Count Distribution (CD) [12, 13, 26].

In this experiment, “cd_eq” means to distribute the workload to slaves equally, and
“cd_cpu” means to distribute the workload to slaves according to the ratio of CPU
speed values of slaves. And, cd_our is our scheme. Our datasets are generated by the
tool as in [13]. The parameters of the synthetic datasets are described in Table 1.

Table 1. Description of our dataset

Dataset Number of
Transactions

Average
Transaction Length

Number of
Items

D10KT5I10 10,000 5 10
D50KT5I10 50,000 5 10
D100KT5I10 100,000 5 10

3.2.1 Relative Performance for Different Dataset Sizes
First, execution time on the grid for the three schemes is investigated. Figure 4
illustrates execution time of cd_eq, cd_cpu and our scheme, with input size 10K, 50K
and 100K transactions respectively. Experimental results show that our scheme got

 A Performance-Based Approach to Dynamic Workload Distribution 79

0

50

100

150

200

250

300

350

D10KT5I10 D50KT5I10 D100KT5I10

Data Set

E
xe

cu
ti

o
n

 T
im

e
(S

ec
.)

cd_eq cd_cpu cd_our

Fig. 4. Performance of data partition schemes for different datasets

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9

Number of Slave Nodes

E
xe

cu
tio

n
 T

im
e

(S
ec

.)

cd_eq cd_cpu cd_our

Fig. 5. Speedup performance of data partition schemes

better performance than cd_eq and cd_cpu. In this case, our scheme for input size
100K transactions got 18% and 52% performance improvement over cd_eq and
cd_cpu respectively.

From this experiment, we can see the significant influence of partition schemes on
the total response time. In grid environments, network bandwidth is an important
criterion to evaluate the performance of a slave node. Cd_eq and cd_cpu are static
data partition schemes. Therefore, they can not adapt to the practical network status.
When communication cost becomes a major factor, our scheme would be well
adaptive to the network environment.

Moreover, the reason why cd_cpu got the worst performance can be contributed to
the inappropriate estimation of node performance. In grid computing environments,

80 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

CPU speed is not the only factor to determine the node performance. A node with the
fastest CPU is not necessary the node with optimal performance. This has been
illustrated in Figure 2.

3.2.2 Speedup
In order to see how well our scheme speeds up, we keep the dataset constant to be
D10KT5I10 and vary the number of nodes. Figure 5 shows that the response time of
our scheme is decreasing as the number of nodes increases. This means our scheme
can choose available computing power to optimize its execution time. However, the
curves of cd_eq and cd_cpu fluctuate as the number of nodes increases.

4 Conclusions

In this paper, we have proposed a performance-based approach to solve the dynamic
workload partition problem for master-slave applications, and have implemented it on
our grid testbeds. In each case, our approach can obtain performance improvement on
other schemes. In our future work, we will implement more types of application
programs to verify our approach. Furthermore, we hope to study theoretical analysis
to find better solutions, and consider more status information.

References

1. Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html
2. Global Grid Forum, http://www.ggf.org/
3. Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks
4. KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/
5. MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
6. MPICH-G2, http://www.hpclab.niu.edu/mpi/
7. Network Weather Service, http://nws.cs.ucsb.edu/
8. Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/
9. TeraGrid, http://www.teraGrid.org/

10. The Globus Project, http://www.globus.org/
11. THU Bandwidth Statistics GUI, http://monitor.hpc.csie.thu.edu.tw/tiger/
12. R. Agrawal and J. C. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions

on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962-969, Dec. 1996.
13. R. Agrawal and R. Srikant, “Fast algorithms for Mining Association Rules,” Proc. 20th

Very Large Data Bases Conf., pp. 487-499, 1994.
14. Mark A. Baker and Geoffery C. Fox. “Metacomputing: Harnessing Informal

Supercomputers.” High Performance Cluster Computing. Prentice-Hall, May 1999. ISBN
0-13-013784-7.

15. O. Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang, “Scheduling Divisible
Loads on Star and Tree Networks: Results and Open Problems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 3, pp. 207-218, Mar. 2005.

16. V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Press, 1996.

 A Performance-Based Approach to Dynamic Workload Distribution 81

17. V. Bharadwaj, D. Ghose and T.G. Robertazzi, “Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-18,
Jan. 2003.

18. Kuan-Wei Cheng, Chao-Tung Yang, Chuan-Lin Lai, and Shun-Chyi Chang, “A Parallel
Loop Self-Scheduling on Grid Computing Environments,” Proceedings of the 2004 IEEE
International Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-
414, KH, China, May 2004.

19. N. Comino and V. L. Narasimhan, “A Novel Data Distribution Technique for Host-Client
Type Parallel Applications,” IEEE Transactions on Parallel and Distributed Systems, Vol.
13, No. 2, pp. 97-110, Feb. 2002.

20. Maciej Drozdowski and Marcin Lawenda, “On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems,” Euro-Par 2005 Parallel Processing:
11th International Euro-Par Conference, Lecture Notes in Computer Science, vol. 3648,
pp. 231-240, Springer-Verlag, August 2005.

21. I. Foster, N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems.” Proc. 1998 SC Conference, November, 1998.

22. I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer Applications, 15(3), 2001.

23. I. Foster, C. Kesselman., “Globus: A Metacomputing Infrastructure Toolkit,” International
J. Supercomputer Applications, 11(2):115-128, 1997.

24. I. Foster, “The Grid: A New Infrastructure for 21st Century Science.” Physics Today,
55(2):42-47, 2002.

25. I. Foster, C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann; 1st edition (January 1999)

26. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, 2001.

27. S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method scheme for scheduling
parallel loops,” Communications of the ACM, Vol. 35, 1992, pp. 90-101.

28. H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, vol. II, pp. 140-147, 1993.

29. C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling
Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, vol. 36, no. 12, pp
1425-1439, 1987.

30. T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Computer, vol. 36, no. 5,
pp. 63-68, May 2003.

31. Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng, “A Performance-Based
Parallel Loop Self-Scheduling on Grid Environments,” Network and Parallel Computing:
IFIP International Conference, NPC 2005, Lecture Notes in Computer Science, vol. 3779,
pp. 48-55, Springer-Verlag, December 2005.

32. Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng, “A Hybrid Parallel Loop
Scheduling Scheme on Grid Environments,” Grid and Cooperative Computing: 4th
International Conference, GCC 2005, Lecture Notes in Computer Science, vol. 3795, pp.
370-381, Springer-Verlag, December 2005.

33. Larry Smarr, C. Catlett, “Metacomputing,” Communications of the ACM, vol. 35, no. 6,
pp. 44-52, 1992.

34. T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4, 1993,
pp. 87-98.

82 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

35. Chao-Tung Yang and Shun-Chyi Chang, “A Parallel Loop Self-Scheduling on Extremely
Heterogeneous PC Clusters,” Journal of Information Science and Engineering, vol. 20, no.
2, pp. 263-273, March 2004.

36. Chao-Tung Yang, Kuan-Wei Cheng, and Kuan-Ching Li, “An Efficient Parallel Loop Self-
Scheduling on Grid Environments,” NPC’2004 IFIP International Conference on Network
and Parallel Computing, Lecture Notes in Computer Science, Springer-Verlag Heidelberg,
Hai Jin, Guangrong Gao, Zhiwei Xu (Eds.), Oct. 2004.

37. M. J. Zaki, “Parallel and Distributed Association Mining: A Survey,” IEEE Concurrency,
vol. 7, no. 4, pp. 14-25, 1999.

38. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, “Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15, No. 4, pp. 319-330, Apr. 2004.

The Peering Problem in

Tree-Based Master/Worker Overlays

Hung-Chang Hsiao and Hao Liao

Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan

hchsiao@csie.ncku.edu.tw

Abstract. Master-worker applications often demand high throughput.
A master-worker application consists of master and worker processes.
The master processes generate tasks, while the worker processes compute
the tasks. A peer can solely implement the master process, the worker
process, or both. A scalable implementation of master-worker applica-
tions is to form an overlay network in which masters deliver their tasks
to workers through their interconnect links, and workers either compute
received tasks or forward some of the tasks to other workers. Differ-
ent overlay construction could result in various system throughputs. In
this work, we study the fundamental issue. That is, how the overlay is
structured to maximize the system throughput. We first propose a basic,
simple overlay formation algorithm to form an overlay. Then, we develop
a number of peering strategies. The simple overlay formation algorithm
is flexible to integrate these peering strategies, generating types of the
overlay. Our performance studies show that the overlays based on the
exploitation of network locality can perform better.

1 Introduction

Peer-to-peer (P2P) applications received widely attention, recently. These ap-
plications include distributed file sharing such as Napster [1] and Gnutella [2],
content distribution networks [3], multiplayer games [4], etc. One widely received
P2P application, namely the master-worker application, is constituted by task
sources (master processes) and sinks (worker processes), in which sources gen-
erate tasks and sinks perform computation for these tasks. The bag-of-tasks
computational application such as SETI@home [5] is the example. In such an
application, one peer acts as a master generates tasks, while others are workers
performing computation for these tasks.

Applications with the master-worker paradigm often demand high through-
put. That is, the number of tasks completed per time unit is maximized. Maxi-
mizing the throughput denotes that the system can accommodate clients as much
as possible. The state-of-the-art master/worker interconnect such as SETI@home
in the Internet often is a star overlay network in which the root node implements
the master process while other workers are directly connected to the root. Such
an overlay requires that the root node is quite capable which can accept a very

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 83–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

84 H.-C. Hsiao and H. Liao

large number of connections to workers. This thus leads to the performance
bottleneck introduced to the root.

In contrast to the star interconnect, masters and workers may overlays such
as trees, meshes and grids. In such overlays, the master continuously generates
and sends tasks to workers that have overlay connections linked to the master.
Upon receiving tasks, a worker performs computation for the task. If the worker
cannot immediately process the task, then the worker either forwards the task
to another worker that has an overlay link to the worker, or buffers the tasks for
later computation.

Apparently, to maximize the through-

Fig. 1. Two overlays with four nodes,
where (a) a star overlay and (b) a tree-
shaped overlay

put of a master-worker overlay depends
on the design of the overlay system. Con-
sider an example as shown in Figure 1. In
Figure 1(a), four nodes form a star-based
interconnect in which the root node A
generates 100 tasks per time unit at most,
and the worker nodes B, C and D can fin-
ish 3, 1 and 6 tasks per time unit, respec-
tively. A at most can respectively send
10, 5 and 1 tasks to B, C and D. Conse-
quently, the star-shaped overlay can ac-
complish 5 tasks per time unit at most. However, the tree-shaped overlay shown
in Figure 1(b) can finish 10 tasks per time unit if D is connected to B and B can
send 8 tasks per time unit to D. This throughput is twice of that generated by
the star-based overlay.

The issues of designing a master/worker overlay include at least as follows.

Task scheduling. As mentioned, a worker i may receive tasks from other workers
(say G). It forwards some of tasks it cannot accommodate to other workers in
G that may be able to handle the tasks, where all the workers in G have the
overlay links to i. Therefore, i needs to determine which of the workers in G
are likely to perform the computations for the tasks it sends. To schedule tasks
to the workers j ∈ G from i may depend on several parameters including the
network bandwidth or the delay between i and j, the computation ability of j,
the availability of j’s receiving buffers, etc. “Given” an overlay network graph,
previous studies [6] have proposed the scheduling algorithms for any workers in
the overlay to schedule their tasks in hand.

Overlay network topology. Given a set of nodes, where each node in the set has
a predefined maximum number of links (or bandwidth) that the node can be
used to connect other nodes, there are many possible topologies that the overlay
networks can be formed. Formatting the topology may require to consider the
heterogeneity (e.g., computation speeds) of nodes involving the master-worker
computation. In addition, communication bandwidths and delays among the
nodes are unlikely equal. The heterogeneity is the nature of an overlay. Efficient

The Peering Problem in Tree-Based Master/Worker Overlays 85

and effective exploitation of heterogeneity of a master-worker overlay may help
the scheduling algorithms adopted to further leverage the system throughput.

Allocation of master and worker processes. Typically, worker processes in a mas-
ter/worker application are identical and there is no clear difference when they are
deployed in different locations (i.e., nodes) in the overlay. However, when given
a scheduling algorithm and an overlay network topology, different locations of
the master process deployed may result in different overall system throughput.
Shao et al. [7] provided a study of how to deploy the master process in order to
maximize the system throughput.

This study devotes to the second challenge mentioned above and intends to
understand how to have a good overlay that can improve the system through-
put. Particularly, we study the tree-shaped overlay networks. This is because
tree-shaped overlays are scalable and they are easy to be implemented. Second,
there has existed a simple, heuristic localized scheduling algorithm [6] which can
maximize the throughput for any given tree-shaped overlay without knowing the
global knowledge including the capability of each node and the communication
bandwidth between any two nodes.

Formatting an overlay suitable for applications based on the master/worker
paradigm can have a number of design criteria. We first provide in this study a
basic, generalized algorithm for tree-based overlay construction. The algorithm is
flexible to include different peering strategies such that different types of overlays
can be generated. We investigate how different tree-shaped overlays can affect
the system throughput and discuss which of the designs can perform better.

To our best knowledge, few work studies the overlay formation issue for ap-
plications comprising of masters and workers regarding the system throughput,
and the novelty of this study is to provide the design of master/worker over-
lay formation and to investigate the performance impact on system throughput
using different peering strategies.

2 Preliminaries

System model. We consider a P2P overlay G(V, E), where V = {p1, p2, p3, · · · ,
pn} is the set of peers and E = { pipj|pi, pj ∈ V , and pi and pj have a link (or
a connection) in the overlay G }. For short, pj is called the neighbor of pi and
vice versa. We assume that in this study an overlay link is bi-directional, that is,
pipj = pjpi

1. In G, each node can only have a constant number of neighbors 2.
The maximal degree of a node pi is denoted as degmax(pi), which is the maximal
number of neighbors pi can maintain. Consequently, |E| ≤ n

k=1 degmax(pk)

2 .
In G(V, E), an application designates a node pM ∈ V as the master node

which executes the master process. Each node pS ∈ V − {pM} is thus a worker
node responsible for performing the worker process. All worker processes are
1 However, we believe that our idea proposed in this paper can also be simply extended

to overlays with asymmetric communication links, i.e., pipj �= pjpi.
2 We believe that the discussion in this paper can be simply applied to the case that

each peer has a bandwidth constrain to connect to other peers.

86 H.-C. Hsiao and H. Liao

identical. Since worker nodes may be heterogeneous in terms of their compu-
tational power, a worker node pS is simply denoted to have the working rate
WP(pS) equal to the maximal number of tasks completed (including to send
back the result to or towards the master node) by pS per time unit. We note
that WP(pM) is the maximum number of tasks generated and results manipu-
lated, if required, by the master node pM.

Each worker node pS ∈ V −{pM} has two first-in-first-out buffers: one denoted
as FIFOS(T) is used to receive tasks and the other FIFOS(R) is used to buffer
the computation results. pS can pick a task in FIFOS(T) and then remove the
task from FIFOS(T) to execute if it can accept the task without exceeding its
working rate. If pS cannot process the tasks buffered in its task buffer locally,
it may forward those tasks to other worker nodes. If a task is forwarded, it is
removed from an associated task buffer. pS stores the computation results in its
local FIFOS(R) that will be then returned “towards” the master node pM. It
may help relay the computation results received from other workers towards pM
by buffering their results in its FIFOS(R). Similarly, if a result is forwarded, it
is removed from FIFOS(R).

For the master node pM, two buffers, namely FIFOM(T) and FIFOM(R),
are available to store tasks it generates and results received from workers, respec-
tively. The master simply forwards tasks to worker nodes, which does not com-
pute tasks it generates. However, it requires to process results in its FIFOM(R).
If a result is processed, it is removed from FIFOM(R).

We assume that either the master or any worker can simultaneously process
results and tasks in the result and tasks buffers, respectively. That is, a node
can perform computation and communication, concurrently.

Each overlay link pipj also has a working rate WL(pipj) that is the maximum
number of tasks transferredboth frompi topj (orpj topi)per timeunit over the link
pipj . Apparently,WL(pipj) is proportional to the bandwidth between pi and pj.

Since master and workers nodes cooperatively serve an application, we assume
that they are willing to arbitrarily interconnect.

Problem Statement. In this paper, we intend to design a high-throughput
overlay G(V, E) by formatting the overlay geometry structure. The high-
throughout overlay maximizes the working rate W� (i.e., to maximize the num-
ber of tasks completed per time unit) for the application running on top of G
subject to

|E| ≤
∑|V |

k=1 degmax(pk)
2

. (1)

Apparently, the throughput of the overlay G is constrained by the task gen-
erating rate at pM, i.e., W� ≤ WP(pM).

3 Basic Algorithm

Table 1 shows the notations used in this paper. We note that
• The total number of parent (pi.prt) and child neighbors (pi.chd(k)) of pi is

equal to c(pi), where c(pi) ≤ degmax(pi).

The Peering Problem in Tree-Based Master/Worker Overlays 87

Table 1. Notations used in the algorithms

Notation Description

G(V, E) V (E) includes all nodes (edges) in the system

pM, pS the master and worker nodes, respectively

pipj the overlay link with two end nodes pi, pj ∈ V

degmax(pi) the maximal degree (number of overlay links) of pi

c(pi) the number of links currently used by pi

W� the overall system throughput

WP(pi) the maximal computation working rate of pi

WL(e) the maximal communication working rate of e ∈ E

FIFOpi(T) the buffer to store pending tasks in pi

FIFOpi(R) the buffer to store computation results in pi

pi.prt the parent neighbor of pi

pi.chd(k) the kth child neighbor of pi

F(pi) the naming value of pi

diff(pi) the value of F(pi) − F(pM)

• |E| =
|V |
i=1 c(pi)

2 ≤
|V |
i=1 degmax(pi)

2 .

• The initial value of F(pi) will be discussed later.

3.1 Generalized Overlay Formation

When a node A intends to join (or rejoin 3) the overlay, it first connects to
the bootstrap node that provides an entry point, say a node B, of the overlay
(we adopt the mechanism similar to Gnutella [2] that provides a bootstrap node
for a node joining). In general, if diff(A) < diff(B), B requires leaving and
rejoining the overlay, and meanwhile it reports its parent (B.prt) to A (in this
study we simply let B to rejoin the overlay by connecting to A if A has available
connections to accept B as its child node). Upon receiving the network address of
B.prt, A then iteratively performs the joining request by sending the request to
B.prt. The joining process is proceeded until the joining request is forwarded to
an ancestor node Q of B.prt having the diff(Q) such that diff(Q) < diff(A).

A then connects to Q if Q has not reached its maximum number of connections
(i.e., c(Q) < degmax(Q)) and diff(Q) < diff(A). Otherwise, Q either

(i) forwards the joining request of A to one of its children nodes among Q.chd(i)
(where i = 1, 2, 3, · · · , k) if c(Q) = degmax(Q), or

(ii) forwards the joining request of A to the bootstrap node that in turn randomly
picks a node to receive the joining request and this node is not a descendant
node of Q if diff(Q) ≥ diff(A).

For choosing a child node (i.e., item (i)), each node maintains a needle value.
That is, Q forwards the joining request to a child node Q.chd(k′), where

3 A node rejoins if it detects the failure of its parent node.

88 H.-C. Hsiao and H. Liao

∑k′−1
i=1 degmax(Q.chd(i)) < needle <

∑k′+1
i=1 . Meanwhile, Q increases its nee-

dle value as follows when forwarding a joining request every time

needle = (needle + 1) mod

k∑
i=1

degmax(B.chd(i)). (2)

We note that Q sorts its children nodes in decreasing order according to their
degmax(·) values. The idea is to let Q uniformly relay joining requests to its
children nodes according to their maximum numbers of connections. To avoid
generating cycles in the overlay, in our implementation once a joining request is
forwarded downwards the overlay, the request cannot be sent towards the master
node pM

4.
As we mentioned in Section 2, the system throughput W� is smaller than or

equal to WP(pM).

Theorem 1. The “ideal” system throughput W� of a given tree-shaped overlay
G(V, E) is

W�(pM), (3)

assuming that each node in G can effortlessly forward the tasks it cannot ac-
commodate to its children nodes. And,

W�(pA) = min

⎛
⎝WP(pA),

∑
∀e∈ {pApB}

min(WL(e),W�(pB))

⎞
⎠ , (4)

where pB is a child node of pA.

Proof. The proof is trivial. Given a tree-shaped overlay G, to find a maximum
throughput of G is to recursively do the bottom-up traversal of the tree.

Figure 2 illustrates Theorem 1.

Fig. 2. The values denote the computation and
communication overlay rates

Consider the node A that can
send tasks to its left-hand (B)
and right-hand (C) child nodes
in the rates of 50 = min(100, 50)
and 10 = min(10, 20) tasks per
timeunit, respectively.The resul-
tant throughput for the sub-tree
rooted atA is thus 90 = 30+50+
10.Similarly,we cancalculate the
throughput for other nodes. Con-
sequently, we can have the overall
system throughput W� = 55.

4 Due to space limitation, the details of the algorithm can be found in [8]. [8] also
provides the maintenance and optimization for the overlay formation.

The Peering Problem in Tree-Based Master/Worker Overlays 89

3.2 Task Computation and Dissemination

Conceptually, the above overlay formation algorithm is to form a tree-shaped
overlay G(V, E). To our best knowledge, given G(V, E), the best scheduling al-
gorithm without global knowledge is based on the bandwidth-centric principle [9],
which lets a node A send a task to its child node according to the communication
delay between the sending node and each of its children nodes if A is execut-
ing another task and its task buffer FIFOA(T) is not empty. More precisely, A
prioritizes its children nodes according to the delay required of receiving a task
sent by A. A child node B receives a task from A if B’s task buffer (FIFOB(T))
is not full. Otherwise, A selects the next child node C that has the smallest
communication delay between A and C and that can accept the task sent by
A. In this study, higher the working rate of an overlay link, say AB, the higher
priority to receiving a task sent by A is assigned to B. To control the buffer
usage, we implement the heuristics proposed in [6].

When A completes a task, it pushes the associated computation result to its
result buffer (FIFOA(R)). A pushes the results stored in the result buffer back
to its parent node A.prt if A.prt’s result buffer (FIFOA.prt(R)) is not full.

4 Peering Strategies

In this section, we discuss a number of overlay alternatives using the basic al-
gorithm presented in Section 3. These alternatives depend on how we define the
naming value for each peer, i.e., the peering strategies. As we will show, the
basic algorithm is flexible to construct different types of overlays.

4.1 Degree-Centric

The degree-centric overlay (DC) is constructed by referring to the maximal num-
ber of connections a peer has. A previous study has shown that capable peers
are often connected by a large number of peers [10]. Therefore, the number of
overlay neighbors a peer can have implicitly implies the “capability” of a peer.

For formatting a degree-centric overlay (DC), we define the naming value
F(pS) for each worker node pS as 1

degmax(pS) . We note that in this type of
overlays F(pM) = 0 for the master node pM.

Apparently, if the naming function is defined as 1
degmax(·) , then a degree-centric

overlay organizes nodes that have relatively larger degmax(·) close to pM. Nodes
with less numbers of available connections are likely planted nearby the leaves
of the overlay. Intuitively, this overlay will potentially have a low diameter in
terms of the number of overlay hops.

4.2 Network Delay-Centric

In the network delay-centric overlay (NDC), the naming function F(pS) is de-
fined as the delay required to send a task from pS to pM for any pS ∈ V . For

90 H.-C. Hsiao and H. Liao

simplifying the discussion, we assume the overlay link is symmetric, i.e., the de-
lays of sending a task from pS to pM and from pM to pS are equal. Notably,
F(pM) = 0.

Conceptually, the network delay-centric overlay is to structure nodes accord-
ing to their network delays to the master. Nodes geographically close to the
master join nearby the master. Nodes nearby the leaves of the overlay are dis-
tant from the overlay root. That is, the delay-centric overlay intends to match
the underlying network topology.

It will be clear that the master node in a delay-centric overlay can rapidly
disseminate its tasks to workers. However, this requires a node to measure the
communication latency between the master and itself. If the node joins multiple
applications, then the node will need to take considerable overhead to measure
these delays. It becomes worse if the delays have high variance, and thus requires
nodes to measure the delays often.

It is possible that a delay-centric overlay depends on the public network service
such as the network positioning system [11] that provides the virtual coordinate
of any node in the system. If so, we can simply estimate the communication
delay between any two nodes by calculating the difference of their coordinates.
However, this approach depends on the availability of the network coordinate
service.

We note that in this study we measure the delay of an overlay link e ∈ E as
the value task size

WL(e) .

4.3 Compute-Centric

The compute-centric overlay (CC) refers to the naming function F(pS)= 1
WP(pS) .

Here, F(pM) = 0. The heuristic of constructing such an overlay is to aggregate
nodes that have high computation working rates WP(·) nearby the master node.
These nodes may efficiently accomplish tasks when compared with incapable
ones.

Notably, nodes in a compute-centric overlay need to estimate their WP(·)
values. However, nodes can be heterogeneous and need to compare their naming
values. Consequently, nodes require benchmarking their performance regarding
a reference machine [12]. Clearly, this needs to have representative benchmark
programs.

4.4 Synthetic

It is possible to synthesize several naming functions into a single one in order to
generate a desirable overlay. That is, the naming function is defined as

F(pS) = f1(pS) ⊕1 f2(pS) ⊕2 · · · ⊕k−1 fk(pS). (5)

We discuss one possible type of overlay as follows.

Delay
Compute

-Centric. One possible type of overlays is called the Delay
Compute -Centric

overlay (denoted as D
C) by having k = 2, ⊕1 as the division operator, f1(pS) as

The Peering Problem in Tree-Based Master/Worker Overlays 91

the delay of sending a task from pM to pS , f2(pS) = WP(pS), and f1(pM) ⊕
f2(pM) = 0. This type of overlays is from the intuition that the master node is
likely to send its tasks to nodes that are capable and also geographically nearby.

Clearly, when including more performance metrics to the naming function,
the overheads to measure those metrics are increased, accordingly.

Hybrid of ID-, Degree-, Delay- and/or Computer-Centric. Basically, the
ID-, degree-, delay- and compute-centric overlays are special types of synthetic
overlays. They simply choose a single naming function such as the random hash,

1
degmax(·) and 1

WP(·) . It is possible to study other synthetic overlays with different

naming functions, though we only consider the Delay
Compute -centric in this paper.

5 Performance Results

We perform the detailed simulations 5. We also perform the numerical analysis.
However, due to space limitation, the readers who are interested in the analysis
results can refer to [8]. The simulation results are shown in Figure 3. When comm

comp
6

decreases, the performance bottleneck appears in the overlay network links. This
leads to DC, NDC, CC and D

C have the nearly identical system throughput (see
Figure 3(a)). However, when comm

comp increases, NDC performs better than DC and
CC (see Figure 3(c)). This is because NDC can exploit the network locality to
improve the system throughput. However, D

C has the performance results nearly
identical to NDC. This does not confirm what we have estimated for D

C [8]. This
may be because we have not taken the estimation errors into our analysis. We
will investigate this in the future.

Fig. 3. Effects of varying comm
comp

5 The details of the experimental setting are in [8].
6 The comm

comp
ratio denotes the ratio of the communication working rate to the compu-

tation working rate.

92 H.-C. Hsiao and H. Liao

6 Conclusions

We have presented an overlay formation algorithm which dynamically structures
master and worker nodes as a tree-shaped master-worker overlay. The basic
algorithm is flexible to include different peering strategies based on the number of
connections, network delay, computation capability, etc. We investigate a number
of different master-worker overlays, namely, DC, NDC, CC and D

C . Through
numerical analysis and simulations, we conclude that NDC can perform better
than DC, CC and D

C in terms of the system throughput since it is designed with
the exploitation of network locality in mind.

References

1. (Napster) http://www.napster.com/.
2. (Gnutella) http://rfc-gnutella.sourceforge.net/.
3. Verma, D.C.: Content Distribution Networks, An Engineering Approach. Wiley

(2002)
4. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-Peer Support for Massively

Multiplayer Games. In: Proceedings of IEEE INFOCOM. (2004)
5. (SETI@home) http://setiathome.ssl.berkeley.edu/.
6. Kreaseck, B., Carter, L., Casanova, H., Ferrante, J.: Autonomous Protocols for

Bandwidth-Centric Scheduling of Independent-task Applications. In: Proceedings
of the International Parallel and Distributed Processing Symposium, IEEE Com-
puter Society (2003) 26–35

7. Shao, G., Berman, F., Wolski, R.: Master/Slave Computing on the Grid. In:
Proceedings of the Heterogeneous Computing Workshop, IEEE Computer Society
(2000) 3–16

8. Hsiao, H.C., Liao, H.: The Peering Problem in Tree-based Master/Worker Overlays.
Technical report, National Cheng-Kung University, Taiwan (2005)

9. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.:
Scheduling Strategies for Master-Slave Tasking on Heterogeneous Processor Plat-
forms. IEEE Transactions on Parallel and Distributed Systems 15 (2004) 319–330

10. Sen, S., Wang, J.: Analyzing Peer-to-Peer Traffic Across Large Networks.
ACM/IEEE Transactions on Networking 12 (2004) 219–232

11. Ng, T., Zhang, H.: Predicting Internet Network Distance with Coordinates-Based
Approaches. In: Proceedings of IEEE INFOCOM. (2002) 170–179

12. (SPEC) http://www.spec.org/.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 93 – 102, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MUREX: A Mutable Replica Control Scheme
for Structured Peer-to-Peer Storage Systems

Jehn-Ruey Jiang1, Chung-Ta King2, and Chi-Hsiang Liao2

1 Department of Computer Science and Information Engineering,
National Central University,

Jhongli, 320 Taiwan
jrjiang@csie.ncu.edu.tw

2 Department of Computer Science, National Tsing Hua University,
Hsinchu, 300 Taiwan

king@cs.nthu.edu.tw, g926704@oz.nthu.edu.tw

Abstract. This paper proposes MUREX, a mutable replica control scheme, to
keep one-copy equivalence for synchronous replication in structured P2P
storage systems. For synchronous replication in P2P networks, it is proper to
adopt crash-recovery as the fault model; that is, nodes are fail-stop and can
recover and rejoin the system after synchronizing their state with other active
nodes. In addition to the state synchronization problem, we identify other two
problems to solve for synchronous replication in P2P storage systems. They are
the replica acquisition and the replica migration problems. On the basis of
multi-column read/write quorums, MUREX conquers the problems by the
replica pointer, the on-demand replica regeneration, and the leased lock
techniques.

1 Introduction

Peer-to-Peer (P2P) storage system has been an active research topic and many
systems have been proposed [1, 3-6, 10, 12, 14, 16]. Some systems adopt the
unstructured P2P approach [1, 3], in which there is no restriction on the
interconnection of the nodes. Unstructured P2P storage systems are easy to build and
maintain, but it is difficult to guarantee the quality in accessing the stored data [11].
Many P2P storage systems [4-6, 10, 12, 14, 16] are thus built on top of structured
P2P networks [11, 13, 15].

Structured P2P storage systems rely on the concept of distributed hash table
(DHT). Data objects and peer nodes use the same hash function to acquire their IDs.
A data object with the hashed key k is published to and managed by the peer node
whose hashed key (or ID) is “closest” to k. Any given key in the hashing space has a
node to take charge of. Even after that node leaves, the underlying routing scheme
will always send requests for that key to the node currently having the closest ID to
the key. In this way, the leaving node is substituted and the keys managed by it are
taken over by the substituting node. Please refer to Fig. 1 for such a scenario (node p
substitutes leaving node q). Similarly, when a node newly joins the network, it will
partially substitute a certain node to manage the keys that are now closest to its ID.
Please refer to Fig. 1 for such a scenario (newly joining node u partially substitutes
node v).

94 J.-R. Jiang, C.-T. King, and C.-H. Liao

0 2128-1

Peer
Nodes

Hash Function

Data Object

Hashed Key Space

node joiningnode leaving

vuqp

ss

Data Object

kskr

ssrr

rr

0 2128-1

Peer
Nodes

Hash Function

Data Object

Hashed Key Space

node joiningnode leaving

vuqp

ss

Data Object

kskr

ssrr

rr

Fig. 1. The scenarios of node joining and leaving

Although the underlying P2P routing can adapt to dynamic node joining and
leaving, there is a problem that the data object stored in nodes will be lost when nodes
fail or leave. A common solution to this problem is to replicate the data objects
among nodes to provide high data availability. If the data objects are read-only (or
non-mutable), then the P2P storage system will only need to consider where to
replicate the data objects [4-6]. The system becomes much complicated if the data
objects are mutable [10, 12, 14, 16]. In this paper, we concentrate on mutable P2P
storage systems because they are desirable by most practical applications.

In mutable P2P storage systems, data replication must obey the criteria of one-copy
equivalence to ensure data consistency. There are two types of mechanisms to achieve
such a criterion: synchronous replication and asynchronous replication. The former
requires that each write operation should finish updating all replicas before the next
write operation proceeds. The latter regards a local write operation as complete once
data object is written to the local replica; data object is then asynchronously written to
other replicas. The synchronous replication can ensure data consistency strictly, but
may have long operation latency. On the other hand, the asynchronous replication
may violate data consistency, but has shorter latency. However, when data
inconsistency occurs, complex log-based mechanisms should be invoked to roll back
the system to a consistent state. In this paper, we adopt synchronous replication since
we take data consistency as the most significant factor and we regard that there may
not be available storage for storing logs for system roll-back in asynchronous
replication.

For synchronous replication in P2P networks, it is proper to adopt crash-recovery
as the fault model. In a crash-recovery system, nodes are fail-stop and can recover and
rejoin the system after synchronizing their state with other active nodes. In addition to
the state synchronization problem, we have two more problems to solve for
synchronous replication in P2P storage systems. First, in P2P environments, an active
node p may substitute some failing/leaving node q in the recovery process. Thus, node
p must acquire the replicas hosted by node q somehow. Below, we call this the replica
acquisition problem. Second, a newly joining node u will partially substitute an active
node v to share v’s load by hosting part of v’s replicas. Thus, part of v’s replicas
should be migrated to node u. Below, we call this the replica migration problem.

 MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 95

In this paper, we propose MUREX, a mutable replica control scheme, to keep one-
copy equivalence for synchronous replication in structured P2P storage systems. On
the basis of multi-column read/write quorums, MUREX conquers the problems
mentioned by the replica pointer, the on-demand replica regeneration, and the leased
lock techniques. We will analyze and simulate MUREX in terms of communication
cost and operation success rate.

The rest of the paper is organized as follows. Preliminaries are given in Section 2.
In Section 3, we discuss the problems encountered in realizing synchronous
replication for P2P mutable storage systems. We then in Section 4 show how
MUREX solves the problems, and simulate MUREX in Section 5. Concluding
remarks are drawn in Section 6.

2 Preliminaries

As a replica control scheme, MUREX needs to ensure data consistency. In this paper,
we adopt the one-copy equivalence consistency criteria [8], which states that the set of
replicas must behave as if there were only a single copy. Conditions to ensure one-
copy equivalence are

(1) no pair of write operations can proceed at the same time,
(2) no pair of a read operation and a write operation can proceed at the same time,
(3) a read operation always returns the replica that the last write operation writes.

Quorum-based schemes are popular mechanisms to enforce one-copy equivalence
for synchronous replication since they render relatively high data availability and low
communication cost. The basic concept of such schemes is described as follows. Each
data object has n replicas, each of which is associated with a version number. A read
operation should read-lock and access a read quorum of replicas and return the replica
owning the largest version number. On the other hand, a write operation should write-
lock and access a write quorum of replicas and then updates them with the new
version number, which is one more than the largest version number just encountered.
If we restrict the write-write exclusion and the write-read lock exclusion, and restrict
that any pair of a read quorum and a write quorum, and any two write quorums have a
non-empty intersection, then one-copy equivalence is guaranteed.

MUREX adopts the multi-column quorums, which have the smallest quorums
(constant-sized quorums in the best case) among the mechanisms. It is noted that
smaller quorums imply few accesses of replicas, which in turn imply lower
communication cost. Furthermore, as shown in [8], multi-column quorums are
candidates to achieve the highest availability, which is the probability for a quorum to
be formed in an error-prone environment.

Multi-column quorums are constructed with the aid of the multi-column structure
MC(m)≡(C1,...,Cm), which is a list of pairwise disjoint sets of replicas. Each set Ci is
called a column and must satisfy |Ci|>1 for 1≤i≤m.

By organizing data replicas as multi-column structure MC(m)≡(C1,...,Cm), the write
and the read quorums are defined as follows:

96 J.-R. Jiang, C.-T. King, and C.-H. Liao

A write quorum under MC(m) is a set that contains all replicas of some column Ci,
1≤i≤m (note that i=1 is included), and one replica of each of the columns Ci+1,...,Cm.
A read quorum under MC(m) is either
Type-1: a set that contains one replica of each of the columns C1,...,Cm.
Or
Type-2: a set that contains all replicas of some column Ci, 1<i≤m (note that i=1 is
excluded), and one replica of each of the columns Ci+1,...,Cm.

3 The Problems

In this section, we identify three problems encountered in enforcing synchronous
replication for structured P2P storage systems. The three problems are replica
migration, replica acquisition, and state synchronization. Below, we elaborate the
problems one by one.

 Replica Migration: When a node u newly joins the system and partially substitutes
another node v to host some replicas, node v should transfer the replicas to u
immediately. However, in a constantly changing P2P environment, the cost of
transferring replicas may be too high. We need an efficient mechanism to allow
replicas to migrate from substituted node to substituting node.

 Replica Acquisition: When an active node p substitutes a failing/leaving node q,
node p needs to acquire all replicas hosted by q. The problem is that node q has no
idea about which replicas are hosted by p. Thus, we need a mechanism to make
node p know which replicas are hosted by node q and to acquire the replicas
efficiently.

 State Synchronization: Suppose an active node p substitutes a failing/leaving node
q, and p has acquired a replica r hosted by q previously. To make replica r
effective, we have to synchronize r’s state, i.e., to ensure that all the participating
nodes have the same view with respect to r’s states. We must ensure the acquired
replica r is an up-to-date copy. Furthermore, since there may be a node that has
locked replica r to make r in the locked state, we need a mechanism to ensure that
the locked state is not violated after p acquires replica r.

4 The Proposed Scheme – MUREX

4.1 Overview

For a data object, there are n replicas with hashed keys k1,…,kn, where
k1=HASH1(data object name), …, kn=HASHn(data object name). The replicas are
disseminated to the nodes whose hashed ID are nearest to k1,…,kn, respectively.
Please refer to Fig. 2 for the illustration of the replica dissemination. Each replica has
a version number which is 0 initially and will increase gradually. MUREX organizes
the n replicas into a multi-column structure to help form read and write quorums.
MUREX provides the following operations:

 MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 97

 publish(CON, DON): to place n replicas at the nodes associated with k1,…,kn for
the object of name DON (standing for Data Object Name) with content CON
(standing for CONtent) and version number 0.

 read(DON): to acquire the up-to-date replica of the object of name DON by
locking all replicas of a read quorum.

 write(CON, DON): to update all the replicas of a write quorum with content CON
for the object of name DON.

0 2128-1

Peer
Nodes

…Hash Function 1 Hash Function 2 Hash Function n

Data Object

replica n replica 1
Hashed Key Space

replica 2

k1k2 kn

r

rrr

0 2128-1

Peer
Nodes

…Hash Function 1 Hash Function 2 Hash Function n

Data Object

replica n replica 1
Hashed Key Space

replica 2

k1k2 kn

r

rrr

Fig. 2. The dissemination of n replicas of a data object

4.2 Read/Write Quorum Construction

Initially, a data object owner publishes the data object of name DON with content
CON by calling publish(CON, DON). Afterwards, any participant can call read (or
write) operation to read (or write) the data object by issuing RLOCK (or WLOCK)
messages. With the help of the DHT and the multi-column structure, the messages
will reach all members of a read (or write) quorum. The two functions
Get_Read_Quorum and Get_Write_Quorum in Fig. 3 try to issue RLOCK and
WLOCK messages to nodes in a last-to-first column-wise manner to return
respectively the read and the write quorums under a multi-column structure. It is
noted that below we use the words “node” and “replica” interchangeably since a
replica must be hosted by a node. Below, we also use LOCK messages to stand for
WLOCK messages or RLOCK messages.

When a node receives a LOCK message to request for locking a data object, it
sends a MISS message to the requester if it does not own a replica of the data object.
As we will show, the MISS message will cause the requester to send an up-to-date
replica of the data object later. It is noted that a node has at most one pending MISS
message for each replica. A MISS message is said to be pending if there is no replica
sent in response to it. When a node has a pending MISS message for a replica and
further receives a LOCK message for locking the replica, it will send a WAIT
message to the requester. On the other hand, if the node owns the replica when it
receives a LOCK message for a data object, it then checks if there is a lock conflict.
We say that there is a lock conflict if a read-locked replica receives a write-lock
request, or if a write-locked replica receives a write-lock or a read-lock request. If

98 J.-R. Jiang, C.-T. King, and C.-H. Liao

there is no lock conflict, the node locks the replica and then replies with an OK
message containing the replica version number. On the contrary, if there is a lock
conflict, the node replies with a WAIT message.

Function Get_Write_Quorum((C1,...,Cm): MC Structure): Set;
 Var R = ∅: Set;
 For (i =m,...,1) Do
 Send WLOCK to all nodes in Ci and enter “wait period” for getting replies;
 If all nodes in Ci reply with WAIT or MISS
 Then {Send UNLOCK to nodes in C1∪…∪Ci; Exit;}
 If all nodes in Ci reply with OK Then Return R∪Ci;
 Else If a node u replies OK Then R=R∪{u}; //note: NO Return here
 EndFor
End Get_Write_Quorum
Function Get_Read_Quorum((C1,...,Cm): MC Structure): Set;
 Var R = ∅: Set;
 For (i =m,...,1) Do
 Send RLOCK to all nodes in Ci and enter “wait period” for getting replies;
 If all nodes in Ci reply with WAIT or MISS
 Then {Send UNLOCK to nodes in C1∪…∪Ci; Exit;}
 If i≠1 and all nodes in Ci reply with OK Then Return R∪Ci;
 Else If i≠1 and a node u replies with OK Then R=R∪{u}; //note: NO Return here
 Else If i=1 and a node u replies with OK Then Return R∪{u};
 EndFor
End Get_Read_Quorum

Fig. 3. Two functions that can properly return a read and a write quorum, respectively

After sending LOCK messages, a node enters the “wait period”, which is of the
length of a turn-around time. During the wait period, if a node has got any WAIT
message, it can conclude that there is lock contention. For such a case, the node sends
UNLOCK messages to all the nodes that it has sent LOCK messages. Only after a
random backoff time, can the node start over again to send LOCK messages
for locking replicas of a quorum. The random backoff concept is borrowed from
Ethernet [2]. It is used to avoid continuous conflicts among contending nodes.

After Get_Write_Quorum or Get_Read_Quorum function returns a write quorum
or a read quorum, it means that all replicas in the quorum have been locked. The node
calling the function can then execute the desired operation. After the operation is
finished, a node sends UNLOCK messages to all nodes that it has sent LOCK
messages to unlock the replicas. A read operation in MUREX reads the replica of the
largest version number from the read quorum. On the other hand, a write operation
always writes all replicas of a write quorum with the version number one more than
those ever encountered.

4.3 Replica Pointers

When a node u newly join the system to share part of the load of node v by managing
replicas of keys from k to k′, the replicas of keys from k to k′ should migrate from

 MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 99

v to u. To reduce the cost of transferring all the replicas, MUREX transfers replica
pointers instead of the actual replicas. A replica pointer is a five-tuple of the form:
<hashed key, data object name, version number, lock state, actual storing location>.

It is produced when a replica is generated and can be used to locate the actual
replica. When node v owns the replica pointer of replica r, it is regarded as r’s host,
which can reply to the lock request for r. On the other hand, when node v sends out
the replica pointer of replica r, it is no more the host of r and cannot reply to the lock
request for r (even if it stores the actual replica of r).

The replica pointer is a lightweight mechanism for transferring replicas; it can be
propagated from node to node in a very low cost. When a node u owing the replica
pointer of r receives a lock request for r, it should check whether the node actually
storing r is still alive. If so, u can behave as host of r. Otherwise, u regards itself as
having no replica r. It is noted that every transfer of replica pointer between two
nodes, say from v to u, should be recorded locally by v so that later messages, such as
UNLOCK messages, destined to v for replica r can be sent to the last node having the
replica pointer.

4.4 On-Demand Replica Regeneration

When a node q fails/leaves and another node p substitutes node q, it is needed for
node p to acquire all replicas hosted by q. However, we have the problem that node p
has no idea about which replicas are hosted by q. Below, we show how the replicas
can be acquired in an on-demand manner. The term “on-demand” means that node p
only acquire requested replicas. When node p receives a LOCK message from node u
for locking a replica, it should send a MISS message if it does not own the replica.
Node p is assumed to have no replica r if the following conditions hold:

1. p does not have the replica pointer of r
2. p has the replica pointer of r and the pointer indicates that w stores r, but w is not
alive.

After obtaining (resp., generating) the newest replica by executing a read (resp.,
write) operation, node u should send the replica to node p. It is noted that a node has
at most one pending MISS message for a replica. Furthermore, when a node has a
pending MISS message for a replica and further receives a lock request for the
replica, it will send a WAIT message to the requester. In such a manner, we can
ensure that a node will only receive one replica in response to a MISS message.

By the on-demand replica regeneration technique, node p passively acquires
replicas only when the replicas are requested. For the replicas never requested, there
is no need to acquire them to keep the overhead as low as possible. However, the
number of replicas of a data object may decrease gradually and influence the
persistency of the data object. Fortunately, the bad influence does not occur for
replicas that are accessed frequently. Moreover, we can allow the publisher of a data
object to periodically perform the “dummy read operation” for the data object, which
will be described later. We even can demand each participating node to periodically
perform the dummy read operation for rarely-accessed data object replica hosted by it.
When a replica of a data object is not accessed for a specific period of time, the
dummy read operation is performed once. The dummy read operation is similar to the
read operation and plays the role of checking if replicas of the data object are still

100 J.-R. Jiang, C.-T. King, and C.-H. Liao

alive; it does not read the replica in practice and thus only incurs little overhead.
When some replicas of the data object are missed, the node initiating the dummy read
operation can re-disseminate the replica to the proper node. The persistency of the
data object can thus be ensured.

4.5 Leased Locks

When a replica r of a data object is re-disseminated to some node, we must ensure
that all participating nodes have the same view with respect to the replica. We first
need to ensure the replica is up-to-date. If the replica is re-disseminated due to a
node’s receiving a MISS message, the replica is surely up-to-date. This is because a
node re-disseminates the replica only after it has executed the read (or write)
operation to acquire (or generate) the up-to-date replica. On the other hand, if the
replica is re-disseminated due to a node’s performing a dummy read operation, the
node is demanded to first obtain the up-to-date replica and then to re-disseminate the
replica.

The second thing for all participating nodes to agree with is the state of replica r.
Since there may be some node that has locked replica r to make r in the lock state, we
need to ensure that the lock state is not violated. To achieve this, each lock is assumed
to be a leased lock that has a leased period of L. That is to say, after a replica is
locked, it becomes unlocked automatically after a period of L. Assume that the critical
section (CS) of a read or a write operation takes C time to complete. A node should
release any obtained lock if it still has no chance to enter the CS and H>L-C-D holds,
where H is the holding time of the lock and D is the propagation delay for
transmitting the lock. Please see Fig. 4 for the relation of H, L, C and D. The
condition of H>L-C-D can ensure a node to complete the desired operation before any
lock expires.

HD

L

u:

v:

LOCK message
time

time
C

Fig. 4. The relation of H, L, C and D

When a node detects that a lock of a specific replica is expiring (i.e., H>L-C-D is
going to hold), it is possible that the locks of other replicas will also expire in the near
future. Thus, we demand a node to release all locks and start over to acquire the locks
again. In this manner, MUREX can avoid deadlock and starvation. Furthermore, we
demand a node to wait for a random backoff time before acquiring the locks next
time. This can alleviate the chance of repeatedly occurrence of contention-then-
release-all-locks situation.

Now, we describe how to make all participating node have the same view for the
lock state by the concept of leased locks. Suppose a node p substitutes a failing/
leaving node q to host replica r, and node p has received the up-to-date replica of r at
time T. After receiving the up-to-date replica, node p generates a replica pointer for r

 MUREX: A Mutable Replica Control Scheme for Structured P2P Storage Systems 101

and can start to reply to LOCK messages for locking r at time T+L, where L is the
leased period of the lock. In this manner, all participating nodes have the same view
with respect to r’s lock state.

5 Simulation

We conduct a simulation for MUREX with regard to success rates of operations for
the purpose of evaluating the influence of different multi-column quorums. An
operation is considered to be successful if it can finish before any leased lock expires.
The simulation assumes that the underlying DHT is Tornado [7]. We adopt four
multi-column structures, namely MC(5, 3), MC(4, 3), MC(5, 2) and MC(4, 2), for the
construction of read/write quorums. When we simulate the case for MC(m, s), the
leased period is assumed to be m×(turn-around time). We also assume that there are
totally 2000 nodes in the system. There are three experiments in our simulation. For
each experiment, we perform the simulation for 3000 seconds, during which 10000
operations are requested, half for reading and half for writing. Each request is
assumed to be destined for a random file (data object); thus, when the number of files
increases, the degree of contention decreases. We have plotted performance figures
for the three experiments. However, due to the limitation of space, we do not include
them here. Please refer to [9] for the figures.

In the first experiment, we assume there are 200 nodes that may join or leave the
system randomly during the experiment. In this experiment, we observe that the
success rate increases as the number of files increases. This is because the degree of
contention decreases when there are more files. Among the four multi-column
structures, we can see that MC(5, 3) achieve the best performance and MC(4, 2)
achieves the worst, while MC(4, 3) and MC(5, 2) achieve in-between and resembling
performances. From this experiment, we can check that lower contention renders
higher success rates.

In the second experiment, we assume there are 250 files in the systems and 0, 50,
100 or 200 nodes may leave during the experiment. We observe that the success rate
decreases as the number of leaving nodes increases. This is because more leaving
nodes can cause more unsuccessful lock requests. Among the four multi-column
structures, we can see that MC(5, 3) renders the best performance and MC(4, 2)
renders the worst, while MC(4, 3) and MC(5, 2) render in-between and resembling
performances. From this experiment, we can see that higher node leaving rates cause
worse performances.

In the third experiment, we assume that no node joins or leaves. We observe that
the success rate increases as the number of files increases. This is because the degree
of contention decreases when there are more files. We can also see that the
performances for the four multi-column structures are resembling. By this
experiment, we can see that the degree of contention is a dominant factor in the
success rate.

6 Conclusion

In this paper, we have identified three problems for synchronous replication in DHT-
based mutable P2P storage systems. The problems are replica migration, replica

102 J.-R. Jiang, C.-T. King, and C.-H. Liao

acquisition and state synchronization. We have proposed MUREX, a mutable replica
control scheme, to solve these problems by the concepts of multi-column read/write
quorums, replica pointers, on-demand replica regeneration and leased locks. We have
simulated MUREX to show that it has good operation success rates.

References

1. Bhagwan, R., Moore, D., Savage, S., Voelker G.: Replication Strategies for Highly
Available Peer-to-peer Storage. In: Proc. of International Workshop on Future Directions
in Distributed Computing. (2002)

2. Chockler, G., Malkhi, D., Reiter, M. K: Backoff Protocols for Distributed Mutual
Exclusion and Ordering. In: Proc. of the 21st International Conference on Distributed
Computing Systems. (2001) 11-20

3. Cohen, E., Shenker, S.: Replication Strategies in Unstructured Peer-to-peer Networks. In:
Proc. of SIGCOMM. (2002)

4. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area Cooperative
Storage with CFS. In: Proc. of SOSP. (2001)

5. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility. In:
Proc. of HotOS VIII. (2001)

6. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive Replication in
Peer-to-peer Systems. In: Proc. of International Conference on Distributed Computing
Systems. (2004)

7. Hsiao, H.-C., King, C.-T.: Tornado: A Capability-aware Peer-to-peer Storage Overlay.
Journal of Parallel and Distributed Computing. 64 (2003) 747-758

8. Jiang, J.-R.: The Column Protocol: A High Availability and Low Message Cost Solution
for Managing Replicated Data. International Journal of Information Systems. 20 (1995)
687-696

9. Jiang, J.-R., King, C.-T, Liao, C.-H.: MUREX: A Mutable Replica Control Scheme for
Structured Peer-to-Peer Storage Systems. Technical Report. In: http://www.csie.ncu.edu.
tw/ ~jrjiang/MUREX.pdf. (2006)

10. Muthitacharoen, A., Morris, R., Gil, T., Chen, B.: Ivy: A Read/write Peer-to-peer File
System. In: Proc. of the Symposium on Operating Systems Design and Implementation.
(2002)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proc. of ACM SIGCOMM. (2001)

12. Rodrig, M., Lamarca, A.: Decentralized Weighted Voting for P2P Data Management. In:
Proc. of the 3rd ACM International Workshop on Data Engineering for Wireless and
Mobile Access (2003) 85–92

13. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In: Proc. of IFIP/ACM International Conference on
Distributed Systems Platforms. (2001)

14. Stein, C., Tucker, M., Seltzer, M.: Building a Reliable Mutable File System on Peer-to-
peer Storage. In: Proc. of 21st IEEE Symposium on Reliable Distributed Systems. (2002)

15. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. In: Proc. of ACM SIGCOMM. (2001)

16. Yu, H., Vahdat, A.: Consistent and Automatic Replica Regeneration. In: Proc. of First
Symposium on Networked Systems Design and Implementation. (2004)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 103 – 114, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Subscription-Cover Based Routing Algorithm
in Content-Based Publish/Subscribe

HongLiang Yuan, ChangGuo Guo, and Peng Zou

School of Computer, National University of Defense Technology, ChangSha, China
hlyuan@nudt.edu.cn, cgguo@163.net, pzou@nudt.edu.cn

Abstract. Subscription-cover relationship has been proposed to reduce the size
of routing-table in intermediate brokers in the publish/subscribe network.
Existing researches neglect the extent that covering can be applied and don’t
give a simple approach to validate the correctness of routing-table when using
subscription-cover. In this paper, we propose two routing algorithms based on
subscription-cover, which are strict subscription-cover based routing (SSCBR)
and relaxed subscription-cover based routing (RSCBR). The goal of the former
is to maintain the least covered subscriptions. The latter maintains more
covered subscriptions to balance in memory, time and network traffic. On the
other hand, we propose a necessary and sufficient condition of correct routing-
table configuration when applying SSCBR. We can easily validate the
correctness of broker’s routing-table through it. Experiments evaluate the
ability of two algorithms in reducing the routing-table size of intermediate
broker and the efficiency of SSCBR and RSCBR under different
subscribing/unsubscribing distribution.

1 Introduction

Publish/Subscribe (P/S) paradigm provides asynchronous, anonymous and one-to-
many communication, which has got great attention over the past few years. P/S
decouples in time, space and control flow [3]. Subscribers specify their interests in
certain event conditions, and will be notified afterwards of any event fired by a
publisher that matches their registered interests. Especially content-based
publish/subscribe provides filtering on notification’s content, which has been widely
used for selective data dissemination [1], P2P and pervasive computing [2], and so on.

The research emphasis has been on the architecture [6], matching algorithm [23,
24] and content-based routing [5, 11, 21]. For large scale P/S system, a great
challenge is to manage amounts of subscriptions (interest of information consumer)
and events. Most existing content-based P/S use subscription forwarding [6] to build
route for events diffusing. Subscription-cover [5, 6, 11] has been proposed to reduce
the routing table size of intermediate broker. But they all focus on how to efficiently
manage and calculate subscription covering. All of them pay attention on the
optimal subscription-cover, which is to reduce the routing table size as best as. But
that may need much time to calculate the covering or covered relationship
between subscriptions. Either of them doesn’t distinguish the extent of applying

104 H. Yuan, C. Guo, and P. Zou

subscription-cover idea. Additionally, Either of them doesn’t put forward a simple
and efficient approach to validate the correctness of broker’s routing table.

This paper focuses on the covering relationship between subscriptions when the
broker topology is an acyclic graph. Our contributions are three folds. First, we
distinguish the optimal and suboptimal subscription-cover. We propose two routing
algorithms based on subscription-cover: strict subscription-cover based routing
(SSCBR) and relaxed subscription-cover based routing (RSCBR). The former is the
optimal subscription-cover as defined by other research effort [11]. The latter is
suboptimal subscription-cover, which balances in memory, calculation time and
network traffic. Secondly, We propose a necessary and sufficient condition of correct
routing-table configuration when using SSCBR. We can easily validate the
correctness of broker’s routing table according to it. Furthermore, we prove the
correctness of SSCBR and RSCBR algorithm implementation through that necessary
and sufficient condition. Thirdly, we evaluate SSCBR and RSCBR in detail and
compare their performances under different subscribing and unsubscribing operation
distribution.

This paper is organized as follows. We first introduce the background and our
contributions. Section 2 presents related works. Section 3 describes our subscription-
cover based routing algorithm in detail. Section 4 is experiments. Section 5 concludes
this paper and presents future works.

2 Related Works

Now there exist many publish/subscribe routing algorithms. They can approximately
be divided into two categories [8], filter-based approach [5, 6, 7, 8, 9, 10, 11] and
multicast-based approach [12, 13, 14, 15, 16, 17, 18]. In the multicast-based
approach, event is mapped into the single appropriate group at the publisher side.
Because only a limited number of multicast groups can be built, subscribers with
different interests may be clustered into same group, and events may be sent to
uninterested subscribers as well. The network efficiency of this approach is often
highly sensitive to the distributions of events and subscriptions.

In the filter-based approach, events are filtered on its content at each hop in the
transmission from publisher to subscriber, and only forwarded toward directions that
lead to matching subscriptions. This approach can achieve high network efficiency,
but at the cost of expensive subscription information management and event matching
at every intermediate server. On the other hand, filter-based approach is highly
affected by the publish/subscribe server topology. In order to avoid duplication, most
system adopt acyclic (application layer) network topology, such as acyclic graph
topology [5, 6, 7, 11], hierarchical topology [6, 9, 10]. Some others [19, 20, 21] use
distributed hash approach to assign a subscription to one server, and send producing
events to that server. If matching, events are directly sent to matching subscriber.
Paper [22] presents a distance vector/dynamic receiver partitioning (DV/DRP)
protocol for sensor network, supporting cyclic graph. However, this protocol is only
suitable for the scenario that less node consume data and more node produce data.

In an acyclic graph topology, the simplest routing algorithm is forwarding each
subscription to every broker unconditionally [7]. Because each subscription would

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 105

appear in the routing table of every broker, the size of routing table will linearly
increase with subscription number. So subscription-cover idea [5, 6, 11] is suggested
to decrease the subscriptions of intermediate broker. But they don’t distinguish the
extent applying subscription-cover. They only consider the optimal covering.
Additionally, paper [11] proposes a condition of correct routing-table configuration.
But the condition presented by paper [11] is based on notification forwarding, not on
subscription issuing. We cannot judge whether the configuration of routing table is
correct just according to subscription information. On the contrary, our necessary and
sufficient condition of correct routing-table configuration bases on subscription
issuing information. So we can validate the correctness of routing-table configuration
just basing on subscriptions knowledge.

3 Subscription-Cover Based Routing Algorithms

The routing based on undirected acyclic graph topology usually use subscription
forwarding scheme [6], in which subscriber’s subscription (named S) is sent to access
broker, named SHB (Subscriber Hosting Broker), then SHB forwards subscriptions to
neighbor brokers. All brokers compose a spanning tree about subscription S, rooted at
SHB. Each broker’s routing table is composed of (S, U) pairs, which indicates
direction of broker U issues subscription S. When publisher produces events, events
are sent to access broker, named PHB (Publisher Hosting Broker). PHB forwards
events (Notification) to neighbor brokers, which directions have issued subscription
matched by events. Events are forwarded from PHB to all SHBs hop-by-hop,
eventually to all subscribers.

Let)(SN denote the notification set of matching subscription S. For subscription S1
and S2, if)2()1(SNSN ⊇ , then we say S1 covers S2, denoted by 21 SS ⊇ . If)2()1(SNSN ≡ ,
then say S1 equals to S2, denoted by 21 SS ≡ . If)2()1(SNSN ⊃ , then say S1 is a real
cover of S2, denoted by 21 SS ⊃ . If subscription S1 covers S2, we only need forward
S1 to neighbors, because S1 can stand for S2 to express interest to neighbor
directions, which is the idea of subscription-cover. Subscription covered by other
subscription needn’t be forwarded to all brokers, which can reduce the size of
broker’s routing table and the time of notification matching in general.

In this paper, we assume that Broker network topology is undirected acyclic graph,
message transition between brokers is FIFO and reliable, sub(s) denotes producing a
new subscription s, unsub(s) denotes canceling subscription s, all the brokers denoted
by Bi (Ni ≤≤1 , N is the broker number),)(SSHB denotes the access broker of the client

issuing subscription S.)(iBSUB denotes the subscription set issued by all the client
accessed to broker Bi, RTB is the abbreviation of the routing table. We are only
concerned about brokers, and ignore clients, because client is irrelevant to routing.

In order to facilitate discussion, we give some definitions.

Definition 1. The configuration of RTB is correct iff notifications matching S will be
forwarded from PHB to)(SSHB except S is cancelled before notifications
arrive)(SSHB .

106 H. Yuan, C. Guo, and P. Zou

Definition 2. The publish/subscribe system is stable iff no sub(s) or unsub(s) message
are in transition over the broker network.

Definition 3. A publish/subscribe routing algorithm is correct iff when receiving
subscription or unsubscription through definite sequence sub(s) or unsub(s)
forwarding, publish/subscribe system can be stable and the configuration of RTB is
correct.

Definition 4. The edge between broker Bm and Bn is defined by em,n, then the path
between Bi and Bj denoted by route(Bi, Bj) = Bi ei,i’ Bi’ ei’,i’’ Bi’’ ……Bj.

There is only one path between two brokers because an acyclic graph is a tree in fact.

Definition 5. For subscription S∈)(iBSUB , let)(SSUBB ⊃ = {Bj | ∃ S’ ∈)(jBSUB ,

SS ⊃' , Nj ≤≤1 },)(SSUBB ≡ ={Bj| ∃ S’∈)(jBSUB , SS ≡' , Nj ≤≤1 }.

)(SSUBB ⊃ defines such brokers: the clients accessed to them issue subscriptions that
cover S.)(SSUBB ≡ defines the case of equivalence.

Definition 6. For subscription S ∈)(iBSUB , let)(SB ⊃ = {Bm | ∀ Bj ∈)(SSUBB ⊃ ,
Bm∈ route(Bi,Bj), Nm ≤≤1 },)(SB ≡ ={Bm| ∀ Bj∈)(SSUBB ≡ ,Bm∈ route(Bi,Bj), Nm ≤≤1 }.

)(SB ⊃ defines the common (overlapped) path of all the route()(SSHB ,)'(SSHB)
(SS ⊃'). If there is only one broker Bj in)(SSUBB ⊃ , then)(SB ⊃ are all the brokers in
route(Bi, Bj). If Bi is also in)(SSUBB ⊃ , then)(SB ⊃ only contains Bi.)(SB ≡ defines
the case of equivalence. In Figure 1, the set of)5(SB ⊃ contains {B5, B4, B2}.

y

Fig. 1. Example of Strict Subscription-Cover Based Routing (51 SS ⊃ , 52 SS ⊃)

Below we give two routing ideas of subscription-cover, which differ in maintaining
the count of covered subscriptions. A condition of correct RTB configuration basing
on SSCBR is proposed. We prove the correctness of the routing algorithm
implementation through this condition.

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 107

3.1 Strict Subscription-Cover Based Routing Idea

Definition 7. Except using subscription-forwarding scheme, a routing algorithm is
called Strict Subscription-Cover Based Routing (SSCBR) if it uses below rules [11].

(1) A subscription is not forwarded to a neighbor if a subscription that covers
the former was forwarded to that neighbor that has not been canceled.

(2) If a subscription is forwarded, the receiving broker deletes all routing
entries whose subscriptions are covered by the new subscription and that
refer to the same destination as new subscription.

(3) An unsubscription is not forwarded to a neighbor if there is a subscription of
a local client or another neighbor that covers the former.

(4) If an unsubscription is forwarded to a neighbor, the sending broker also
forwards a possibly empty subset of subscriptions covered by former.

SSCBR aims at deleting the entry of covered subscription as best as and
maintaining the least covered subscriptions. According to SSCBR, there is no entry of
S5 in broker B1, B3, B6 and B7 in Figure 1.

Theorem 1. When applying SSCBR, the configuration of RTB is correct iff when
publish/subscribe system is stable, for subscription S∈)(iBSUB :

(1) If there are only subscriptions that is real cover of S, then S is only contained
in RTB of brokers in)(SB ⊃ , and there is no entry of S in other broker’s RTB.

(2) If there are only subscriptions that are equal to S, then RTB of brokers in
)(SB ≡ must contain entry of S, and other broker’s RTB either contains S, or

the equal subscription of S.
(3) If the condition of (1) and (2) hold at the same time, then RTB of brokers in

)(SB ⊃ contains either S or the equal subscription of S, but there is no entry
of S in other broker’s RTB.

(4) Otherwise, all the brokers’ RTB contains entry of subscription S.

Proof
The Necessity. For (1), (a). According to subscription forwarding scheme, we only
need prove that if RTB of all the neighbor broker of)(SB ⊃ (of course not including
the neighbor broker that belongs to)(SB ⊃) does not contain entry of S, then we can
conclude that RTB of all the brokers except for)(SB ⊃ do not contain entry of S.
Consider Bs(Bs∉)(SB ⊃) that is the any neighbor of)(SB ⊃ , if entry of S is in Bs, then
there is a broker Bt∈)(SB ⊃ , because S is diffused from)(SB ⊃ , and Bs contains (S,

Bt). On the other hand, ∃ 'S ∈)(jBSUB (Bj∈)(SSUBB ⊃), 'S is not covered by any
other subscription, and Bs is not in route(Bi,Bj) because Bs is not in)(SB ⊃ , then Bs
must contain ('S , Bt) otherwise S’ cannot be forwarded to Bs (there is only one path
between two brokers). So entry (S, Bt) and ('S , Bt) are both in RTB of Bs, according
to SSCBR, (S, Bt) must be deleted, that is to say there is no entry of S in Bs.

(b). Consider the farthest broker from Bi in)(SB ⊃ is Bt, then the brokers in
)(SB ⊃ are in route(Bi,Bt). Now we prove that the entry of S is certainly contained in

RTB of brokers in route(Bi,Bt). Otherwise, don’t lose universality, assume that (S, Br)

108 H. Yuan, C. Guo, and P. Zou

is not in RTB(Bt), Br is the neighbor broker of Bt. Because there is no SS ⊃' and ('S ,
Br) is in RTB(Bt), else indicate ∃Bj∈)(SSUBB ⊃ , s.t Bt∉ route(Bi,Bj), which is not
consistent with the definition of)(SB ⊃ . Then system cannot forward notifications
matching subscription S to)'(SSHB , which need traverse broker Bt, so it is illogical.
Therefore the RTB of brokers in)(SB ⊃ must contain entry of S.

According to (a) and (b), S is only contained in the RTB of brokers in)(SB ⊃ .
(2) can be proved in similar approach. (3) can be proved by colligating (1) and (2).

(4) holds obviously. So far we complete necessity proof.

The Sufficiency. Assuming the PHB is Bp which published notification matching S.
(a) If there is no subscriptions which are equal to or real cover of S, then notification
can be forwarded to Bi ()(SSHB) along route(Bp,Bi) hop-by-hop. (b) If there are
subscriptions which are real cover of S, assuming the farthest broker from Bi in

)(SB ⊃ is Bt, then there must exist SS ⊃' , and notification can be forwarded to Bt
along route(Bp,Bt) according to matching 'S (if Bp cannot see 'S , then can prove in
recursive method). Then notification can be forwarded to Bi ()(SSHB) along

route(Bt,Bi) according to matching S or ''S (SS ≡'') if there exist. (c) If there are only
subscriptions that are equal to S, then notification can be forwarded to Bi ()(SSHB)

along route(Bp,Bi) according to matching S or ''S (SS ≡'') if there exist. Summing up
(a), (b) and (c), we have proved that notification matching S can be forwarded from
any PHB to)(SSHB . The sufficiency is proved.

Theorem 1 describes that covered subscription S would just exist in)(SB ⊃ .
According to the property of graph, we can compute)(SB ⊃ and)(SB ≡ easily.
Therefore, we can validate the correctness of SSCBR routing.

3.2 SSCBR Algorithm Implementation and Correctness Proof

In order to maintain subscription-cover relation, [6] proposes a POSET (Partially
Ordered Set) method. We extend POSET and name it SCG (Subscription Covering
Graph). SCG records every subscription and its sender (neighbor broker or local
client). Each subscription/sender pair has two variables, named NB-covering-degree
and LC-covering-degree, which denote neighbor directions and local clients whose
subscription covers current subscription respectively. SCG supports two functions:
s_add_SCG(S, sender) and s_delete_SCG(S, sender), in which S is a subscription,
sender is the neighbor or local client issuing S. Function s_add_SCG and
s_delete_SCG calculate the value of NB-covering-degree and LC-covering-degree.
When broker receives a new subscription S, s_add_SCG adds “in” and “out” directed
edges of S (from covering subscriptions to S and from S to subscriptions covered
by S).

SSCBR algorithm implementation is in the left of figure 2.

Algorithm Correctness Proof
As long as we can prove SSCBR algorithm can make publish/subscribe system stable
and the configuration of routing table satisfy the necessary and sufficient condition of
theorem 1, then the SSCBR algorithm implementation is correct.

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 109

Assume for subscription S∈)(iBSUB and a set of subscription real covering S,

named Sk, Sk∈)(
kjBSUB , nk ≤≤1 , the cross point of),(

1ji BBroute ,…,),(
nji BBroute is

Bt. According to definition 6 and the assumption, the brokers in)(SB ⊃ are all in
route(Bi,Bt).

Subscription Forwarding. When sub(S) is forwarded along route(Bi,Bt) from broker
Bi to Bt, for any broker Bc in route(Bi,Bt), (1) if Bc hasn’t received any one of
{sub(Sk)} yet, sub(S) will be forwarded to all neighbors of Bc when Bc receives

// SSCBR algorithm
void PrcessSubMessage(Sender,sub(S))
1. {
2. s_add_SCG(S,Sender);
3. C1={(S1,u)|S1 ⊇ S,u ≠ Sender,(S1,u)∈ SCG};

4. C2={(S2,u)|S ⊇ S2};
5. if Sender∈ NB then
6. for (S2,Sender) ∈ C2 do
7. s_delete_SCG(S2,Sender);
8. end for
9. end if
10. if LC-covering-degree of (S, Sender) >0 then
11. return;
12. end if
13. switch NB-covering-degree of (S,Sender)
14. case 0: forward sub(S) to all neighbors

 except Sender;
15. case 1: only forward sub(S) to u (*,u) ∈ C1;
16. default:(≥ 2) don’t forward sub(S);
17. end switch
18. }
 void ProcessUnsubMessage(Sender, unsub(S))
1. {
2. C1={(S1,u)|S1 ⊇ S,u ≠ Sender,(S1,u)∈ SCG};
3. if LC-covering-degree of (S,Sender) =0 then
4. switch NB-covering-degree of (S,Sender)
5. case 0: forward unsub(S) to all neighbors;
6. case 1: only forward unsub(S) to u,

(*,u) ∈ C1;
7. default:(≥ 2) don’t forward unsub(S);
8. end switch
9. end if
10. s_delete_SCG(S,Sender);
11. C2={(S2,u)|S ⊇ S2};
12. for (S2,u) ∈ C2 do
13. if LC-covering-degree of (S2,u) =0 then
14. C3={(S3,v)| S3 ⊇ S2,v ≠ u};
15. switch NB-covering-degree of (S2,u)
16. case 0: forward sub(S2) to all neighbors ;
17. case 1:only forward sub(S2) to v,(*,v)∈ C3;
18. default:(≥ 2) don’t forward sub(S2);
19. end switch
20. end if
21. end for
22. }

// RSCBR algorithm
void PrcessSubMessage(Sender,sub(S))
1. {
2. s_add_SCG’(S,Sender);
3. C1={(S1,u)|S1 ⊇ S,u ≠ Sender,(S1,u)∈ SCG};

4. if LC-covering-degree of (S, Sender) >0 then
5. return;
6. end if
7. switch NB-covering-degree of (S,Sender)
8. case 0: forward sub(S) to all neighbors

except Sender;
9. case 1: only forward sub(S) to u (*,u) ∈ C1;
10. default:(≥ 2) don’t forward sub(S);
11. end switch
12. record the neighbors that S is forwarded to;
13. }

void ProcessUnsubMessage(Sender, unsub(S))
1. {
2. if LC-covering-degree of (S,Sender) =0 then
3. if NB-covering-degree of (S,Sender) = 0 then
4. forward unsub(S) to all neighbors;
5. else
6. forward unsub(S) to neighbors that sub(S)

has been forwarded to;
7. end if
8. end if
9. s_delete_SCG(S,Sender);
10. C2={(S2,u)|S ⊇ S2};

11. for (S2,u) ∈ C2 do
12. if LC-covering-degree of (S2,u) =0 then
13. C3={(S3,v)| S3 ⊇ S2,v ≠ u};

14. switch NB-covering-degree of (S2,u)
15. case 0: forward sub(S2) to neighbors that
 sub(S2) has not been forwarded to;
16. case 1:only forward sub(S2) to v

(*,v)∈ C3 and if sub(S2) has not
 been forwarded to v;

17. default:(≥ 2) don’t forward sub(S2);
18. end switch
19. end if
20. record the neighbors that S is forwarded to;
21. end for
22. }

Fig. 2. SSCBR algorithm and RSCBR algorithm

110 H. Yuan, C. Guo, and P. Zou

sub(S). The line 5~9 of procedure ProcessSubMessage assures that the broker in the
neighbor directions of Bc would delete the entry of S after it receives any one of
sub(Sk). (2) if Bc has received any one of {sub(Sk)}, the line 10~17 of procedure
ProcessSubMessage assures that sub(S) will just be forwarded along route(Bi,Bt).

Combine (1) with (2), procedure ProcessSubMessage just keep the entry of S in
route(Bi,Bt) and store the cover knowledge in route(Bi,Bt) (through SCG graph),
which assures the necessary and sufficient condition of theorem 1 holds. If there are
subscriptions equaling to S, then)(SB ⊃ may keep the subscription that equals to S,
which also satisfies the necessary and sufficient condition of theorem 1.

Due to acyclic graph assumption, procedure ProcessSubMessage assures that sub
message would terminate in definite forwarding.

Unsubscription Forwarding. The line 3~9 of procedure ProcessUnsubMessage
assures that unsub(S) would not be forwarded to a neighbor direction if an un-
canceled subscription that covers S has been forwarded to that direction.

If any one of {Sk} is unsubscribed, we can divide two scenarios: (a). before
unsub(sk) is forwarded to Bt; (b). After unsub(sk) is forwarded to Bt.

(1) For any broker Bl in route(Bt,Bk), when it process unsub(sk), if there is
subscriptions in Bl that covers S, so Bl needn’t re-forward S. Otherwise, there is no
entry of S in Bl and no subscription covering S , that is to say another unsub(sk’) has
already been processed by Bl, the proof can be merged into (2).

(2) If unsub(sk) can be forwarded to Bt (there is no subscriptions covering Sk), for
any direction of Bt, if there is no subscription covering S, The line 10~21 of procedure
ProcessUnsubMessage assures that S can be re-forwarded. So S can be forwarded by
procedure ProcessSubMessage. Therefore the necessary and sufficient condition of
theorem 1 holds when using procedure ProcessSubMessage.

In one word, SSCBR algorithm implementation is correct.

3.3 Relaxed Subscription-Cover Based Routing Algorithm

In last section, we investigate the scenario of strict subscription-cover based routing.
For subscription S1, S2 and 21 SS ⊃ , if sub(S2) and sub(S1) is received from the same
neighbor direction, SSCBR algorithm deletes the entry of S2 if S2 is received first,
which can reduce the size of broker’s routing table. But if unsub(S1) is issued before
unsub(S2), then SSCBR will re-forward S2, the cost of earlier forwarding S2 is
wasted in vain. So we propose a Relaxed Subscription-Cover Based Routing
(RSCBR) algorithm:

(1) A subscription is not forwarded to a neighbor if a subscription that covers
the former was forwarded to that neighbor that has not been canceled.

(2) An unsubscription is not forwarded to a neighbor if it never be forwarded to
that neighbor (because there is a subscription that covers it).

(3) If an unsubscription is forwarded to a neighbor, the sending broker also
forwards a possibly empty subset of subscriptions that are covered by the
former and never be forwarded to that neighbor.

The goal of SSCBR algorithm is to reduce the size of routing table as best as.
RSCBR admits the fact that covered subscription has been forwarded. It doesn’t

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 111

consider whether current subscription covers earlier received subscriptions, which
reduces the time of calculating subscription-cover and decreases the traffic of
duplicate forwarding of covered subscriptions when covering subscriptions are first
canceled. RSCBR and SSCBR is a trade-off between time/network-traffic and space.

RSCBR algorithm implementation is in the right of figure 2.
In RSCBR algorithm, the semantic of s_add_SCG is changing. So we rename it

s_add_SCG’. s_add_SCG’ only find the subscriptions that cover current subscription,
and it doesn’t calculate whether there are subscriptions covered by current
subscription. That is to say s_add_SCG’ only return in-edge of S.

RSCBR algorithm implementation would keep subscription-cover knowledge in
)(SB ⊃ , so the correctness of it is obvious. Proof is omitted. Both SSCBR and

RSCBR use subscription-cover idea, so they can reduce the size of routing table in
intermediate broker. Compared with SSCBR, RSCBR maintains more covered
subscription in intermediate broker. We will evaluate their behavior in reducing the
size of routing table and network traffic through experiments.

4 Experiments

The goal of experiments is to evaluate the behavior of SSCBR and RSCBR in
reducing the size of routing table, network traffic, etc. The metric of routing table size
is the average subscription count of each broker. The metric of network traffic is the
average sub and unsub message number of each subscription. We evaluate three
routing algorithm SSCBR, RSCBR and N-CBR (routing without using subscription
cover).

The experiments setup is as follows.

(1) There are 1000 brokers and broker network topology is undirected acyclic
graph. The longest path (from one broker to another broker) is 15 brokers. All brokers
distribute symmetrically as best as.

(2) For simplification, all the subscriptions contain three predicates on the same
(attribute name) numeric type attribute, for example length ∈ [100-l, 100+l], width
∈ [80-w, 80+w], height ∈ [50-h, 50+h]. The subscription count issued by each broker
(broker’s client) is the same. Every broker first issues all the subscription, then issue
unsubscription one by one after all subscription have be issued.

(3) The most important factor influencing the behavior of SSCBR and RSCBR is

the cover ratio ρ . We define the cover ratio
N

C
N

i
i

== 1ρ , N is the active subscriptions

count, Ci is the count of subscription that covers subscription Si. The cover relation
increases with ρ . The value of ρ can range from 0 to N/2. The most extreme scenario
is that subscription S1 is covered by S2, S3, …, SN, and S2 is covered by S3, …, SN, and
so on. So N/20)/N+1+…+2)-(N+1)-((N= ≈ρ .

We test SSCBR and RSCBR with ρ =0.5 and ρ =0.8 individually. From Figure 3(a),
we find that both SSCBR and RSCBR can greatly reduce the size of routing table,
and the size of routing table decrease with increasing ρ , which can be explained that

112 H. Yuan, C. Guo, and P. Zou

the more covering relation, the less covered subscription would be forwarded. Under
the same ρ , SSCBR can reduce more size of routing table than RSCBR.

In Figure 3(b), we set ρ =0.8. The **-R means random unsubscribing
subscriptions. The **-FC means first unsubscribing covered subscriptions. The **-LC
means last unsubscribing covered subscriptions. The average message count of N-
CBR is approximately twice the count of brokers (2*N), which is not affected by the
subscription count.

The traffic of SSCBR-LC is the most, which can be explained that because covered
subscriptions are last unsubscribed, so SSCBR need re-forward them when covering
subscriptions are unsubscribed. On the contrary, SSCBR-FC produces the least traffic.
The traffic of RSCBR-FC is between SSCBR-FC and SSCBR-LC. The traffic of
RSCBR-FC is more than SSCBR-FC is because RSCBR-FC need forward more
unsub message of covered subscription than SSCBR-FC (because RSCBR store more
covered subscription in intermediate brokers than SSCBR). However, the traffic of
RSCBR-R, RSCBR-LC and RSCBR-FC is less than SSCBR-LC at any time because
RSCBR algorithm maintains redundant covered subscriptions (which don’t need to be
re-forwarded when covering subscription are canceled) than SSCBR. In general,
RCSBR-R, RSCBR-LC and RSCBR-FC produce less traffic than SSCBR-R.

subscription count of each broker

av
g

m
es

sa
ge

 c
ou

nt
 o

f
ea

c
su

b
sc

ri
pt

io
n

N-CBR SSCBR-R SSCBR-FC SSCBR-LC

RSCBR-R RSCBR-FC RSCBR-LC

subscript ion count of each broker

av
g

su
b

co
u

nt
 o

f
 e

ac
h

b
ro

ke
r

N-CBR SSCBR-0.5 SSCBR-0.8

RSCBR-0.5 RSCBR-0.8

Fig. 3. (a) routing table size experiment. (b) traffic experiment.

We can’t arbitrarily say that RSCBR would produce less traffic than SSCBR
because the network traffic of RSCBR largely depends on subscribing/unsubscribing
distribution. If covered subscriptions are first canceled, RSCBR still needs to forward
those unsubscribing messages. But because RSCBR need calculate less subscription
covering relationship than SSCBR, we can definitely say that RSCBR costs less
calculating time than SSCBR, which is not illustrated by us.

5 Conclusions and Future Works

The necessary and sufficient condition of correct routing-table configuration proposed
by us can be used to validate the correctness of SSCBR routing idea. The two
subscription-cover routing (SSCBR and RSCBR) use different policy to maintain the

The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe 113

count of covered subscriptions. They can find suitable scenarios for different
subscriptions distribution individually.

We have compared SSCBR and RSCBR in network traffic through evaluations.
But that is only primary. Further experiments are necessary to evaluate them in other
performance metric. In addition, it is a great challenge to apply the idea of
subscription-cover into cycled graph. For cycled graph, an alternate routing algorithm
is DV-based [22] (distance/vector). In DV approach, for brokers in a circle, they may
not forward matching events to the direction of covered subscription if that direction
is not the shortest path for the covering subscriptions. However, we must find a
method to solve this problem if we extend subscription-cover idea to cycled graph.
We have tried several methods. It is believed that we would make a progress in the
forthcoming future.

Acknowledgements

This paper is founded by the National Natural Science Foundation of China under
Grant Nos. 90412011, and by the National High-Tech Research and Development
Plan of China under Grant Nos. 2003AA115410, Nos. 2004AA112020.

Reference

1. C. Marchetti, M. Mecella, M. Scannapieco, and A. Virgillito. Enabling Data Quality
Notification in Cooperative Information Systems through a Web-service based
architecture, Proceedings of the 4th International Conference on Web Information Systems
Engineering, Roma, Italy, 2003.

2. Simon Courtenage and Steven Williams. Automatic Hyperlink Creation Using P2P and
Publish/Subscribe, In the Workshop on Peer-to-Peer and Agent Infrastructures for
Knowledge Management (PAIKM), Apr 2005.

3. P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Publish/
Subscribe, ACM Journal Comput, Vol. 35, No. 2, page 114~131, March 2003.

4. Ying Liu, Beth Plale. Survey of Publish/Subscribe Event Systems, technical report,
Department of Computer Science. (CSCI) at Indiana University, TR574, May 2003.

5. Guoli Li, Shuang Hou, Hans-Arno Jacobsen. A Unified Approach to Routing, Covering
and Merging in Publish/Subscribe Systems Based on Modified Binary Decision Diagrams,
In Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems (ICDCS'05), Pages 447-457, 2005.

6. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation
of a wide-area event notification service, ACM Transactions on Computer Systems, 19(3):
332~383, 2001.

7. IBM Corporation. Gryphon: Publish/subscribe over public networks. Technical report,
IBM T. J. Watson Research Center, 2001.

8. Fengyun Cao, Jaswinder Pal Singh. Efficient Event Routing in Content-based Publish-
Subscribe Service Networks, In IEEE INFOCOM 2004.

9. G. Cugola, E. Di Nitto, and Fugetta. The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS, IEEE Transactions on Software
Engineering 27, 9 (Sept.), 827~850, April 2001.

114 H. Yuan, C. Guo, and P. Zou

10. G. Cugola, E. Di Nitto, A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems, In Proceedings of the 20th International Conference on
Software Engineering, Kyoto, Japan, April 1998.

11. Gero Muhl. Large-Scale Content-Based Publish/Subscribe Systems, PhD thesis, Technical
University of Darmstadt, 2002.

12. L. Opyrchal, M. Astley, Joshua S. Auerbach, G.Banavar, R. E. Strom, and D. C. Sturman.
Exploiting IP Multicast in Content-Based Publish-Subscribe Systems, In Proceedings of
Middleware 2000, 2000.

13. Z. Ge, M. Adler, J. Kurose, D. Towsley and SteveZabele. Channelization problem in
large-scale data dissemination, Technical report, University of Massachusetts at Amherst,
2001.

14. A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang. Clustering Algorithms for content-based
publication-subscription systems, In Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS'02), 2002.

15. T. Wong, R. Katz, and S. Mc Canne. An evaluation of preference clustering in large scale
multicast applications, In Proceedings of IEEE INFOCOM, March 2000.

16. G. Banavar, T. Chandra, B. Mukherjee, et al. An efficient multicast protocol for content-
based publish-subscribe systems. In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, pages 262~272, 1999.

17. Xue T, Feng BQ. Research on routing algorithm and self-configuration in content-based
publish-subscribe system. Journal of Software, 16(2): 251-259, 2005.

18. J.C. Lin and S. Paul. A reliable multicast transport protocol, In INFOCOM, pages
1414~1424, 1996.

19. Antony I. T. Rowstron, Anne-Marie Kermarrec, et al. SCRIBE: The design of a large-scale
event notification infrastructure, In Networked Group Communication, pages 30~43,
2001.

20. S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination, In Proceedings
of International Workshop on Network and Operating Systems Support for Digital Audio
and Video NOSSDAV, 2001.

21. P. Triantafillou and I. Aekaterinidis. Content-Based Publish-Subscribe Over Structured
P2P Networks, In International Workshop on Distributed Event-Based Systems
(DEBS04), 2004.

22. C.P. Hall, A. Carzaniga, J. Rose, and A.L. Wolf. A Content-Based Networking Protocol
For Sensor Networks, Technical Report, Department of Computer Science, University of
Colorado, August 2004.

23. Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M., and Chandra, T. D. Matching
Events in a Content-based Subscription System, In Proceedings of ACM PODC, Atlanta,
GA, Pages 53–61, 1999.

24. Fabret, F., Jacobsen, H., Llirbat, F., Pereira, J., Ross, K., and Shasha, D. Filtering
Algorithms and Implementations for Very Fast Publish/Subscribe Systems, In Proceedings
of ACM SIGMOD. Santa Barbara, California, Pages 115–126, 2001.

Alliatrust: A Trustable Reputation Management

Scheme for Unstructured P2P Systems�

Jeffrey Gerard, Hailong Cai, and Jun Wang

Computer Science & Engineering, University of Nebraska–Lincoln
{jgerar, hcai, wang}@cse.unl.edu

Abstract. Content pollution and free-riders are increasingly threaten-
ing the utility and dependability of modern peer-to-peer systems. One
common defense against these threats is to maintain a reputation for each
peer in the network based on its prior behavior and contributions, which
can help other users make informed decisions about future transactions.
However, most current reputation schemes for unstructured P2P sys-
tems are prone to attack and therefore not very reliable. In response, we
propose a trustable, distributed, reputation-management scheme called
Alliatrust to combat content pollution and free-riders. Alliatrust demon-
strates resilience against collusion by malicious peers by elegantly man-
aging distributed copies of reputation data on a few homologous peers.
Simulations show that Alliatrust is able to reduce undesirable transfers
of polluted resources to good peers by up to 70%, while decreasing the
success of queries issued by malicious peers and free-riders.

1 Introduction

Modern peer-to-peer (P2P) networks reach gigantic proportions with many users.
While a large P2P community affords more benefits for each peer, a network of
extensive scale necessarily incurs many unexpected incidents that harm the com-
munity. Anonymity opens the network to possible misuses and abuses, and P2P
users cannot be assumed to exhibit inherit credibility or altruism.

Consequently, both free-riding and content pollution are prevalent in mod-
ern P2P networks. Free-riders are peers that consume system resources without
sharing any of their own. One study of a Gnutella P2P network found 68% of
all active peers to be free-riders [1]. Meanwhile, more than half of the copies
of many popular songs in the KaZaA network are polluted, meaning they have
corrupt data content or inaccurate associative metadata [2]. As such, a P2P sys-
tem that does not consider peers’ reputations may fall victim to threats such as
dominance of free-riders, polluted content, and hacking.

� This work is supported in part by the US National Science Foundation under grants
CNS-0509480 and CCF-0429995, the US Department of Energy Early Career Princi-
pal Investigator Award DE-FG02-05ER25687, and a University of Nebraska-Lincoln
Undergraduate Creative Activities & Research Experiences grant.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 115–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 J. Gerard, H. Cai, and J. Wang

1.1 Motivation

While trust metrics are useful in P2P systems, their efficacy relies on the ability
to securely store and distribute reputation data. Existing reputation manage-
ment schemes work well in structured networks [3, 4]. For example, the secure
implementation of the EigenTrust reputation computation algorithm organizes
data placement throughout the network using a distributed hash table, which
makes it easy to attain homologous peers as candidate computation and storage
agents. However, distributed hash tables require costly maintenance overhead
to handle rapid node churn, and they limit the effectiveness of keyword-search
queries. [5, 6].

Perhaps for these reasons, we observe a strong prevalence of unstructured
networks in commercial P2P software [7, 8] and subsequently envision that repu-
tation schemes for unstructured networks presently have greater pragmatic value.
Without proper restraints on data placement, however, the design of reputation
schemes for unstructured networks faces more challenges in enforcing symmetric
functionality. Specifically, the security of schemes proposed thus far for use in
unstructured environments is often unreliable. Most of these schemes store a
single peer’s reputation data on the peer itself, where it may easily be subjected
to hacking attempts [8, 9, 10].

Unstructured, decentralized networks require a reliable reputation manage-
ment scheme in which each user’s reputation data is distributed among multiple
homologous peers in the network. Only by asking multiple peers to be engaged
in managing each peer’s reputation can we trust these reputation values with
confidence.

1.2 A Novel Solution

We propose Alliatrust, a trustable, distributed reputation-management scheme
for unstructured, decentralized P2P systems. Alliatrust provides incentives for
peers to share quality resources and is resilient against malicious nodes. In Al-
liatrust, each peer has multiple managers that maintain copies of its reputa-
tion value. We fashion a reputation overlay to create links between peers and
their managers, so that managers can compute, maintain, and supply reputa-
tion values. New data to be used in updating a peer’s reputation is always sent
directly to the managers as it becomes available to prevent a peer from med-
dling with its own reputation value. As to not place undue emphasis on any
particular peers, all peers in the network have approximately the same number
of managers and comparable responsibilities to store reputation data for other
users. We also develop a majority-voting policy that peers can use to resolve
discrepancies of a reputation value that might arise in the presence of deceitful
managers.

Experiments demonstrateAlliatrust’s ability to impede uploads of polluted con-
tent by malicious peers and its capability to fail ten times as many queries issued by
malicious peers and free-riders, compared with a baseline system. Whether mali-
cious peerswork independently, cooperatewith others, or camouflage theirmotives

Alliatrust: A Trustable Reputation Management Scheme 117

by sharing authentic resources occasionally, they are generally unable to distribute
large amounts of polluted content when our reputation scheme is activated.

1.3 Assumptions

In developing a new, highly reliable reputation scheme, we must make important
assumptions regarding the nature of the network. To ensure a high degree of
security, our scheme never assumes that any given node is trustworthy. We tackle
this vulnerability, which is inherent to public, unsupervised networks, by avoiding
intermediaries wherever possible and by always duplicating sensitive data. We
also assume that each peer has an unique identifier that can be used to locate
the peer in the network, such as an IP address.

Without a central authority, the accumulation of any distributed data in a
network will ultimately reflect the testimony given by the majority of the users.
For example, if all peers maintain individual opinions of each other, and most
users find favor in unpolluted content, then the peers that share unpolluted
resources will accrue high reputations, even though the network may contain
peers with differing predilections. Thus, although we never presume any single
peer is trustworthy, we must assume that more peers are trustable than are not.

2 Alliatrust

The Alliatrust system architecture consists of several components, including a
reputation overlay, a way to propagate reputation updates, and a fault tolerance
mechanism.

2.1 The Reputation Overlay

In our distributed reputation-management scheme, each node n has a number
of peers called managers that store n’s reputation value (n.RV); every node also
stores a copy of its own reputation value locally to prevent data loss if all its
managers should fail. Having multiple copies of n.RV helps combat node churn
and protect integrity in the presence of untrustworthy peers. We propose, then,
a reputation overlay that exists over all nodes in the P2P network. This overlay
connects each of n’s managers to n itself via connections referred to as supervisor
links. Supervisor links are unidirectional to make corrupt arrangements difficult
by hindering two nodes from controlling each other’s reputation values [9].

While the host-manager relationship is unidirectional, node n does know
about the role its managers have and maintains each of its managers’ unique
identifiers in a manager list, M(n). The reputation overlay is defined such that
each node n has a number of managers |M(n)|, which is the cardinality of its
manager list. Not all nodes have exactly the same number of managers, but we
restrict |M(n)| such that Mmin ≤ |M(n)| ≤ Mmax for all n. The lower and upper
bounds of the number of managers for each node, Mmin and Mmax respectively,
are constants throughout the network and should be fairly tight. As a result,
nodes empirically have roughly the same number of managers, labeled Mμ.

118 J. Gerard, H. Cai, and J. Wang

When a new node n joins the network, it bootstraps onto an existing peer,
which becomes n’s first manager. Immediately, n builds its manager list by
searching for peers in the network that are managers of fewer than Mmax peers.
Once n has a total number of managers |M(n)| = Mmin, n stops searching for
new managers and distributes a message to all the managers it found, instructing
them to initialize n.RV to the system’s default starting reputation value.

Although a node initially seeks only Mmin managers when it joins the network,
it continues to passively enlist additional managers throughout its regular P2P
activity. At the onset of occasional transactions, node n asks its client or server
peer p if p can become n’s manager. As before, n enlists p as a new manager
if p manages fewer than Mmax other peers. The frequency of these searches is
determined by the number of managers that n has already: if |M(n)| is close
to Mmin, n will look for new managers more actively than if |M(n)| is large.
Because n and p are already involved in a transaction, p is temporarily storing
a copy of M(n) as will be specified in Section 2.3. By passively procuring new
managers, n will usually have a sufficient number to endure one’s departure.
However, if |M(n)| should ever drop below Mmin, n will immediately search out
new managers in the same way that it did when it first joined the network.

2.2 Calculating Reputation Values

Alliatrust’s primary purpose is to facilitate secure storage and retrieval of repu-
tation data in an unstructured network, leaving the meticulous details of actually
calculating reputation values to other research [3, 10]. Nevertheless, we must as-
sume some basic attributes of the computation procedure. We adopt a condition
common to many reputation schemes that a node’s reputation value is updated
whenever it is involved in a transaction with another peer, whether the node
acts as a server or client. When a client node receives a resource, its reputation
value is decreased to represent its debt to the network. Conversely, when a peer
p serves a resource to a node n, p.RV is updated according to its contribution
to the network. Upon completion of the transfer, n is allowed to rate the quality
of the resource it received, based on criteria such as the accuracy of metadata
and the degree of pollution. If n deems the resource to be of sufficient quality,
p.RV is increased, but if n finds the resource to be polluted, p.RV is decreased
as punishment for sharing polluted material in the network.

2.3 Distributing Reputation Updates

We assumed that a peer’s reputation is updated after it completes a transaction.
Any new information regarding the transaction should be distributed as soon as
possible to provide the most accurate impression of a peer via its reputation
value. To minimize the control a peer has over its own reputation value, the
peers on both sides of a transaction notify each other’s managers directly with
this additional transaction information.

Following a transaction in which p serves a resource to n, both p’s and n’s
reputation values should be updated. Before the actual resource transfer begins,

Alliatrust: A Trustable Reputation Management Scheme 119

p and n exchange their manager lists, M(p) and M(n), during the underlying
network’s handshake process. This way, upon completion of the transfer, the
peers can alert each other’s managers to initiate an update of their reputation
values. Server p tells n and n’s managers that n received a resource, triggering
all these nodes to independently calculate n’s new reputation value using the
same reputation calculation algorithm. Simultaneously, n rates the resource it
received according to predefined criteria and sends its evaluation to p and the
managers in M(p).

However, the rating process that n performs on the resource it receives from p
may be expensive to perform or require human interaction [11]. Thus, although
p will notify n’s managers to decrease n.RV immediately after the transaction,
n may defer this rating interminably, or may not even do it at all. One possible
solution is to initially assume that a transferred resource was of decent quality
and update p.RV with a tentative positive rating. If the client n does rate the
resource some time later, it can simply update p.RV via p’s managers.

The overhead required in exchangingmanager lists is low. The greatest strain on
the network occurs when the peers notify each other’s managers about the trans-
action. Both peers send messages to about Mμ managers and to the other peer,
generating a total of 2 × (Mμ + 1) messages. This is 10 extra messages per trans-
action when Mμ = 4, as observed in our simulations described in Section 4.1.

2.4 Resolving Discrepancies

Reputation schemes allow a node to know at a glance which peers to favor in
future transactions. With Alliatrust, the most secure way to obtain a peer’s rep-
utation value is to ask that peer’s managers directly. There is no guarantee that
any given manager is trustworthy, so a node ought to query multiple managers
of a peer and independently resolve any discrepancies of the returned reputation
values. A querying node does not necessarily have to query every manager of
a peer, but rather the proportion of managers it asks should rely on the sever-
ity of any negative consequences resulting from inaccurate data. For simplicity,
however, we will assume that the utmost available trust is always essential, so
the nodes we describe here will always query every manager of the peer whose
reputation value is desired.

After a node accumulates the responses from a peer’s managers, it compares
all the copies of reputation values and checks for any disagreement. If there is
a disparity, our experiments show that there will likely remain a majority of
managers exhibiting the correct value. Hence, the node can simply assume the
statistical mode1 of the set to be correct. If there is more than one mode, the
node uses the arithmetic mean of these modes.

2.5 Tolerating Peer Departures and Failures

When node n leaves the network, either intentionally or as the result of a fail-
ure, it saves its own reputation and manager list locally, and its managers retain
1 The mode is the value that occurs the most frequently in a set.

120 J. Gerard, H. Cai, and J. Wang

its reputation value for a specified duration after the departure. This duration
should be long enough to survive most “round trips” of leaving and returning
to the network [5, 12], but must be small enough so that managers do not be-
come overwhelmed with reputation data about old peers. When n returns to
the network later, it attempts to contact all the peers in its stored manager list.
Any former managers still in the network continue as n’s managers. Then, n
seeks to replace any managers that had since departed from the network until it
again has Mmin managers. If, however, none of n’s former managers remain in
the network, n’s new managers will be forced to adopt n’s local copy of n.RV.
This final scenario is unfavorable because of our assumption that n may not be
trustable; fortunately, our experimental results show that this happens less than
5% of the time.

3 Using Reputation in Queries

Alliatrust can benefit P2P applications in a number of ways. We demonstrate two
examples in which reputation data can improve search queries in the network,
one of the most utilized services in current P2P systems. We offer one tactic
peers can use and another that may be implemented by the P2P system itself.

3.1 Differentiated Quality of Service

For a reputation scheme to be beneficial, the P2P system must provide some
manner of incentive for peers to increase their own reputations. Several ap-
proaches can differentiate the quality of service a peer receives, each with its
own features and applications. One scheme allows users to download resources
only from peers with equal or lesser reputation values than their own [13]. Other
research recommends that peers forward search queries according to the reputa-
tion values of the querying users: queries from users with high reputations might
receive a longer time-to-live, or forwarding peers might arrange incoming queries
in a priority queue, serving those from highly-reputed users first [9, 13].

3.2 Selecting Quality Resources

Once a network has provided sufficient incentive for peers to foster their repu-
tations by sharing their resources with others, the peers can use the reputation
system to make informed decisions in their transactions.

If a peer p is able to fulfill a forwarded search query, p responds directly to
the client n that issued the query. In addition to the typical information that
p sends n as is implemented in the underlying P2P system, p also transmits its
own reputation value and manager list. Over time, n collects this information
from various peers that have the targeted resource. After a maximum amount of
time has passed or a minimum number of peers have responded to the query, n
can use these replies and their accompanying reputations to pick a trustworthy
server peer.

Alliatrust: A Trustable Reputation Management Scheme 121

The client n selects a peer q that sent a high reputation value along with
its response to the query. To verify that q.RV is indeed what was claimed in
the query response, n contacts one or more of q’s managers. If the reputation
value that q claimed to have is greater than the value of q.RV reported by q’s
managers, then n assumes q is untrustworthy and repeats this verification process
using another responding peer. The client n will request the resource from the
first peer it finds that did not inflate its reputation value.

4 Experimental Results

To evaluate Alliatrust’s performance in combating free-riders and polluted con-
tent, we implement the reputation overlay on a large-scale network model. We
simulate network activity under an assortment of threat models and compare
the Alliatrust scheme with a baseline that has no reputation scheme in place.

4.1 Simulation Configuration

We construct a physical topology emulating a hierarchial Internet network using
the Transit-Stub model [14] with the same parameters described in [15]. Of the
51,984 nodes that comprise the network model, we randomly choose 10,000 to be
peers participating in the P2P system. Our logical network topology is modeled
from a Gnutella network trace provided by the Limewire Organization [7]. Each
peer in the P2P system shares a number of resources, following the distribution
observed in a real Gnutella network [12]. Accordingly, 24% of all peers are free-
riders, sharing no resources at all. The specific resources stored on the remaining
peers are assigned according to a probabilistic content distribution model [16].

Peers disseminate queries to the system via the Gnutella overlay. In baseline
networks, the time-to-live (TTL) for all queries is six hops. Alliatrust differen-
tiates quality of service as summarized in Section 3.1. Specifically, it partitions
the range of possible reputation values into five balanced segments, each with a
corresponding TTL value. These five TTL values are 2, 3, 5, 7, and 8, providing
longer TTLs to queries from peers with high reputations. For example, queries
from brand new peers with a median reputation value live for five hops, while
queries issued by well-behaved peers can live for seven or eight hops.

We assign a constraint that a peer must have at least Mmin = 3 managers and
may not have more than Mmax = 6. In all our simulations, these bounds produce
an average number of managers per peer Mμ = 4. For simplicity, we choose an
inelaborate reputation calculation algorithm in which reputation values may take
on integers from 0 to 200 points. New peers start with the median reputation
value of 100. The penalty for receiving a resource is 3 points, and a peer may
gain or lose 5 points for serving a resource, depending on the rating it receives.

4.2 Peer Behaviors

Essentially, we consider three types of peers in the network: good peers, mali-
cious peers, and free-riders. These groupings form disjoint subsets that partition

122 J. Gerard, H. Cai, and J. Wang

the set of all peers. Free-riders do not share resources but do actively issue
queries and, when the reputation scheme is in place, truthfully rate all resources
they receive. Both good and malicious peers share resources and issue queries,
but a specified ratio of all resources distributed by malicious peers are polluted.
Furthermore, malicious peers try to attack Alliatrust’s effectiveness by misrep-
resenting reputation values or rating resources unfittingly. We study a variety of
such strategies, or threat models, that malicious peers might employ to thwart
the reputation scheme. Good peers share quality resources 95% of the time, ac-
counting for rare mistakes users might make in generating metadata or forgetting
to remove a polluted resource from the shared folder.

Threat Models. In threat model A, malicious peers act individually, and en-
deavor to fill the network with polluted content. They always serve polluted
resources and rate resources they receive as “quality” if they are polluted and
“not quality” if they are not polluted. This is the opposite behavior of good
peers. Malicious peers also attempt to thwart the reputation scheme to receive
a privileged quality of service: when any peer asks a malicious peer p for its
reputation value, p returns a value equal to 150% of p.RV’s true value.

We conduct a series of simulations in which malicious peers behave according
to threat model A. We assign a ratio of peers to be malicious such that they make
up between 10% and 50% of all peers in the network. For each scenario, Figure 1
compares Alliatrust with a baseline system using the proportion of polluted
resources received by good peers out of all resources received by good peers.
Alliatrust reduces the number of accidental downloads of polluted resources as
much as 70%, because malicious peers acquire low reputations, causing good
peers to seldom choose them as servers. By contrast, malicious peers find no
difficulty dispersing polluted content in the baseline system, and the fraction
of polluted downloads actually exceeds the fraction of malicious peers in the
network.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10% 20% 30% 40% 50%

Malicious Peers

P
o

llu
te

d
 T

ra
n

sa
ct

io
n

s

Alliatrust Baseline

Fig. 1. Alliatrust helps good peers re-
ceive up to 70% more quality resources
when malicious peers operate under
threat model A

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10% 20% 30% 40% 50%

Malicious Peers

P
o

llu
te

d
 T

ra
n

sa
ct

io
n

s Alliatrust Baseline

Fig. 2. Even when malicious peers form
collectives under threat model B, Alli-
atrust decreases the polluted resources
transferred to good peers

Alliatrust: A Trustable Reputation Management Scheme 123

Figure 1 may seem unconvincing when half of the peers are malicious because
such scenarios violate our assumption that trustable peers should outnumber
malicious peers. For instance, when 40% of peers are malicious and 24% are
free-riders, only 36% are good peers. Even so, Alliatrust noticeably reduces the
number of polluted resource transfers in these harsh environments. Moreover, no
reputation scheme in existence claims to completely abolish polluted resources.

Under threat model B, malicious peers can recognize each other and form col-
lectives, allowing them to inflate their claims of each other’s reputation values to
good peers. As before, malicious peers only share polluted content, rate polluted
content favorably, and multiply their own reputation values by 150%. In addi-
tion, if a malicious peer m manages another malicious peer p, and an outsider
requests p.RV from m, then m returns a value equal to 150% of the true p.RV.
This is analogous to a single malevolent user creating numerous identities and
using them to boost each other’s reputation values [17].

As before, we test situations in which a malicious collective makes up between
10% and 50% of all peers, even though it is unlikely that a single collective
could comprise half of a large-scale P2P network. Figure 2 portrays the fraction
of polluted resources received by good peers for experiments in networks with
and without Alliatrust. The formation of collectives scarcely increases malicious
peers’ attempts to circulate polluted content, and Alliatrust continues to reduce
the number of polluted resources downloaded by good peers by up to 70%.

Unable to successfully thwart the Al-

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

0% 20% 40% 60% 80%

Authentic Resources

P
o

llu
te

d
 T

ra
n

sa
ct

io
n

s Alliatrust Baseline

Fig. 3. Sharing a fraction of quality re-
sources in an attempt to inflate their rep-
utations does not help malicious peers
disseminate polluted content

liatrust reputation scheme by actively
inflating each other’s reputation values
through collectives, malicious peers may
try to increase their reputations by shar-
ing some quality resources. Under threat
model C, malicious peers inherit all the
behaviors from threat model B, but they
also share a certain fraction of quality
resources to cloak their true intentions,
thereby attempting to raise their repu-
tation values.

We run a series of simulations in which
malicious peers act under threat model
C, returning proportions of quality re-
sources ranging from 0% to 80%. They
comprise 25% of all peers. Figure 3 shows
the fraction of polluted downloads by
good peers when malicious peers share various fractions of authentic resources.
With Alliatrust, malicious peers see almost no additional success by occasionally
sharing authentic resources to thwart the scheme. Only about 11% of downloads
by good peers are polluted in all cases.

Discouraging Free-Riders & Malicious Peers. In addition to reducing
the polluted resources that good peers receive, Alliatrust deters bad peers by

124 J. Gerard, H. Cai, and J. Wang

differentiating quality of service according to a peer’s reputation. Without shar-
ing any quality resources, free-riders’ reputations should steadily fall as they
issue queries to the system. Similarly, under the assumption that a peer’s rep-
utation value should decrease when it transfers a polluted resource, malicious
peers’ reputations should fall even more rapidly.

Having completed simulations under multiple threat models, we measure the
failure rates of queries that were issued by malicious peers and free-riders. This is
the only occasion we actually desire a high failure rate, because the poor quality
of service that bad peers receive provides them with a strong motivation to
increase their reputation values. Generally, Alliatrust causes ten times as many
queries from bad peers to fail.

5 Conclusions

Alliatrust, a trustable, distributed reputation-management scheme for decen-
tralized, unstructured P2P systems can successfully reduce the prevalence of
polluted content by over 70% when malicious peers comprise 30% of the net-
work. Even if peers form a malicious collective or camouflage their intentions by
sharing quality resources, Alliatrust consistently and significantly cuts distribu-
tion of polluted content. The scheme also discourages free-riders and malicious
peers by failing ten times as many of their queries, thereby providing bad peers
with fewer query results than in a baseline network. By distributing reputa-
tions on multiple, homologous peers, Alliatrust can securely maintain accurate
reputation values in the presence of malicious peers.

References

1. Fessant, F.L., Handurukande, S.B., Kermarrec, A.M., Massoulié, L.: Clustering in
peer-to-peer file sharing workloads. In: International Workshop on Peer-to-Peer
Systems. (2004) 217–226

2. Liang, J., Kumar, R., Xi, Y., Ross, K.W.: Pollution in P2P file sharing systems.
In: Proceedings of IEEE Infocom. (2005)

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for
reputation management in P2P networks. In: Proceedings of the 12th international
conference on World Wide Web, New York, NY, USA, ACM Press (2003) 640–651

4. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities. In: IEEE Transactions on Knowledge and Data Engineer-
ing. (2004) 843–857

5. Cai, H., Wang, J., Li, D., Deogun, J.S.: A novel state cache scheme in structured
P2P systems. Journal of Parallel and Distributed Computing 65 (2005) 154–168

6. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like P2P systems scalable. In: SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, New York, NY, USA, ACM Press (2003) 407–418

7. Limewire: (http://www.limewire.org/)

8. KaZaA: (http://www.kazaa.com/)

Alliatrust: A Trustable Reputation Management Scheme 125

9. Dutta, D., Goel, A., Govindan, R., Zhang, H.: The design of a distributed rat-
ing scheme for peer-to-peer systems. In: Workshop on Economics of Peer-to-Peer
Systems. (2003)

10. Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks.
In: Proceedings of the 13th international workshop on Network and operating sys-
tems support for digital audio and video, New York, NY, USA, ACM Press (2003)
144–152

11. Marti, S., Garcia-Molina, H.: Limited reputation sharing in P2P systems. In:
Proceedings of the 5th ACM conference on Electronic commerce, New York, NY,
USA, ACM Press (2004) 91–101

12. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file
sharing systems. Technical Report UW-CSE-01-06-02, (University of Washington)

13. Ranganathan, K., Ripeanu, M., Sarin, A., Foster, I.: To share or not to share: An
analysis of incentives to contribute in collaborative file sharing environments. In:
Workshop on Economics of Peer-to-Peer Systems. (2003)

14. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork.
In: Proceedings of IEEE Infocom. (1996) 594–602

15. Cai, H., Wang, J.: Foreseer: a novel, locality-aware peer-to-peer system architecture
for keyword searches. In: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, New York, NY, USA (2004) 38–58

16. Schlosser, M.T., Condie, T.E., Kamvar, S.D.: Simulating a P2P file-sharing net-
work. In: First Workshop on Semantics in P2P and Grid Computing. (2002)

17. Douceur, J.R.: The Sybil attack. In: First International Workshop on Peer-to-Peer
Systems. Volume 1. (2002)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 126 – 136, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Fault-Tolerant Distributed Scheme for Grid
Information Services

Ming-Jeng Yang1, Chin-Lin Kuo2, Shih-Hsiang Lin2, and Yao-Ming Yeh2

1 Department of Information Technology, Takming College, Taipei, 114 Taiwan
mjyang@mail.takming.edu.tw

2 Department of Information & Computer Education, National Taiwan Normal University,
Taipei, 106 Taiwan

{genemlsh178, virtualbow}@yahoo.com.tw, ymyeh@ice.ntnu.edu.tw

Abstract. The Grid Information Service (GIS), mainly used for resource dis-
covery and monitoring, is a key component of grid system. The resource de-
scription and specification should be meditated for efficient search and access.
In this paper, we propose a distributed system for grid information services,
which deploys a number of registry servers at different regions of the world. A
new scheme for registering, updating, querying, and deregistering a resource in
registry servers is devised. For the purpose of fault-tolerance and load-balance,
the meta-data, including description and specification, of each resource can be
replicated and disseminated at some registry servers instead of reproducing re-
source itself for service discovery. In our scheme, the workload on each registry
server is balanced and the faults of registry servers can be tolerated. Also, the
user could obtain all resource information satisfied with the query conditions
even some of registry servers crashed.

1 Introduction

Grid technology has increasing played an important role in scientific computing field.
The resources of grid are scattered on numerous places or organizations and with
distinct type, function or/and owner. The issues of resource information discovering,
registering and securing become more and more important. In order to discover nec-
essary resources as soon as possible, effective mechanism of information service,
such as accessing interface, meaning of parameters and resource function, is strongly
demanded. Hence, resource description and specification must be clear and efficient
enough. In [1] the authors propose an XML-based grid resource specification lan-
guage and its usage in Resource Registry Meta-Service.

Grid is considered as a service oriented architecture (SOA) system and could be
accessed through services. So we still take grid as a different type of web service. But
there are still many problems required to be conquered. For example, the centralized
model of UDDI [2] which is the information center of web service architecture pro-
viding XML based service specification standardization is not appropriate for the grid
environment. Web service inspection language (WSIL) [3] does not provide good
implementation at distribution of services and is difficult to be used in grid. There are
several related works about grid information service, which include GMA [4],

 A Fault-Tolerant Distributed Scheme for GIS 127

Hawkeye [5] and MCS [6]. However these works are not open grid service infrastruc-
ture (OGSI) [7] compliant and therefore their ability of manipulating dynamic, het-
erogeneous, distributed information is profoundly limited.

The open grid service architecture (OGSA) [8] was developed to solve the chal-
lenges in such dynamic, heterogeneous and geographical grid environment. OGSA
builds on the web service technology mechanisms to create, name and discover tran-
sient grid service instances with a uniform manner and it is a popular and a widely
accepted architecture. Web services provide important machinery, but are lack of
some important topics relevant to basic service semantics: how services are created,
how long they live, how to manage faults, and how to handle long-lived state. These
issues are addressed by the design of OGSI which defines essential building blocks
for distributed systems. The OGSI is a formal and technical specification from
OGSA. Using a combination of WSDL interface descriptions and human readable
specifications, OGSI defines mechanisms for creating, naming, managing lifetime,
monitoring, grouping, and exchanging information among grid services. OGSI also
introduces standard factory and group registration interfaces for creating and discov-
ering grid services. While developing a GIS system, the requirement and features of
OGSA should be taken into consideration. The globus toolkit 3 [9], a reference im-
plementation of the OGSI, provides a grid service-oriented information service.

In this paper, we present a quorum based grid fault-tolerant scheme for information
service registering, updating and querying. In our scheme, based on the Leg-Ring
system [10], the workload disseminated on each service node is balanced and the
faults of service nodes can be tolerated. Meanwhile, by using the meta-data which
describes and explains resource characteristics detailed, the service could provide
efficient and accurate interface for searching, understanding and further processing.

The rest part of this paper is organized as follows: section 2 describes the architec-
ture of the grid information service. Section 3 explicates Legion structure, quorum
system and its application on this GIS. Section 4 describes these protocols that in-
clude registry, query, update and deregistry. Finally, in section 5, we draw conclu-
sions based on our research.

2 Architecture Overview

In our design, the information service is based on the distributed architecture and the
meta-data information of resources is stored at a number of service nodes. For the
purpose of fault tolerance and load-balance, the meta-data, including description and
specification, of each resource can be replicated and disseminated at some service
nodes instead of reproducing resource itself for service discovery. Similar to meta-
data based model in [11], each user in client terminal could issue a query with appro-
priate keywords to a server. Upon receiving the query, the local server forwards the
message to some servers for discovering registered resources satisfied with the in-
quired conditions.

We call this information service “Quorum-based fault-tolerant information service
(QFIS)”. The architecture of QFIS consists of three layers: resource layer, control
layer, and service layer, which are depicted in figure 1.

128 M.-J. Yang et al.

Fig. 1. Architecture of QFIS — three service layers in each RS

Resource layer is composed of various grid service data (GSD) [12]. The crea-
tors or providers of GSD should provide detailed meta-data, including description
and specification, and send the meta-data information to the registry mechanism
of QFIS. The registry mechanism will assign a unique resource id about the re-
source.
Control layer manages actions of resource meta-data, such as registration, gen-
eration of a unique id, query and deregistration. The operation of fault tolerance
is implemented in this layer. After receiving the meta-data from lower layer, the
control layer replicates the meta-data and then disseminates them to other registry
nodes which are randomly selected from the quorum sets. The detailed selecting
scheme will be described in later section.
Service layer provides the user interface and aggregates these parameters from
the control layer. Communicating with other registry servers is manipulated and
included here. Since information service is a component of grid, a special web
service, and SOAP is the basic communication protocol for web service, we
adopt SOAP as the messages passing method in the process of registration, query
and so on.

From the geographical view of global world, we separate the whole server nodes
into N partitions. Each partition contains exactly one resource registry server (RS) and
other server nodes. A partition is called a region and the number of server nodes in a
region should be meditated when we program the region area. While there is a fault
occurring on a RS, the leader election algorithm [13], [14] is launched among these
server nodes in this region and a newly elected RS is generated, which maintains the
functions of the fault RS.

 A Fault-Tolerant Distributed Scheme for GIS 129

3 Quorum Constructions for QFIS

In the QFIS system, all the resource registry servers (RSs) play the role of a fault-
tolerant system. Based on a quorum-based scheme, the fault-tolerant system can toler-
ate the failures of RSs. In this section, in order to prove the correctness of quorum
system for QFIS, we introduce some definitions and theories, such as quorum, set
system [15], and Legion structure [10] of our previous work.

A set system [15] is composed of a number of quorums.

Definition 1. A set system C = {Q1, Q2,..., Qn}, 1≤ n, is a collection of nonempty
subsets Qi ⊆U of a finite universe U.

Each element Qi of C in Definition 1 is called a quorum.
Take the set C = {{a,b,c}, {d,e}, {f,k,h}} as an example. C is a set system, and any

element in C, for example, {f,k,h} is a quorum.
In the following, we introduce a definition of Legion structure, which is our previ-

ous work [10]. A Legion is constructed from set systems.

Definition 2. A Legion structure {Ci, Cj} is a collection of two set systems that has
the following properties:

[I] Ci = {Q1, Q2,..., Qn} and Cj = {Q1, Q2,..., Qm} are set systems. (1≤ n, m)
[II] For any pair of quorums Qs ∈ Ci and Qt ∈ Cj , there is Qs Qt ≠ ∅. That is,

Qs and Qt have at least one common element. (1≤ s ≤ n, 1≤ t ≤ m)

Claim 1. The Legion structure {Ci, Cj} defined in Definition 2 can be used as a
mathematic model for quorum-based information service in QFIS system.

According to the Definition 2, any two quorums of a pair (Qs, Qt) have at least one
common element, where Qs is a quorum in Ci and Qt is a quorum in Cj. This structure
can be applied to develop a quorum-based information service scheme for QFIS sys-
tems. In QFIS systems, if one of the servers requires information from the other, it
suffices to query one server from an appropriate quorum. While using this quorum-
based service scheme, we can assign quorums in Ci as registration-quorums, and quo-
rums in Cj as query-quorums. According to the definition of Legion, the set of queried
servers is bound to contain at least one server that belonged to the registration-quorum
that received the registration information.

Based on the properties of Legion structure, we use ring-based approach to construct a
quorum scheme called LegRing in order to manage location information. First, N
registry servers (RSs) are arranged as a logical ring, denoted by N-LegRing. Every RS
in the QFIS system is assigned a distinct number from 0 to N-1 and arranged by its
number sequentially. In the following, some sequences of patterns in the N-LegRing
are employed as Registration-quorum (R-quorum) and Query-quorum (Q-quorum).

Definition 3. In an N-LegRing system, the Registration-set system (R-set) and Query-
set system (Q-set) are defined as follow:

R-set = {{n, (n+1) mod N, (n+2) mod N,..., (n+d-1) mod N} | 0≤ n ≤ N-1}

Q-set = {{n, (n+d) mod N, (n+2d) mod N, ..., (n+kd) mod N}| 0≤ n ≤ N-1,

130 M.-J. Yang et al.

k= dN /)1(− }

Where d = N ; n, k, and N are all integers.

Each element of R-set and Q-set is called an R-quorum and a Q-quorum,
respectively.

Claim 2. The R-set and Q-set of an N-LegRing system defined in Definition 3 satisfy
the properties of Legion structure {Ci, Cj }.

According to the Definition 2, the properties of Legion structure {R-set, Q-set} are: (I)
R-set and Q-set are set systems. (II) Any pair of R-quorum in R-set and Q-quorum in
Q-set have joint elements. We need to prove these properties. First, according to
Definition 3 and Definition 1, it is easy to see that R-set and Q-set are set systems.
Second, we define the distance of ordered pair of registers v1, v2 in the N-LegRing
system as Dist(v1, v2)= v2-v1, if v1≤v2 ; or v2+N-v1, if v1>v2 . We choose an arbitrary R-
quorum {u1, u2, ..., ud}={n, (n+1) mod N, (n+2) mod N,..., (n+d-1) mod N}. It is obvi-
ous that this R-quorum are d consecutive registers in the N-LegRing system, since any
tow adjacent registers of R-quorum have Dist(ui, ui+1)=1, 1≤i≤ d-1. Now we choose
another arbitrary Q-quorum {v1, v2,…, vk+1}={n, (n+d) mod N, (n+2d) mod N, ...,
(n+kd) mod N}. The distance of any two adjacent registers of Q-quorum is Dist(vi,
vi+1)=d (1≤i≤k) and Dist(vk+1, v1) ≤d. Since Dist(vi, vi+1)=d for any two adjacent regis-
ters vi, vi+1 and Dist(vk+1, v1)≤d in Q-quorum, and u1, u2,…, ud are d consecutive regis-
ters, we can conclude that at least one register vi in Q-quorum intersects with one
register uj in R-quorum, i.e. vi = uj , for some j (1≤j≤d). This satisfies property (II).
Hence, the R-set and Q-set of N-LegRing system satisfy the properties of Legion
structure.

4 Quorum-Based Approach

In the information service system QFIS, there are mainly four mechanism including
registry, query, update, and deregistry for a single resource. The resource provider
creates a resource and its metadata which describes the name, location, functions, and
other properties at the same time. First, the local RS will assign a global unique re-
source id for it. After generating the resource global id, the local RS forwards the
registry message to the RSs in the registry quorum.

The data of resource registry is completely distributed. When demanding services,
the user issues a query with keywords to local RS. Upon receiving the query, the RS
selects the query quorum and sends a query message to all the RSs in this quorum.
When a RS receives a query, it searches registry database for the satisfied resource
information and replies back. The user could obtain all resource information satisfied
with the query conditions. If a user queries with resource id, then exact one resource
information is responded.

 A Fault-Tolerant Distributed Scheme for GIS 131

4.1 Data structures in a RS

To accomplish the QFIS system, the RSs maintain some data structures and algo-
rithms. In our design, the system should be initialized and the registry and query set
table should be kept in each RS. The following items are necessary for a RS.

 RS ID: Each RS has its own unique registry server id.

 N-LegRing system: including R-set and Q-set. The construction of this system
should be initialized and the set table should be kept in each RS before launching
the registry mechanism.

 Registry database: a space for storing the metadata information of registered re-
sources. Each entry has the format (G_id, metadata), where metadata is an XML
file of small size and includes all the needed attributes-- name, location, time,
status etc.

4.2 Registry

When a service provider creates a new resource, the first step is to register on the
information service system and the owner of this resource is the service provider.
Naturally, the metadata, the description document (XML file), of the resource should
be provided. Basically, the registry process is separated into two stages. The first
stage randomly generates a new resource number r_id and checks the other existed
r_ids in local RS to acknowledge that this new r_id is unique. Meanwhile, each RS
was assigned an identical prefix id. Then the global unique G_id for this resource is
“RS’s id” + ”this newly generated r_id”. Such method of generating G_id can guaran-
tee that each G_id is globally unique. Meanwhile, the resources can be found by using
the G_ids.

forw
arding

Fig. 2. The registry process -- local RS forwards REGISTRY (G_id, metadata) to all the RSs in
the randomly selected R-quorum

132 M.-J. Yang et al.

After finishing the first registry stage, the registry process of local RS goes to the
second stage and sends REGISTRY(G_id, metadata) messages to all the RSs in an R-
quorum to enter the resource information into registry databases. Figure 2 shows the
registry process.

The registry procedure is described in the following steps:

Step 1: The service provider sends the metadata of this resource to local RS and the
RS generates a new random number r_no for it.

Step 2: The local RS compares this r_no with existed r_nos in registry database.
Step 3: If this r_no had existed , then discards it and randomly regenerate another

one and goes step 2; else assign “the local RS’s id” + ”this newly generating
r_no” as the global identification G_id of this resource; and appends the
G_id to the metadata of this resource;

Step 4: The local RS forwards REGISTRY(G_id, metadata) to all the RSs in the
randomly selected R-quorum.

Step 5: Upon receiving the REGISTRY(G_id, metadata), the RSs add the new in-
formation received in their caches and send the registry acknowledgement
R_ACK messages back.

Step 6: If the local RS does not receive all the R_ACK messages from all the RSs in
the quorum during a given period of time, then it randomly selects another R-
quorum and sends REGISTRY(G_id, metadata) to all the RSs in this quorum
and goes to step 5.

Step 7: After receiving all the R_ACK messages, the local RS sends R_DONE mes-
sage to all the RSs in the R-quorum, stores the resource information
FORWARD(G_id, R-quorum) in its database and replies R_COMPLETED
(G_id) back to the resource provider.

Step 8: Upon receiving the R_DONE message, the RSs save the cached REGISTRY
(G_id, metadata) information into their registry databases.

4.3 Query

By using the keywords, the user can inquire the resources registered in the databases
of RSs distributed in the different regions. The keywords could be the different attrib-
utes of metadata or be a G_id. With the quorum-based fault-tolerant information ser-
vice (QFIS), when a user queries a resource service, the local RS only multicasts the
searched keywords or resource G_id to N RSs in a Q-quorum. Figure 3 shows the
query process. Based on the theory of Legion structure, there is at least one common
RS node in any pair of R-quorum and Q-quorum. That is, it’s sufficient to search the
RSs in a Q-quorum for all resources. If the user has already known the G_id of the
queried resource, then there is exactly one resource information responded. If the user
searches with keyword(s), many resources satisfied will be returned.

The query procedure is described in the following steps:

Step 1: First, the user sends the QUERY(keyword) message to local RS which for-
wards the message to all the RSs in the randomly selected Q-quorum.

Step 2: Upon receiving the QUERY(keyword) message, the RS, which has copies of
the queried information, returns all REPLY(G_id, metadata) messages back.

 A Fault-Tolerant Distributed Scheme for GIS 133

Step 3: When all the REPLY messages from all the RSs in the quorum are received,
the local RS forwards these available information to the user.

Step 4: If the local RS does not receive all the REPLY messages after a given period
of time, then it randomly selects another Q-quorum, forwards the
QUERY(keyword) message to all the RSs in this new quorum, and goes to
step 2; Otherwise, the procedure stops.

forw
arding

Fig. 3. The query process -- local RS forwards QUERY(keyword) to all the RSs in the ran-
domly selected Q-quorum

4.4 Deregistry

When the resource provider would like to terminate the service, the procedure is in-
voked by the user to remove the resource information from the RSs. With the G_id,
the following steps are performed.

Step 1: The service provider sends the DELETE(G_id) to local RS.
Step 2: Upon receiving the DELETE(G_id) message, the local RS looks up the

R_quorum where the resource was registered previously and forwards the
message to all the RSs in the R-quorum.

Step 3: Upon receiving the DELETE(G_id) message, the RS deletes the information
registered by the provider previously and returns DEL_ACK back.

Step 4: If the local RS does not receive all the DEL_ACK messages from all the RSs
in the R-quorum during a given period of time, then it sends the
DELETE(G_id) message to the deletion pool of itself, which continues to
handle the deletion processes until the crashed RSs recover their faults and
call back.

Step 5: After receiving all the DEL_ACK messages from all the RSs in the
R_quorum or transferring the DELETE(G_id) messages to the deletion pool,
the local RS terminates the deletion procedure.

134 M.-J. Yang et al.

4.5 Update

When any attributes of metadata of resource are changed, the provider invokes the
update procedure through the local RS. All the RSs of the dedicated update quorum
are notified to modify the metadata with new information. The dedicated update quo-
rum is the same as the registry quorum (R-quorum) which is the quorum that the re-
source registered previously. The procedure of update is performed as follows.

Step 1: The service provider sends the UPDATE(G_id, new metadata) to local RS.
Step 2: Upon receiving the UPDATE(G_id, new metadata) message, the local RS

looks up the R_quorum where the resource was registered previously and
forwards the message to all the RSs in the R-quorum.

Step 3: Upon receiving the UPDATE(G_id, new metadata) message, the RS over-
writes it in registry database and returns UPD_ACK back.

Step 4: If the local RS does not receive all the UPD_ACK messages from all the RSs
in the R-quorum during a given period of time, then it goes to execute the de-
letion procedure followed by executing the registry procedure with new
metadata; Otherwise, the procedure stops.

We take an example to illustrate the construction of Leg-Ring system and the regis-
try, update, and query actions of RSs. Assume that there are nine registry servers
(RSs). Let N=9 and the id number of RSs be 0,1,2,……,8. Based on definition 3, the
construction of R-set and Q-set are shown in the following.

R-set = {{0,1,2},{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,0},{8,0,1}}
Q-set = {{0,3,6},{1,4,7},{2,5,8},{3,6,0},{4,7,1},{5,8,2},{6,0,3},{7,1,4},{8,2,5}}

Obviously, every pair of R-quorum and Q-quorum contains at least one common
element. When a provider wants to register a resource r1, the local RS, for example,
server 3, generates a G_id and forwards the REGISTRY(G_id, metadata) message to
all the RSs, for example, servers 8, 0, and 1, of the R-quorum. Upon receiving the
message, the RSs add the information in their caches and send the R_ACK back. If
any RS, for example server 1, crashed, the local RS resends the REGISTRY(G_id,
metadata) message to all the RSs, for example, servers 6, 7, and 8, of new randomly
selected R-quorum. After receiving all the R_ACK messages, the local RS sends
R_DONE and R_COMPLETED(G_id) messages to all the RSs in the R-quorum and
the resource provider, respectively. Similarly, another provider could register a re-
source r2 at servers 3, 4, and 5 of the R-quorum.

After a period of time, the provider invokes the update procedure through the local
RS which forwards the UPDATE(G_id, new metadata) message to all the RSs, for
example, servers 6, 7, and 8, in the R-quorum where the resource r1 was registered
previously. Upon receiving the UPDATE(G_id, new metadata) message, the RS
overwrites it in registry database and returns UPD_ACK back. Hence, the servers 6,
7, and 8 have the newest registration information of resource r1.

When a user wishes to get resource services, the user sends the QUERY(keyword)
message to local RS which forwards the message to all the RSs, for example, servers
0, 3, and 6, in the randomly selected Q-quorum. If the keyword of query is included
in the metadata of resources r1 and r2, then these registry information of resources
should be inquired and delivered to the user. Therefore, through the intersected serv-
ers 6 and 3, the resource information of r1 and r2 could be retrieved, respectively.

 A Fault-Tolerant Distributed Scheme for GIS 135

Furthermore, assume that some of queried servers crashed, for example, servers 0 and
3, and the procedure requests other RSs, for example, servers 2, 5, and 8, in the ran-
domly reselected Q-quorum for resource information. Therefore, through the inter-
sected servers 8 and 5, the resource information of r1 and r2 could be retrieved,
respectively.

5 Conclusion

Grid computing has becoming an important technology in many scientific fields need-
ing huge computing work. For the dispersion of plentiful resources in the world, the
information service of resources makes a challenging issue. Most of the related works
design the architecture of information service as hierarchical levels. From the point of
discovery view, hierarchical architecture can provide an effective method of discov-
ery and appendage but it lacks the ability of fault tolerance. In this paper, we propose
a distributed architecture for grid information service. Since the Leg-Ring system has
the properties of symmetry, load balance and fault tolerance, our quorum-based in-
formation service provides absolutely distinct algorithms for resource registry, query,
update and deregistry. In a region there is exactly one registry server (RS) selected to
execute the information service. Every resource provider only sends the message to
the local RS and then the local RS will complete the registry process. Based on the
proposed mechanism and Leg-Ring system, the system for a resource service is effec-
tive enough, fault-tolerant, and load-balanced.

References

1. Huang, Z.C., Gu, L, Du, B., He, C.: Grid Resource Specification Language based on XML
and its usage in Resource Registry Meta-Service. In: Proceedings of the 2004 IEEE Inter-
national Conference on Service Computing (SCC’04), September (2004) 467-470

2. OASIS UDDI Specification TC: http://www.oasis-open.org/committees/tc_home.
php? wg_abbrev =uddi-srec

3. Web Service Architecture: The W3C Web Service Architecture working group, public
draft: http://www.w3.org/TR/2003/WD-ws-arch-20030808/, August (2003)

4. Tierney, B., Aydt, R. et al: A Grid Monitoring Architecture. In: The Global Grid Forum
GWD-GP-16-2, January (2002)

5. Hawkeye: http://www.cs.wise.edu/condor/hawkeye
6. Singh, G., Bharathi, S. et al: A Metadata Catalog Service for Data Intensive Applications.

SC2003, Nov. (2003)
7. Tuecke, S., Czajkowski, K., Foster, I. et al: Open Grid Services Infrastructure (OGSI) Ver-

sion 1.0. Global Grid Forum Draft Recommendation, http://www-unix.gridforum.org/
mail_archive/ogsi-wg/2003/06/pdf00004.pdf (2003)

8. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. http://www.globus.org/research/
papers/ogsa. pdf, January (2002)

9. Globus Toolkit 3.0: http://www.globus.org/gt3

136 M.-J. Yang et al.

10. Yang, M.J., Yeh, Y.M., Cheng, Y.M.: Legion Structure for Quorum-Based Location Man-
agement in Mobile Computing. Journal of Information Science and Engineer, vol.20
(2004) 191-202

11. Zang, T., Jie, W., Hung, T., Lei, Z., Turner, S. J., Cai, W., Zhu, M., Katsinis, C.: An
OGSI-compliant Grid Information Service-Its Architecture and Performance Study. High
Performance Computing and Grid in Asia Pacific Region, 7th International Conference on
(HPCAsia’04), July (2004) 63-71

12. Tuecke, S., Czajkowski, K., Foster, I., Frey, J. et al: Grid Service Specification.
http://www. globus.org/ogsa

13. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circu-
lar configurations of processes. Communications of the ACM, vol.22(5), May (1979) 281-
283

14. Lann, G. L.: Distributed systems-towards a formal approach. In: Bruce Gilchrist, editor,
Information Processing 77; Proceedings of IFIP Congress, vol. 7, North-Holland, Amster-
dam (1977) 155-160

15. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE Trans-
actions on Parallel and Distributed Systems, vol. 9 (1998) 909-922

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 137 – 146, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Market-Oriented Model for Grid Service Management*

Huan Wang, Zhihui Du, Lei Wu, Suihui Zhu, and Erfan Shang

Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084

Huan-wang03@mails.tsinghua.edu.cn

Abstract. Grid service management and trading is a complex undertaking as
services are geographically distributed, heterogeneous and large-scale, owned by
different organizations with their local policies. Each service provider needs
flexible relationships between them, and each consumer joins Grid with the
intention of getting its purchase requirements satisfied. To allow Grid to reduce
the cost of e-business trading, to deal faster and to open up more new
opportunities, a market-oriented architecture called GTM (Grid Trading Model)
is proposed in order to establish a real-life Grid which provides a business
mechanism for organizing users and services efficiently based on market
economic rationale. GTM derives from an inherent similarity between typical
networks and classical economic market structures based on Virtual
Organization (VO) concept and the small-world theory. An emulated
environment is presented to illustrate the model’s economic feature, performance
and cheap service trading cost.

1 Introduction

Grid provides an opportunity to integrate large numbers and various types of dynamic
services owned by different individuals or organizations with their own policies in
distributed environment [1]. Service management and trading in large-scale Grid is
challenged due to Grid needs to organize users and services efficiently and let users
find more trading opportunities, which is similar with the business problem in the
real-life market. A market-oriented Grid environment can combine the advantages of
traditional service providing systems, and integrate present network applications across
distributed, heterogeneous, dynamic environments and communities, in order to
organize services in various industries, facilitate service providers finding credible
cooperation partners, establish efficient service trading platform between enterprises
and consumers. How to operate business process in Grid based on service characteristic
and the market economic rationale is the challenging problem which this paper tries to
deal with.

The specific problem that underlies the market-oriented Grid is coordinated resource
sharing and problem solving in dynamic, multi-institutional Virtual Organizations

* This paper is partly supported by National Natural Sciences Foundation of China

(No.60503039), Beijing Natural Sciences Foundation(No.4042018) and China’s National
Fundamental Research 973 Program (No. 2004CB217903).

138 H. Wang et al.

(VO) [2]. In real-life market economy, enterprises producing homologous products in
the same industry form a “Product Group” [3]. In our market-oriented Grid model,
Product Groups of different industries come to form corresponding industrial Virtual
Organizations. Each VO in the model provides some distinct kinds of services in order
to classify service provider and consumer groups by different service requirements and
purchase interests.

To support service trading, The VO-based Grid model is focuses on market driven
service management architecture, in which an essential base is the inherent symmetric
relationship between typical networks architectures (including Client/Server,
small-world and P2P) and classical economic market structures (including monopoly,
oligopoly, monopolistic competition, perfect competition). By detailed description of
network/market relationship, we expound that monopoly market fits in with
Client/Server network; monopolistic competition market fits in with small-world
network; and perfect competition market fits in with P2P network. Based on the most
popular market type in e-business environment (monopolistic competition structure)
and its corresponding network (small-world), we propose an architecture which can be
employed in Grid market situation, and establish the Grid Trading Model (GTM).

2 Principles of Economics and the Small-World Phenomenon

2.1 Principles of Economics in GTM

Market structures are influenced by the number of sellers in the marketplace. With the
number of enterprises increasing, the roles of product sellers, originally as price
makers, are converted into price takers, and the product price is closer to its marginal
cost [4]. A classification of markets is defined as the following four major types:

Monopoly: A single seller with complete control and the price maker over an industry
in which each product has no close substitute, such as industries of water and
CATV.Oligopoly: A market condition in which sellers are so few that the actions of
any one of them will materially affect price and have a measurable impact on
competitors, such as industries of tennis ball and base oil. Monopolistic competition:
There are many sellers producing products that are close substitutes for one another.
Sellers produce slightly differentiated products. It is popular in real-life economy; such
as movies, books, PC games and music industries which are most popular contents of
network market today. Perfect Competition: It is only an ideal market with many
sellers and buyers in the market where sellers are price takers and price competition
forces the price to marginal cost, such as industries of wheat and milk.

2.2 The Small-World Phenomenon

A social network exhibits the small-world phenomenon if, roughly speaking, any two
individuals in the network are likely to be connected through a short sequence of
intermediate acquaintances [5]. Recent work has suggested that the phenomenon is
pervasive in a range of networks arising in nature and technology [6]. The GTM can be
also demonstrated as a self-organized system based on small-world network.

 A Market-Oriented Model for Grid Service Management 139

Watts-Strogatz model [6] is one of the most refined models that were formulated in
recent work. The edges of the model are divided into “local” and “long-range” contacts.
Two characteristics distinguish the small-world networks: first, a small average path
length, typical of random graphs (here 'path' means shortest node-to-node path);
second, a large clustering coefficient C that is independent of network size. Suppose
that a node v has kv neighbors; then at most k(k-1)/2 edges can exist between them. Let
Cv denote the fraction of the valid edges that actually exist. Define C as the average of
Cv over all v [7]. C is less than 1 and it captures how many neighbors of a node are
connected to each other.

3 Symmetric Relationship Between Market Structures and Typical
Networks

[7] proposes a random rewiring procedure to interpolate between a regular ring lattice
(p=0) and a random network (p=1), in which the edges of the network are divided into
“local” and “long-range” contacts (Fig.1). It starts with a ring of N nodes, each
connected to its k nearest neighbors by undirected edges. With probability p, it
reconnects each edge to a node chosen uniformly at random over the entire ring, with
duplicate edges forbidden and the process completes till each edge rewires.

[7] defines characteristic path length L(p) and clustering coefficient C(p) for the
family of randomly rewiring graphs. When L(p) is almost as small as L(1) yet C(p)
remains almost constant at its value for the regular lattice and C(p)>>C(1), the graph
situation transform to the small-world.

Fig. 1. Symmetric relationships between market structures and typical networks

With p increasing from 0 to 1, more and more nodes provide long-range edges. We
define that the probability of one node being a server (white node in Fig.1) is

)2p1())(1(1 −⋅⋅−= − pPPQ k
n

k
k , i.e. one node that initiated a long-range edge has the

probability of (1-p/2) become a server which represents an enterprise in Grid market.
Others are clients (black node in Fig.1) which represent consumers. Along with Q’s

140 H. Wang et al.

increasing, different forms of network and market structures are homologous
transformation.

Monopoly Vs C/S: When p 0 and Q=1/N, only one node initiates a long-range edge
which become the unique server, and the graph state is a typical Client/Server network.
The single server who is a monopolist in its industry; the clients who have edges to the
server become real consumers; other clients are only latent consumers still outside the
market.

Monopolistic competition Vs small-world: When p is small (about 0.001<p<0.1 in
Fig.1), ppp ≈−)21(and pQ ≈ , some nodes become servers, and the graph state is

transformed to the small world network which we will use in GTM. The nodes close to
the servers cluster into sub graphs which connect with each other by long-range edges.
Each sub graph represents a distinct industry’s consumer group. Each server is an
enterprise in this industry. If a client has no edge to any server, it doesn’t enter the
market yet. Some servers monopolize several industries together and compete against
each other when they are so near that they have a large size of client intersection. When
a server has no or few intersection with other servers, it means this server monopolize
one industry alone. One or some enterprises monopolize some kind of services in their
sub graphs, and they compete for the same industry’s consumers. That is a typical
monopolistic competition structure.

Perfect Competition Vs Peer-to-Peer: When p is close to 1, (1-p/2) 1/2 and Q 1/2,
long-range edges are all over the graph; completely random graph is homologous with
a Peer-to-Peer network in which each node may be a server. This situation accords with
current P2P network in that free riders are ubiquity and demanders are unequally the
suppliers of files in P2P networks [8]. About half of the nodes are designed to be
servers in the model. Each server is only provides similar and limited services and no
peer is larruping, which are the features of a perfect competition market.

In Grid market, along with increasing number of servers and decreasing services
price, consumer surplus is increasing continually and more and more latent consumers
will participate in market transactions. As a result, Grid market model transform from
perfect monopoly to perfect competition.

4 Grid Trading Model Architecture

Based on [9] and symmetric relationships between market structures and typical
networks, monopolistic competition structure and its corresponding small-world
network are selected for VO-based GTM to satisfy nowadays e-business market. Fig.2
shows the schematic view of GTM.

GTM has four basic specifications:
Model ::= Service, VO, Relation, Edge
VO ::= VO server, General node
Relation ::= Client/Server, P2P, Complete connectivity
Edge ::= Local edge, Long-range

 A Market-Oriented Model for Grid Service Management 141

Fig. 2. The schematic view of Grid Trading Model

The model has four basic components: Service, VO, Relation and Edge. SVi
represents the ith type of service. VO is the basic unit of user and service management,
represented by VOi. VO contains VO server, General node. S represents the set of all the
VO servers in GTM, Si represents the set of all servers in VOi, and Sij represents server
No.j in VOi. Server Sij is an enterprise which provides some types of services in Grid
market. G represents a General node, or a consumer in GTM. Gik represents General
node No.k in VOi. Relations between nodes inside VO involve Client/Server, P2P, and
Complete connectivity. There are two kinds of edges between nodes: Local edge and
Long-range. Local edge exists inside VO (between Sij and Sik, Gij and Gik, Sij and Gik, j
k); Long-range exists between different VOs (between Sij and Skm, Sij and Gkm, Gij and
Gkm, i k).

VOi is a node organization partitioned by service requirements and purchase
interests. It provides [SVim, SVin] types of services, where im and in are numerically
close, and im < in, indicating that each VO provides some slightly differentiated types
of services and VOi is the product group of [SVim, SVin]. Enterprises establish servers
actively by their profit needs, and accordingly organize an industry product group in a
VO, and attract G to join their VOs. Generally, the number of servers in Si and
Long-range edges are both more than 1 in VOi, not a single one in network models
illustrated in Section 3. Some servers monopolize several kinds of services in their VO,
and they compete in the same industry. That is a typical monopolistic competition
feature. S is capable of running for a long time stably and reliably, so it dominates the
topology of GTM. Complete connectivity among each VO’s servers.

User’s requirements and interests are seldom changed in a short term, for instance
one user’s most interested services are to download mp3, download movies and browse
news at all times. So the model should not be stroked by user’s behavior of frequently
entering and exiting different VOs.

Three general e-business trading process modes in GTM are B2B, B2C and C2C,
where B2B takes place between servers, B2C takes place between server and client, and
C2C takes place between clients.

142 H. Wang et al.

5 Performance Analysis of GTM

This section focuses on two problems in the emulated GTM system: (1) Proving GTM
is certainly based on small-world network and virtual organization. (2) Proving the
service transaction cost is fairly cheap in the model.

There are two types of messages in the model: service publishing information and
service request. In simulation process, Gossip [10] protocol is employed here for those
two kinds of information disseminations. The simulator is written in Java, and each
node is implemented as a Java object. The simulation results presented in this paper are
based on 100 simulations for each configuration.

In our simulations, the number of VO is n; VOi’s size is mi and the total number of
nodes is N. The number of server in VOi is si. Let Model’s clustering coefficient is C
and the average node-to-node path length is L.

5.1 Small-World and VO Concept in GTM

5.1.1 Clustering oefficient in GTM
Ci(local) measures the clustering coefficient inside VOi, calculating only local edges
without long-range edges. Assume that all nodes had joined GTM before the first
request was generated. The starting topology including two types of edges is
constructed with two steps: (I) each node randomly selects k local nodes inside VO and
l nodes in other VOs (long-range) to connect with. (II) adds edges between any two
servers in local VOs to extend Si to be a complete sub-graph; each server randomly
selects k1 servers in other VOs to connect with. After connecting edges, the model
graph is constructed by loosely connecting a set of almost complete sub-graphs, which
can be pictured a typical Small World [7].

Fig. 3. Influence for C/C(local) by long-range’s emergence

A conclusion (1) can be drawn from the random node edge connection: the value of
C(local) is independent of the number of VO n and VO size m, and only decided by the
value of k.

C is simulated in two situations to prove the model has a large clustering coefficient:
1) each VO has the same size m, the total number of nodes in the balanced distribution

 A Market-Oriented Model for Grid Service Management 143

is N=m*n; 2) VO is divided into different sizes by uniform distribution and Gaussian
distribution separately.

(1) Balanced Distribution of VO Size
C/C(local) is simulated in l=1,2,3, and k=0.8*m,0.5*m separately, described in Fig.3.
Two large numbers of C(local) with the value of 0.8 and 0.63 respectively are created
according to different values of k. Long-range edge’s emergence makes C/C(local)
decrease because long-range edges bring local nodes new neighbors, whereas the graph
connectivity with new ones is looser. The simulation results suggest that it will
influence the value of C/C(local) when l is larger. When l=3 and VO size is 100,
C/C(local) drops to 81%. Fig.3 also reveals that influence of long-range edge’s
emergence for C/C(local) falls by the increasing of VO’s size. When VO’s size is larger
than 50 nodes and l=1, C/C(local)>90%. So long-range edge brings small effect to C
when VO is in rational sizes.

(2) Unbalanced Distribution of VO Size
Firstly, Gaussian distribution is adopted. Let l=1, k=0.8*m and n=100. Suppose the
network model is divided into 9 kinds of VOs ranging from 10 to 90, spacing out 10
nodes apart. The total number of nodes is about 5000. In Gaussian distribution, is
from 0.1 to 1 and μ=0, the clustering coefficient is named Cg. Most VOs’ sizes are close
to 50. When C=0.677, m=50, n=100 and N=m*n=5000. And Cg only decreases less
than 10% with C. Similar result is gained from uniform distribution experiment. There
are 10 sizes of VOs from 10 to 100 by 10 nodes apart, so N=5500, and the clustering
coefficient is 93.4% of C.

Due to the small influence on C/C(local) by long-range edge’s emergence, after
initialization of graph’s two types of edges, regardless of the distribution type of VO
size, the entire model’s clustering coefficient C can follows large C(local) inside VO so
long as each node has enough local neighbors.

5.1.2 Short Average Node-to-Node Path Length
This model also has short average node-to-node path length L. L is calculated by
Dijkstra arithmetic. L is simulated with VO sizes changing between 100 and 4000,
shown in Fig.4. Simulation result reveals that after adding (I) and (II) edge, L is very
small. L in larger scale isn’t simulated, because Dijkstra arithmetic is not the practically
used path length calculation method in GTM, which is detailed in next section.

Each node in the model holds a great deal of VO local information (local edges) and
some other VOs’ information (long-range). Each node has lots of local information to

Fig. 4. The average node-to-node path length L in balanced distribution of VO size

144 H. Wang et al.

make large C and short L. The emulated model for GTM is thus based on small world
network and virtual organization.

5.2 Cheap Service Transaction cost

Transaction cost includes three main sorts: search and information costs, bargaining
and decision costs, and policing and enforcement costs [4]. GTM is focus on solving
the search and information costs of finding trading partners. For L is short in the model,
one node can reach any other node through a small hops. So one search request will be
fed back quickly in the model, and small L brings low service transaction cost.

Table 1. Relationship of L(local) and C(local)

VO size C(local) L(local) C(local) L(local) C(local) L(local)
100 0.804 1.195 0.695 1.303 0.556 1.444
200 0.802 1.198 0.700 1.299 0.552 1.447
300 0.799 1.201 0.697 1.302 0.545 1.451

According to the local edge connection mode and conclusion (1), conclusion (2) is

drawn as following.

C(local) + L(local) = 2 conclusion (2)

L(local) measures average path length among nodes inside local VO. Conclusion (2)
shows that large C(local) is corresponding to the small L(local), and is tenable when

NNk >* at least. Table 1 also indicates that L(local) and C(local) are both
independent of VO size.

The connection mode of (II) edge forms a set of complete sub-graphs connected by
some long-range edges. Regarding each VO as one node, and long-range edges among
servers is corresponding to local edge inside a VO; the connection mode of (II) edge is
almost the same with a single VO. So the relationship among different VOs’ servers
obey conclusion (2) too.

Using Dijkstra arithmetic, with the number of VO n increasing, transaction cost is
more and more expensive along with L’s increasing continuously. In the model’s
trading process, including B2B, B2C and C2C, conclusion (2) is used practically to
assure stably low transaction cost. This is because GTM distinguishes General node
and VO server so that local information inside VO is able to disseminate efficiently
abroad through long-range edges among servers. The clustering coefficient of edges
connecting servers in different VOs is called C(VO).

In B2B process, distance among local servers in same VO is 1. The model assumes
that the shortest trading distance between any two enterprises is (2-C(VO)+1) at most.
Adding 1 is for dissemination among servers inside VO. In B2C process, client sends
service request to local server directly, and then it is the same process with B2B.
Therefore the model’s maximum trading distance is (2-C(VO)+1+1). In C2C process,
the distance of service request disseminating in local VOi is (2-Ci(local)). If the
destination service provider is not in VOi, local servers use (2-C(VO)) hops to send
message to any other VO’s server. In the destination VOj, request also disseminates
(2-Cj(local)) hops to any VO’s node. That is to say, the appearance of VO server makes

 A Market-Oriented Model for Grid Service Management 145

the average node-to-node path length in the graph of the model to be
))(2)(2)(2(localCVOClocalC ji −+−+− , which is independent of the model size.

This conclusion brings cheap search and information costs, so it controls the Grid
transaction costs efficiently.

6 Related Work

This architecture can be associated with super-peer [11]. The differences of the two
systems are: each super-peer is a complete proxy of its clients who submit queries to
their super-peer and receive results from it, and this query mode only takes place in
GTM’s B2C process. In GTM each client has its own long-range edges and many local
edges, so each node has the ability of forwarding requests outside local organization.

Some present search protocols [12],[13] can be applied to GTM system, as the use of
GTM and the choice of those are orthogonal issues so long as enterprises and
consumers obey service and user organization policy of GTM. Market-based
computational and resource trading system designs including some useful market
models, which can also be employed seamlessly inside VO domain of GTM, which
have been proposed in [14].

A few other systems such as GRACE [15] and JaWS [16] have built up
market-oriented environments. However, they just try to solve idle computer resources
reusing problems by renting computational power, storage, or special services, which is
a different aspect of Grid economy problem from ours.

7 Conclusions and Future Work

GTM derives from an inherent similarity between typical networks and classical
economic market structure. It is simulated based on graph model [7]. We expound that
GTM may also turn out to be a useful model for “real-life economics”.

GTM is a hybrid system which integrates C/S and P2P structure (P2P relation is
among VOs; C/S and P2P are concurrence inside VO), so the architecture can adapt to
different trading processes. The small-world feature of GTM brings system large
clustering coefficient and short average node path length which are corresponding to
the various close business relationships and cheap transaction cost. All of those system
advantages make GTM fit in with monopolistic competition mode economy.

Some interesting directions of this work are still to come in future work. 1)
Incentives for query forwarding: competition is a problem in P2P frameworks that rely
on peers to forward queries, because a peer acting in its own best interests will not
forward queries to potential competitors. 2) The tragedy of web services: If one
company becomes dependent on many companies, it will be only a question of time
until it is out-of-business because one of the companies that it depends on goes
out-of-business. 3) GTM essentially thinks about service Qos, security and payment
system, and considers preventing the illegal sharing of copyrighted files. 4) We will
build a more practical Grid system to explore the integration of market economy and
Grid. And more information search protocols will be applied to GTM to improve the
trading efficiency.

146 H. Wang et al.

References

1. Foster, C. Kesselman, J. Nick and S. Tuecke, “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration”, Globus Project, 2002.

2. I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations.”, International Journal of High Performance Computing
Applications, 15 (3), 2001.

3. C.R. Mcconnell, S.L. Brue. Macroeconomics Principles, Problems, and Policies.
McGraw-Hill Inc. New York, 2001.

4. G. Mankiw, “Principles of Economics”, 3rd Edition, South Western College Publishing,
USA, 2004

5. S. Milgram, “The small world problem.”, Psychology Today, 22, 1967, pp. 61-67
6. J. Kleinberg, “The Small-World Phenomenon: An Algorithmic Perspective.”, Tech. rep

99-1776, Cornell University, 1999
7. D. Watts, S. Strogatz, “Collective dynamics of ‘small-world’ networks.”, Nature 393, 1998,

pp. 440-442
8. E. Adar and B.A. Huberman, “Free Riding on Gnutella.” Technical report, XeroxPARC,

Aug, 2000
9. E.F. Shang and Z.H. Du, “Efficient grid service location mechanism based on virtual

organization and the small-world theory”, Journal of Computer Research and Development,
Beijing, 40 (12), 2003, pp. 1743-1748.

10. A. Kermarrec, L. Massoulie, A. Ganesh, “Reliable probabilistic communication in
large-scale information dissemination systems.”, MSR-TR-2000-105, Microsoft Research
Cambridge

11. B. Yang, H. Garcia-Molina, “Designing a Super-Peer Network”, 19th International
Conference on Data Engineering, Bangalore, India, March 2003, pp. 49-62

12. A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems.”, In Proc. of
the 28th Intl. Conf. on Distributed Computing Systems, July 2002.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable
content-addressable network.”, In Proc. ACM SIGCOMM, August 2001.

14. M. Stonebraker, R. Devine, M. Kornacker, etc., “An Economic Paradigm for Query
Processing and Data Migration in Mariposa”, Proceedings of 3rd International Conference
on Parallel and Distributed Information Systems, Austin, TX, USA, Sept. 1994.

15. R. Buyya, J. Giddy, D. Abramson, “An Economy Grid Architecture for Service-Oriented
Grid Computing”, 10th IEEE International Heterogeneous Computing Workshop (HCW
2001), In conjunction with IPDPS 2001, San Francisco, USA, April 2001.

16. S. Lalis and A. Karipidis, “An Open Market-Based Framework for Distributed Computing
over the Internet”, First IEEE/ACM International Workshop on Grid Computing (GRID
2000), Dec. 2000, Bangalore, India: Springer Verlag, Germany.

Pricing Web Services

Kevin Ho1, John Sum1,�, and Gilbert S. Young2,��

1 Department of Information Management, Chung Shan Medical University,
Taichung, 402, Taiwan, ROC

pfsum@csmu.edu.tw
2 Department of Computer Science, Cal State Poly Pomona CA, USA

Abstract. In this paper, a preliminary survey on the utilization of com-
binatorial auction as a mechanism for the allocation and the Gomory-
Baumol price and the Shapley value as a pricing mechanism for web
services is presented. It is shown that Gomory-Baumol price is in general
unable to determine the prices for the individual service, even though the
services can be optimally allocated. Except when the solution of the allo-
cation problem is integral, the condition for which the Gomory-Baumol
price could be determined is unclear. On the other hand, it is found that
Shapley value could be applied to price individual service. By allowing
the service providers setting reserve prices on their services, it can guar-
antee that the price is individual rational.

1 Introduction

Computing grid, an infrastructure enabling the integrated, collaborative use of
high-end computing systems, networks, data archives, and scientific instruments
that multiple organization operate (p.65 in [14]), has been one of the major re-
search topics in recent years. While lots of works have been done on the techno-
logical advancement enabling the construction of such infrastructure [8, 14], only
a few work have been done on the pricing of a resources being shared within the
grid or P2P [7, 9, 10, 12, 17]. Unless the stakeholders (both services providers
and consumers) of a grid are all from non-profit organizations, services should be
priced and service consumers should pay for what they have been served. That
should be the way for the sustainability of a grid.

A computational grid is essentially an online market for trading services (like
web services) and resources (like Internet bandwidth). Providers publicize the
services or resources they can supply, and then the consumers utilize the services
or resources by paying service charge. As in a normal market, trading services
could be accomplished by 4 different models. The simplest is that a buyer goes
directly to a seller site to get the service and then pay for what he/she has got.
Flea market is an example of this type. In the second to the forth type of market
are shown in Figure 1.

� Corresponding author.
�� The work is supported in part by US NSF Grant 0321333.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 147–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

148 K. Ho, J. Sum, and G.S. Young

BrokerProvider

Consumers Providers

Broker Consumer Broker

ConsumersProviders
(a) (b) (c)

Fig. 1. Trading models: (a) Single supplier (provider) multiple buyers (consumers);
(b) Multiple suppliers (providers) single buyer (consumer); (c) Multiple suppliers
(providers) multiple buyers (consumers)

Amongst these four types of trading model, the complication lies in the fact
that each consumer might want to buy products from more than one provider,
and each provider might provide more than one product. In such case, the trading
problem is essentially a combinatorial optimization problem. While the trading
involves a large number of consumers/providers and the number of services for
auction off is large, the problem is intractable (in the sense of computational
complexity). Generally speaking, the fundamental problems to be solved in a
trading market can be summarized as the following two problems.

Q1 Revenue maximization: How the services can be sold at their maximum
market value ?

Q2 Services pricing: How the money being collected can effectively pay back
to the suppliers1 ?

Many studies have been reported in the literature [1, 2, 6, 11, 13] in regard to
these problems. Basically, the solutions developed are problem depended. For
many instance, problem Q2 have no need to be solved. In such case, trading
problem is simply a revenue maximization problem.

For a market only one seller and multiple sellers (Figure 1a), like the FCC
Spectrum auction or the airport landing slots allocation problems, one approach
to solve problem could be accomplished by combinatorial auction [5]. As all the
money collected will go directly to the government, the second problem Q2 does
not exist. Similarly, for a market that consists of only one buyer and multiple
suppliers bid for selling their services or product, Figure 1b, the second problem
Q2 does not exist neither. When a market consists of more than one supplier,
as shown in Figure 1c, the solution will no more be easy.

Inthispaper,our focus isonthemarketconsistsofmultiplesuppliersandmultiple
buyers. The difficulty of using combinatorial auction to price a web service will
be presented. It is shown by example that combinatorial auction in general can
allocate the resource to the buyers and get back the maximum revenue. Solution
obtained by combinatorial auction does not help much in determining the price of
1 In this paper, seller, supplier and provider are used interchangeably. All of them

are referred to the one who provide services. Buyer and consumer are also used
interchangeably. They are referred to the one who consume the services.

Pricing Web Services 149

a service being sold. In [5], de Vries & Vohra have described how to use Gomory-
Baumol integer price as a method to set the price of a commodity in combinatorial
auction. Recently, in [16], Xia, Koehler and Whinston have also surveyed different
approaches for setting the clearance price in combinatorial. In this short note, we
would like to argue with example that computing Gomory-Baumol price is not
easy. The so-called free good can be of non-zero price. Besides, we would like to
add that Shapley value can in fact be a simple alternative pricing scheme for a
combinatorial auction and show how Shapley value can be applied even in the case
that the sellers have their own reserve prices.

2 Service Allocation by Combinatorial Auction

Considering the following auction problem with four bidders, B1, B2, B3 and
B4, bidding for three commodities, A, B and C. Their bids and bid prices are
depicted in the following table.

Bidders A B C Bid Price ci

B1
√ √

- 3K
B2 -

√ √
3K

B3
√

-
√

3K
B4

√ √ √
4K

Solving the above allocation problem, one can formulate the problem as the fol-
lowing integer programming problem :

Max. z = 3x1 + 3x2 + 3x3 + 4x4

s.t.

⎧⎨
⎩

x1 + x3 + x4 ≤ 1
x1 + x2 + x4 ≤ 1
x2 + x3 + x4 ≤ 1

xi ∈ {0, 1} ∀i = 1, 2, 3, 4;

(1)

and then solve it by using Chavtal-Gomory Cutting Plane approach. By linear
relaxing, i.e. setting the constraints on xi be 0 ≤ xi ≤ 1, and adding slack
varibles s1, s2 and s3, the IP Problem (1) can be represented by the following
tabular form.

x1 x2 x3 x4 s1 s2 s3 z
3 3 3 4 0 0 0 0
1 0 1 1 1 0 0 1
1 1 0 1 0 1 0 1
0 1 1 1 0 0 1 1

Applying Dantzig’s Simplex method [4], the optimal solution for the linear re-
laxed problem will be given by the following tabular form.

x1 x2 x3 x4 s1 s2 s3 z
0 0 0 -0.5 -1.5 -1.5 -1.5 4.5
1 0 0 0.5 0.5 0.5 -0.5 0.5
0 1 0 0.5 -0.5 0.5 0.5 0.5
0 0 1 0.5 0.5 -0.5 0.5 0.5

150 K. Ho, J. Sum, and G.S. Young

The optimal z is 4.5 and the solution for (x1, x2, x3, x4) will be (0.5, 0.5, 0.5, 0).
Since the table consists of non-integer elements, the following artificial con-

straint (considering the second row only) is added to the original problem.

0.5x4 + 0.5s1 + 0.5s2 + 0.5s3 ≥ 0.5. (2)

It can be re-written by adding a slack variable, s4 : 0.5x4+0.5s1+0.5s2+0.5s3−
s4 = 0.5. Again, applying Dantzig’s Simplex method, the optimal solution of this
new problem can be given by the following tabular form.

x1 x2 x3 x4 s1 s2 s3 s4 z
0 0 0 0 -1 -1 -1 -1 4
1 0 0 0 0 0 -1 1 0
0 1 0 0 -1 0 0 1 0
0 0 1 0 0 -1 0 1 0
0 0 0 1 1 1 1 -2 1

The optimal z is 4 and the solution for (x1, x2, x3, x4) will be (0, 0, 0, 1). Since
all the elements in the tabular form are integers, this is the optimal solution for
the IP Problem (1).

That is to say, the auctioneer will allocate all the commodities A, B and C
to bidder B4 and get the optimal profit 4. Now it comes to another problem.
Suppose commodities A, B and C are from three different suppliers. The auc-
tioneer will need to impute the values of these three commodities and then pay
back the amount to each supplier.

3 Gomory-Baumol Price

Ralph E. Gomory & William J. Baumol have suggested an algorithm for such
imputation. First, the artificial constraint, Equation (2), is re-written by writing
s1, s2 and s3 in terms of x1, x2, x3 and x4, i.e.

0.5x4 + 0.5(1 − x1 − x3 − x4)
+0.5(1 − x1 − x2 − x4)
+0.5(1 − x2 − x3 − x4) ≥ 0.5

x1 + x2 + x3 + x4 ≤ 1. (3)

Second, adding this artificial constraint to the Problem (1) and treating it as an
artificial goods, the prices for A, B, C and this artificial goods can be obtained
by solution the following constraint minimization problem.

Min. w = π1 + π2 + π3 + π4

s.t.

⎧⎪⎪⎨
⎪⎪⎩

π1 + π2 + π4 ≥ 3
π2 + π3 + π4 ≥ 3
π1 + π3 + π4 ≥ 3
π1 + π2 + π3 + π4 ≥ 4

πi ≥ 0; ∀i = 1, 2, 3, 4,

(4)

Pricing Web Services 151

where π1, π2, π3 and π4 are the shadow prices for A, B, C and the artificial
goods respectively. It is not difficult to solve the above problem by using Simplex
method. The optimal w will be 4 and the solution for (π1, π2, π3, π4) will be
(1, 1, 1, 1).

Since π4 is the shadow price for an artificial goods, its value has to be re-
distributed to the real goods, i.e. A, B and C. Gomory & Baumol suggested that
the re-distribution can be accomplished by considering the relationship between
the artificial constraint and the original constraints. Considering a general IP
problem defined as follows:

Max. z = cx

s.t.
{

a1x ≤ b1; a2x ≤ b2; · · · amx ≤ bm

−x1 ≤ 0; −x2 ≤ 0; · · · −xn ≤ 0
(5)

where x is a n-vector and ai = (ai1, ai2, · · · , ain) corresponds to the coefficient
vector in the ith constraint. Suppose there is only one artificial constraint being
added for solving the problem and is denoted as follows : a′x ≤ b′. The essential
idea of Gomory-Baumol algorithm is to find out the coefficients α1, α2, · · ·, αm+n

for the following equation:

a′ = α1a1 + · · · + αmam + αm+1e1 + · · · + αm+nen, (6)

where ek is an n-vector with the kth element −1 and other zeros. Let π1, π2

to πm+n+1 be the optimal prices evaluated based on solving the dual of the
following problem.

Max. z = cx

s.t.

⎧⎨
⎩

a1x ≤ b; a2x ≤ b2; · · · amx ≤ bm

−x1 ≤ 0; −x2 ≤ 0; · · · −xn ≤ 0
a′x ≤ b′

(7)

The price πm+n+1 can thus be distributed to the rest of the other goods by the
following scheme:

δπj =
{

αjπm+n+1 if j = 1, · · · , m + n
0 if j = m + n + 1 (8)

where δπj is the amount to be marked up for the unit price of the jth commodity.
Therefore, the unit prices for the real goods (Alcaly and Klevorick in [1] called
it Baumol-Gomory price), π′

js, can be defined as follows:

π′
j = πj + αjπm+n+1 (9)

for all j = 1, · · · , m + n.
As noted by Alcaly and Klevorick in [1] and O’Neill et al in [11], Gomory-

Baumol algorithm does not always can lead to a solution that the free good is of

152 K. Ho, J. Sum, and G.S. Young

zero value. That is, b1π
′
1 + · · · bmπ′

m �= zopt. Let us consider the auction problem
(1) again. Its corresponding linear problem is given by the following problem.

Max. z = 3x1 + 3x2 + 3x3 + 4x4

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x3 + x4 ≤ 1
x1 + x2 + x4 ≤ 1
x2 + x3 + x4 ≤ 1
x1 + x2 + x3 + x4 ≤ 1

−xi ≤ 0 ∀i = 1, 2, 3, 4.

(10)

The dual problem will be given by

Min. w = π1 + π2 + π3 + π4 + 0π5 + 0π6 + 0π7 + 0π8

s.t.

⎧⎪⎪⎨
⎪⎪⎩

π1 + π2 + π4 − π5 ≥ 3
π2 + π3 + π4 − π6 ≥ 3
π1 + π3 + π4 − π7 ≥ 3
π1 + π2 + π3 + π4 − π8 ≥ 4.

(11)

Here π5, π6, π7 and π8 correspond to the unit price of the artificial goods in the
constraints −x1 ≤ 0; −x2 ≤ 0; −x3 ≤ 0; −x4 ≤ 0. Solving the above problem
using Simplex method, four solutions for π can be obtained.

π1 π2 π3 π4 π5 π6 π7 π8

1 1 1 1 0 0 0 0
0 1 1 2 0 1 0 0
1 0 1 2 0 0 1 0
1 1 0 2 1 0 0 0

In accordance with Gomory-Baumol approach, one possible coefficient vector
of the artificial constraint is expressed as the following equation.⎛

⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠

T

= 0.5

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠

T

+ 0.5

⎛
⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎠

T

+ 0.5

⎛
⎜⎜⎝

0
1
1
1

⎞
⎟⎟⎠

T

+ 0.5

⎛
⎜⎜⎝

0
0
0
−1

⎞
⎟⎟⎠

T

(12)

The unit prices, π1, π2, π3, π5, π6, π7 and π8.

π1 π2 π3 π4 π5 π6 π7 π8

∑
k πkbk

1.5 1.5 1.5 0 0 0 0 0.5 4.5

Obviously the total amount that the sellers received is 4.5 which is larger than
the revenue 4. An interesting point is about π8. It is the shadow price of the
constraint −x4 ≤ 0. It seems to be meaning something.

As a matter of fact, Equation (12) is only a possible linear expression for
(1, 1, 1, 1). There could be many alternatives. One example is⎛

⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠

T

=

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠

T

+

⎛
⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎠

T

+

⎛
⎜⎜⎝

−1
0
0
0

⎞
⎟⎟⎠

T

+

⎛
⎜⎜⎝

0
0
0
−1

⎞
⎟⎟⎠

T

. (13)

Pricing Web Services 153

Similarly, there are four solution for the unit prices, π1, π2, π3, π5, π6, π7 and π8.

π1 π2 π3 π4 π5 π6 π7 π8

∑
k πkbk

2 2 1 0 1 0 0 1 5
1 2 1 0 1 1 0 1 4
2 1 1 0 1 0 1 1 4
2 2 0 0 2 0 0 1 4

Therefore, it comes up with a question about which linear expression used for
imputation and which one is the most meaningful.

4 Shapley Value for Pricing

In 1953, Shapley proposed the Shapley value for the computation of the value
of players in a cooperative game [15]. The definition of Shapley value is stated
as follows. For a game with n players and the characteristic function for the
coalition S ⊂ N is denoted by v(S), the value of the ith player, satisfies the
conditions : (i) v(φ) = 0, v(S) ≥ 0 for all S ⊂ N and (ii) v(S ∪T) ≥ v(S)+ v(T)
for any disjoint subsets S, T ⊂ N .

Condition (ii) is normally called superadditivity. The Shapley value is defined
by the following equation.

πi =
∑

S⊂N i∈S

(n − s)!(s − 1)!
n!

(v(S) − v(S − {i})), (14)

where s is the number of elements in the set S. Solution π implies the following
properties: [P1] (Group rational)

∑n
i=1 πi = v(N), and [P2] (Individual rational)

πi ≥ v({i}) for all i ∈ N .

Bid prices are superadditive. Follow the same example and assume the
revenue has been calculated by the cutting plane approach as before, the profit
sharing problem can be formulated as a 3-persons game. In which N = {A, B, C}.
The characteristic functions are thus be given by

v(ABC) = 4, v(AB) = 3, v(BC) = 3, v(AC) = 3,

v(A) = 0, v(B) = 0, v(C) = 0, v(φ) = 0.

Here φ is the empty set. The reason why v(A) = v(B) = v(C) = 0 can be
explained as no one interests in one single item. Single item values nothing. The
Shapley value of commodity A, B and C can thus be computed. The price paid
by the bidders and the profit gained by sellers could be defined as

Price(B1) = 0 Price(B2) = 0 Price(B3) = 0 Price(B4) = 4
Price(A) = 4/3 Price(B) = 4/3 Price(C) = 4/3.

154 K. Ho, J. Sum, and G.S. Young

Bid prices are not superadditive. To apply the Shapley value equation,
the characteristic function must be superadditive. But bid prices are usually not
superadditive, like the example below.

Bidders A B C Bid Price
B1 - -

√
3K

B2
√ √ √

4K

To apply Shapley value, one approach to define the characteristic function as
the maximum revenues that can be gained instead of the bid prices. That is, for
all S ⊂ N ,

v(S) = max

{
c(S), max

TS

{ ∑
S′⊂TS

v(S′)

}}
, (15)

where T is a partition of S and c(S′) is the bid price for subset S′ ⊂ S. Therefore,
the characteristic function could be defined as follows :

v(ABC) = 4, v(AB) = 0, v(BC) = 3, v(AC) = 3,

v(A) = 0, v(B) = 0, v(C) = 3, v(φ) = 0.

Here v(S) is the maximum revenue that can be gained whenever the subset S is
allocated and φ is the empty set.

Ignoring the computational burden, the Shapley values for the commodities
can thus be computed. Let π1, π2 and π3 be the prices for commodities A, B
and C respectively. π1 = 1/3, π2 = 1/3 and π3 = 10/3.

Auction with reserve prices. As Shapley value is individually rational, it is
able to modify the auction mechanism by allowing sellers to set a reserve price.
In such case, the sellers are also treated as bidders. Suppose the reserve prices
of the items are 1K, 2K and 2K respectively, the bid patterns can be tabulated
as following table.

Bidders A B C Bid Price ci

B1 - -
√

3K
B2

√ √ √
4K

B4
√

- - 1K
B5 -

√
- 2K

B6 - -
√

2K

Solving the above combinatorial auction, one will see that the commodities will
eventually be allocated to B4, B5 and B1. That is to say, commodities A and B
are not sold. Only C will be sold to B1 at a price of 3K. To compute the Shapley
values for these commodities after auction, one can tabulate the characteristic
functions as follows :

v(ABC) = 6, v(AB) = 3, v(BC) = 5, v(AC) = 4,

v(A) = 1, v(B) = 2, v(C) = 3, v(φ) = 0.

The corresponding Shapley values for A, B and C will be 1, 2 and 3 respectively.
As C is the only one being sold, seller C can get 3K.

Pricing Web Services 155

Remark on reserve price. It should be noted that the idea of reserve price
cannot be extended by allowing sellers to form coalitions and set reserve price
for the commodities they sell. It is because Shapley value cannot ensure the
condition that ∑

i∈S

πi ≥ v(S).

This situation can be observed from a simple example. Suppose there are two
bidders B1 and B2 bidding for commodities A, B and C.

Bidders A B C Bid Price ci

B1
√ √ √

6K
B2

√
-
√

4K
B3

√ √
- 7K

B4 -
√

- 3K

Sellers A and B form a coalition and set the reserve price for {A, B} to be 7K.
Seller B furthermore set the reserve price for B to be 3K. The characteristic
functions for the above auction will be given by

v(ABC) = 7, v(AB) = 7, v(BC) = 3, v(AC) = 4,

v(A) = 0, v(B) = 3, v(C) = 0, v(φ) = 0.

Let π1, π2 and π3 be the prices for commodities A, B and C respectively.
π1 = 8/3, π2 = 11/3 and π3 = 2/3. Obviously, π1 + π2 = 19/3 < 7. That means,
sellers A and B have to pay the auctioneer 2/3 even though their commodities
have not been sold. It seems to be rather odd. Therefore, it is necessary to restrict
the setting of reserve price in order to apply Shapley value. Each seller can only
set the reserve price for his/her own commodity.

5 Conclusion

In this paper, two approaches for pricing web services, namely Gomory-Baumol
price and Shapley value, have been presented, The incapability of determining
Gomory-Baumol price for an web service has been shown by an example. In view
of the limitation of using Gomory-Baumol pricing mechanism, we have suggested
to use Shapley value in return. By slightly modifying the auction mechanism by
allowing providers setting reserved prices, it can ensure that the price for a
service is no less than the reserved price if the service can be sold successfully.
Unfortunately, as the calculation of Shapley values is NP complete [3], Shapley
value approach can only be suitable for a small size problem. Parallel algorithm
for computing Shapley value and establishing rules of making a reserved price
for each web service in a composited web services market seem to be a valuable
future work for further investigation.

156 K. Ho, J. Sum, and G.S. Young

References

[1] R.E. Alcaly and A.K. Klevorick, A notes on the dual prices of integer programs,
Econometrica, Vol.34, 206-214, 1966.

[2] S. Bikhchandani, S. de Vries, J. Schummer, and R.V. Vohra. Linear programming
and Vickrey auctions Mathematics of the Internet: E-Auction and Markets, IMA
Volumes in Mathematics and its Apllications Vol. 127, p.75-116, 2001.

[3] V. Conitzer and T. Sandholm, Complexity of determining nonemptiness of the
core. Proceedings IJCAI-03, pp. 613-618, 2003

[4] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press,
1963.

[5] S. de Vries and R. Vohra, Combinatorial auction: A survey, INFORMS Journal
of Computing, Vol.15, 284-309, 2003.

[6] R.E. Gomory & W.J. Baumol, Integer programming and pricing, Econometrica,
Vol.28, 512-550, 1960.

[7] D. Hausheer, N.C. Liebau, A. Mauthe, R. Steinmetz and B. Stiller, Token-based
accounting and distributed pricing to introduce market mechanisms in a peer-to-
peer file sharing scenario, Proceedings of P2P’03, 2003.

[8] M.N. Huhns and M.P. Singh, Service-oriented computing: Key concepts and prin-
ciples, IEEE Internet Computing, Vol.9(1), 75-81, 2005.

[9] R. Jain, Efficient Market Mechanisms and Simulation-based Learning for Multi-
Agent Systems, UC Berkeley EECS PhD Dissertation, Dec 2004.

[10] R. Jurca and B. Faltings, Reputation-based pricing of P2P services, SIG-
COMM’05, August 22-26, 2005.

[11] R.P. O’Neill, P.M. Totkiewicz, B.F. Hobbs, Michael H. Rothkopf and William
R. Stewart, Jr., Equlibrium prices in markets with nonconvexities, submitted to
American Economic Reivew, 2001.

[12] J. Ostwald and V. Lesser, Combinatorial auctions for resource allocation in a
distributed sensor network, UMass Computer Science Tecchnical Report 04-72,
August 31, 2004.

[13] D.C. Parkes, J. Kalagnanam and M. Eso, Achieving budget-balance with Vickrey-
based payment schemes in exchanges. Proceedings IJCAI-01, 2001.

[14] D.A. Reed, Grids, the TeraGrid and beyond, IEEE Cpmputer, 62-68, Jan. 2003.
[15] L.S. Shapley, A value of n-person games, Contributions to the Theory of Games

II, 307-317, Princeton University Press, 1953.
[16] M. Xia, G.J. Koehler and A.B. Whinston, Pricing combinatorial auctions, Euro-

pean Journal of Operational Research, Vol. 154, 251-270, 2004.
[17] J. Sum, J. Wu and C.S. Leung, On profit density based greedy algorithm for a

resource allocation problem in web services, to appear in International Journal of
Computers & Applications.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 157 – 164, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Performance Improvement of Web Service System
Based on the Probability Distribution Characteristics

Il Seok Ko1 and Yun Ji Na2

1 School of E-Commerce, Chungbuk Provincial University, 40 Gumgu-ri, Okchon-eup,
Okchon-gun, Chungbuk 373-807, South Korea

isko@ctech.ac.kr
2 School of Internet Software, Honam University, 59-1 Seobong-dong, Gwangsan-gu,

Gwangju 506-714, South Korea
yjna@honam.ac.kr

Abstract. A web caching technology, which analyzes and reflects the reference
characteristics of users, is required to effectively operate an electronic
commerce system, because the reference characteristics of web objects becomes
a major factor in decreasing the performance of an electronic commerce system.
Therefore, it is necessary to study the increase in the performance of web
caching based on the probability distribution of the object reference
characteristics in order to increase the performance of an electronic commerce
system. This paper proposes a web caching method based on the probability
distribution of the object reference.

Keywords: web object & web caching, probability distribution characteristics.

1 Introduction

Web caching can effectively deal with requirements of the user of an electronic
commerce system, and improve the performance of Internet. The performance of web
caching depends on the effective management of a limited storage scope of the web
cache. In order to achieve this performance, studies on replacement methods to
maintain the frequently used web objects in the storage scope of web cache have been
largely conducted [4, 5]. A replacement method for web cache should reflect the
characteristics of web objects. The user reference characteristics in an electronic
commerce system can be summarized as follows [1, 2, 6].

The referenced web object has a reference locality according to the time and
region. These reference characteristics can be varied according to the passage of time,
and this will be a major factor decreasing the performance of the existing caching
method.

• The user reference characteristics, such as users' age, level of skill in Internet
usage, education level, and various other conditions, affect the reference
characteristics.

• Types and characteristics of web services affect the reference characteristics of
the user.

158 I.S. Ko and Y.J. Na

• The variability of the reference characteristics increases the deviation of the
object-hit ratio.

• The variability of the reference characteristics occur not periodically.

The change in the variable web object reference characteristics of the user of an
electronic commerce decreases the performance of web caching, and that becomes a
major factor decreasing the performance of an electronic commerce system. However,
the existing web caching method fails to effectively reflect the characteristics of the
user of an electronic commerce system. This is because the existing web caching
related studies have been focused mainly on the improvement of the object-hit ratio
and caching costs [2, 3, 7]. Therefore, studies in this field are required.

This study proposes a new web caching method based on the analysis of the
reference probability distribution characteristics of the user of web service system. In
addition, this study increases the performance of web caching through the analysis of
the characteristics of the probability distribution of the reference characteristics and a
structural approach for a caching system, rather than that of the study of caching
itself, such as an object-hit ratio.

2 Related Studies

An effective cache algorithm is used to estimate the reference possibility for the
object existing in the cache, and then stores objects, which have a high possibility of
referencing the near future, in the storage scope of cache. There are two leading
characteristics that affect the predisposition of the reference of web objects: temporal
locality and reference popularity. A replacement algorithm should be decided by
reflecting on the past record of the related object for these two characteristics.

Temporal locality
 Temporal locality means that a currently referenced object has a high possibility of

being referenced. From the aspect of this temporal locality, most algorithms are used
just before the reference time of objects. However, the LNC-R algorithm uses the past
kth reference time. This algorithm uses the LRU-K algorithm, which is a type of buffer
caching method, to fit a caching method for heterogeneity objects.

Reference popularity
 The reference popularity means that an object, which has a large number of

references, has a high possibility to be referenced. From the aspect of this reference
popularity, certain algorithms use a number of object references. In addition to this,
certain methods add an aging mechanism to protect against cache pollution.

 Estimation of the reference possibility using a mixed method
 The currently used algorithm estimates the reference possibility by considering

both temporal locality and reference popularity. The LRV and MIX algorithms
estimate the reference possibility by considering the prior reference time and
reference numbers of objects. The past kth reference time used in the LNC-R
algorithm is a type of coupled method, which uses both temporal locality and
reference popularity. In addition, there are some studies on the coupling method,
which couples the reference popularity with the GD-SIZE algorithm based on the
temporal locality. In the LUV algorithm, almost all records of the past reference are

 A Performance Improvement of Web Service System 159

used to estimate the reference possibility of objects. The LUV algorithm is a type of
generalized method of the LRFU algorithm, which is studied in buffer caching, to fit
it to the characteristics of web cache.

These web caching related studies have only focused on the improvement of the
performance of caching itself, and they don’t reflect the probability distribution
characteristics of the object reference characteristics for the user of web service
system, which is the major focus of this study.

3 Proposed Method

3.1 Changes in Cache-Hit Ratio

Fig. 1 presents the change in cache-hit ratios acquired using a data smoothing method
according to the change of the reference characteristics of the user of an electronic
commerce system. The actual object-hit ration doesn’t appear as a smoothen state as
presented in Fig. 1, but it appears with undulations and outliers. It is necessary to
conduct a preprocess using a certain smoothing process in order to present these data
in a more smooth state as presented in Fig. 1. A smoothing process is a type of data
purification that changes average data into smooth data by removing non-similarity
from an original set. This study applies a smoothing method with bin means, which
replaces data as a mean value of bins. As described in Chapter 1, there are many
changes in the user of an electronic commerce system due to various factors. These
changes also bring changes in cache-hit ratios as illustrated in Fig. 1.

Almost all the existing studies related to the web caching have focused on the
improvement of the performance of caching methods through an increase in
the object-hit ratio of y-axis. However, the objective of this study is to increase the
caching capability by reducing the widths of t1, t2, w1, and w2, which are
generated from the results as presented in Fig. 1. In order to achieve this objective, it
is necessary to investigate the probability distribution characteristics of the object
reference characteristics, and structural approach for a caching system rather than
conduct an investigation of the caching itself, such as object-hit ratio.

Fig. 1. Reference characteristics variation graph

160 I.S. Ko and Y.J. Na

As shown in Fig. 1, a rapid decrease in the object-hit ratio between t1 and t3 causes
a decrease in the object-hit ratio below the mean value. In addition, a rapid increase in
the object-hit ratio between t2 and t4 maintains the object-hit ratio as the mean value.
These results can be caused largely by the characteristics of changes in the surfing
type noted as follows.

 Changes in the user’s preference
Changes in the user’s web surfing type

 Changes in the user: terminating the use of the existing user, starting the use of
a new user.

In the graph, using a decrease in the width of t1 between t1 and t2, and in the

width of t2 between t3 and t4, the performance of web caching can be increased. It
is evident that the decrease in t1 t1', t2 t2', w1 w1', and w2 w2'
increases the performance of web caching.

3.2 Cache Wear Out (CWO)

Definition 1 presents the definition of an OWS (Object Working Set). The item of
OWS (i) is a set of web objects to maintain the object-hit ratio more than a threshold
value in a time period (i) of cache.

<Definition 1> OWS (i)
OWS (i)={O1, O2, …, On }, where O1, O2, …, On is the objects to maintain the

object-hit ratio more than a threshold value in a time period (i).

Fig. 2 presents the OWS in the time period of (i-1), (i), and (i+1).

Fig. 2. Object Working Set

When the cache-hit ratio decreases below a threshold value, which configures an
OWS, a CWO (Cache Wear Out) will occur. As presented in Fig. 3, the time period
between t1 and t3 is the CWO point. In an actual situation, the cache-hit ratio
frequently decreases below a threshold value, even in each time period. Thus, the
CWO point can be configured based on the amount of time, which decreases below
the threshold value, and can be configured based on the point where the object-hit

 A Performance Improvement of Web Service System 161

ratio decreases a specific object-hit ratio based on the mean object-hit ratio for each
time period. Moreover, this paper configures the CWO point using a probability
distribution function of the object reference. This will be mentioned in Chapter 4.

Fig. 3. Cache Wear Out

A correspondence cache empties a cache, and stores a new object when the CWO
occurs. Then, the cache will be filled with the new cache until a new OWS, which
reflects the reference characteristics of new objects, is configured in order to increase
the object-hit ratio. In this case, there may occur a sudden decrease in the object-hit
ratio due to the CWO. In order to compensate for this decrease, a double structured
cache, which will be presented in the next chapter, will be used. In the proposed
method, the CWO will occur based on the object reference distribution characteristics,
and this method has an adaptability to changes in the object reference characteristics
due to the configuration of a new OWS. Using this proposed method, it is possible to
decrease the time to manage a cache, object replacement time, object search time, and
verification time. In addition, it is possible to decrease the delay time and costs
according to the increase in the cache-hit ratio.

3.3 Cache Structure

A sudden decrease in the cache-hit ratio before the cache is to be totally empted, and
is fully filled again by new objects can be complemented using a double structured
cache, as illustrated in Fig. 4. In a time period, which has a stable object-hit ratio, one

Fig. 4. Cache structure

162 I.S. Ko and Y.J. Na

side of the cache scope can be totally empted when CWO occurred, while two caches
are used as a single scope. Then, the empted scope is filled with new incoming
objects. When the empted scope is filled with new objects, and the cache-miss occurs,
a replacement method can be applied as a not empted scope, or a single scope. After
the passage of time, if the CWO occurs again, the other side of the cache scope can be
totally empted, and then the cache operation can be performed again.

3.4 Mean-Life of Object

Web objects have a mean life in cache. Fig. 5 presents an object, which has four
different items based on the size of objects, according to the reference characteristics
of web objects. The section of item 1 can be configured by the object size less than
5K, item 2 can be configured by the object size from more than 5K to less than 100K,
item 3 can be configured by the object size from more than 100K to less than 400K,
and item 4 can be configured by the object size of more than 400K.

Object reference number

Object sizeS1 S2 S3 S4

Item 1 Item 2 Item 3 Item 4

Object reference number

Object sizeS1 S2 S3 S4

Item 1 Item 2 Item 3 Item 4

Fig. 5. Classification for object items

Four items (S1, S2, S3, S4) will be tested simultaneously. Cache-miss frequency in
each division is as follows.

S1 = 75,123
S2 = 315,634
S3 = 67,473
S4 = 13,935

This is the number of object-misses for each object period until the object-hit ratio
decrease below 36% from the total of 90% when the object-hit ratio was configured
by 40%. The mean life parameter (θ) can be described as follows.

r

T=θ̂

T = Total test time accumulated on all items
r = Total number of cache-miss

 A Performance Improvement of Web Service System 163

We can get the mean-life through the value of chi-square (2χ) distribution as

follow.

αχ
θ
θχ αα −=≤≤− 1
ˆ2 2

2,2/
2

2,2/1 rr

r
P

We can get Mean-life as follow.

Mean-life = 472,165/4 = 118,041

Getting the 95% two-sided confidence interval on mean-life, we can get the proper

test value of the chi-square as follow.

041,118
4

165,472

4
ˆ

4

1 === =i
iχ

θ

180.22
8,975.0 =χ

535.172
8,025.0 =χ

295,108464,13 ≤≤θ

Therefore, the mean life of objects for the experiment, which has a Chi-square

distribution, presents as the minimum and maximum values of 13,464 and 108,295
times, respectively. This method can be generally used to obtain the mean life of
products [15]. The section between the maximum value and the minimum value can
be recognized as the mean life of products, and the product is to approach the fault
state in this section. When a product reaches the fault state, it can be changed, or
renewed. From the viewpoint of cache, the performance can be improved through this
renewal using the CWO.

3.5 CWO Policy Using Aging Techniques

This paper uses the object reference distribution characteristics for the issue of when a
cache wears out. The CWO adaptively occurs using an aging technique in the range of

the minimum value θ the maximum value (that is the mean life parameter) based
on the mean life of objects. The CWO policy can be noted as follows.

Policy 1: Wear out based on the maximum value
In the case of frequently used objects, an object-miss will frequently occur. In this

case, the time to approach the fault state will be shortened in each item section of the
object. If the item approaches the fault state in cache, the CWO will frequently occur
when a single CWO policy is used. Therefore, the CWO point can be decided using
the maximum value used in this case.

164 I.S. Ko and Y.J. Na

Policy 2: Wear out based on the minimum value
In the case of rarely used objects, a cache-miss will slowly occur. In this case, the

CWO can be generated using the minimum value in the mean life section.

4 Conclusions

If the proposed system applies in an electronic commerce system, which presents a
fast change in the user reference characteristics, this system will satisfy the
customer’s loyalty and satisfaction through an increase in the user response speed. In
addition, this will increase the competitiveness of an e-business company.

Studies on modeling techniques for the reference characteristics in a preprocessing,
which smooth out the reference characteristics of web objects, will be continuously
conducted. In addition, we would like to attempt to increase the performance of a web
caching system through future studies on the reference characteristics using
continuous log analysis materials.

References

[1] Il Seok Ko, Choon Seong Leem, "An Improvement of Response Time for Electronic
Commerce System," Information Systems Frontiers, vol6, no4, pp.313-323, 2004.

[2] Il Seok Ko, Yun Ji Na, Choon Seong Leem, "ACASH: An Adaptive Web Caching Method
with Heterogeneity of Web Object and Reference Characteristics," Journal of KISS:
Information networking, vol.31, no.3, pp.305-313, 2004.

[3] Yun Ji Na, Il Seok Ko, Gun Heui Han, "An Adaptive Web Caching Method based on the
Heterogeneity of Web Object,” LNCS3758, pp.853-858, 2005.

[4] L. Rizzo, L. Vicisano, "Replacement Polices for a Proxy Cache," IEEE/ACM Trans.
Networking, vol.8, no.2, pp.158-170, 2000.

[5] H. Bahn, S. Noh, S. L. Min, and K. Koh, "Efficient Replacement of Nonuniform Objects
in Web Caches," IEEE Computer, vol.35, No.6, pp.65-73, June 2002.

[6] Jia Wang, "A Survey of Web Caching Schemes for the Internet," ACM Computer
Communication Review, 29(5), pp.36�46, 1999.

[7] S. Williams, M. Abrams, C. R. Standridge, G. Abhulla and E. A. Fox, "Removal Policies
in Network Caches for World Wide Web Objects," Proc. 1996 ACM Sigcomm, pp.293-
304, 1996.

An Optimal Scheduling Algorithm for an

Agent-Based Multicast Strategy on Irregular
Networks

Yi-Fang Lin1,2, Zhe-Hao Kang1, Pangfeng Liu1, and Jan-Jan Wu2

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. This paper describes an agent-based approach for scheduling
multiple multicast on switch-based networks with irregular topologies.
Our approach assigns an agent to each subtree of switches such that the
agents can exchange information efficiently and independently. The en-
tire multicast problem is then recursively solved with each agent sending
message to those switches that it is responsible for. In this way, commu-
nication is localized by the assignment of agents to subtrees. This idea
can be easily generalized to multiple multicast since the order of message
passing among agents can be interleaved for different multicasts. The key
to the performance of this agent-based approach is the message-passing
scheduling between agents and the destination processors. We propose
an optimal scheduling algorithm, called ForwardInSwitch to solve this
problem.

We conduct experiments to demonstrate the efficiency of our approach
by comparing the results with SPCCO, a highly efficient multicast algo-
rithm. We found that SPCCO suffers link contention when the number
of simultaneous multiple multicast becomes large. On the other hand,
our agent-based approach achieves better performance in large cases.

1 Introduction

Multicast/broadcast is commonly used in many scientific, industrial, and com-
mercial applications. Distributed-memory parallel systems, such as cluster sys-
tems, require efficient implementations of multicast and broadcast operations in
order to support various applications. In a multicast, the source node sends the
same data to an arbitrary number of destination nodes. When multiple multi-
cast operations occur at the same time, it is very likely that some messages may
travel through the same network link at the same time and thus content with
each other, if they are not scheduled properly.

Minimizing contention in collective communication has been extensively stud-
ied for systems with regular network topologies, such as mesh, torus and hyper-
cubes [1, 2, 3, 4, 5, 6, 7]. Cluster networks, especially switch-based clusters, on the
other hand, typically have irregular topologies to allow the construction of scal-
able systems with incremental expansion capability. These irregular topologies

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 165–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 Y.-F. Lin et al.

lack many of the attractive mathematical properties of the regular topologies.
This makes routing on such systems quite complicated. In the past few years,
several routing algorithms have been proposed in the literature for irregular net-
works [8, 9, 10, 11]. These routing algorithms are quite complex and thus make
implementation of contention-free multicast operations very difficult.

The goal of this paper is to develop efficient (multiple) multicast algorithms for
irregular switch-based networks. In [12], Fan and King proposed an unicast-based
implementation of single multicast operation based on Eulerian trail routing. In
this paper, we consider the widely used, commercially available routing strategy
called “up-down” routing. The best known results on multicast on irregular net-
works are the Partial-Order-Chain-based algorithms proposed by Kesavan and
Panda [13]. The basic idea is to order the destination processors into a sequence,
then apply a binomial tree-based multicast [14] on these destinations. The chain
concatenation ordering (CCO) algorithm first constructs as many partial order
chains (POC) as possible from the network. A partial order chain is a sequence of
destinations such that we can apply a binomial multicast on it without any con-
tention. The CCO algorithm then concatenates these POCs into sequence where
a binomial multicast is performed [13]. The sequence consists of fragments of
processor sequences in which messages within the same fragment can be sent
independently, therefore congestion is reduced. Based on the CCO algorithm,
the source-partitioned CCO (called SPCCO) performs multiple multicasts si-
multaneously. Each multicast produces its own sequence (consisting of POCs),
and each resulting sequence is shifted until the source appears at the beginning
of the sequence. By shifting these sequence, the communication is “interleaved”
according to the source, and communication hot-spots are avoided. However,
both CCO and SPCCO use the idea of POC to reduce contention. Within a
single POC different messages do not interfere with one another as long as they
are from different sections within a POC. However, this POC structure may not
always be preserved since the later binomial multicast is not aware of it.

To solve this problem, in [15] we proposed an agent-based multicast algo-
rithm, which avoids network contention by localizing and interleaving message
passings in multicast. Our agent-based approach starts with a recursive multi-
cast algorithm. An agent for a multicast is chosen for each subtree of the routing
tree. An agent is responsible for relaying (forwarding) the multicast messages to
all the destinations in that subtree. This task is divided into subtasks for each
subtree, where they are performed recursively. We generalize this algorithm to
multiple multicast by choosing a primary agent for each multicast. The primary
agent are chosen from the subtrees of the root of the routing tree, and are prop-
erly interleaved so that the tasks are distributed evenly. The primary agents for
different multicasts exchange messages and then use the multicast algorithm to
forward messages.

The key to the performance of the agent-based multicast strategy is the
scheduling of message forwarding between agents as well as between an agent
and the destination processors within each subtree. In our previous work we
use a rudimentary scheduling for this purpose. The focus of this paper is an

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 167

optimal scheduling algorithm, called ForwardInSwitch, for message forwarding.
We provide theoretical analysis for the optimality and time complexity of For-
wardInSwitch. Our experimental results also demonstrate significant performance
improvement of our multicast algorithms in comparison with the CCO and
SPCCO multicast algorithms.

The rest of the paper is organized as follows: Section 2 formally describes
the communication model in this paper. Section 3 first describes our multicast
algorithm, and then describes the generalization to multiple multicast. Section
4 presents the ForwardInSwitch optimal scheduling algorithm. Section 5 reports
our experimental results, and finally we conclude with Section 6.

2 Model

We now describe the up-down routing [9] used in our multiple multicast algo-
rithm. The up-down routing mechanism first uses a breadth-first search to build
a spanning tree T for the switch connection graph G = (V, E). Since T is a
spanning tree of G, E is partitioned into two subsets – T and E − T . Those
edges in T are referred to as tree edges and those in E − T as cross edges [13].
Since the tree is built with a BFS, the cross edges can only connect switches
whose levels in the T differ by at most 1. A tree edge going up the tree, or a
cross edge going from a processor with a higher processor id to a processor with
a lower one, are referred to as up links. The communication channels going the
other direction are down links. In up-down routing a message must travel all the
up links before it travels any down links.

We assume that a switch can deliver multiple messages simultaneously from
ports to ports, as long as the messages are delivered from different source and
destination ports. This assumption is consistent with current routing hardware
technology. As a result, congestion on the communication links becomes the
major bottleneck.

We consider three cases where link contention can be avoided. In the first
case, as shown in Figure 1(a), all source/destination processors are connected to
the same switch A. In this case, there will be no contention since the messages
travel through different paths within the switch. In the second case, as shown
in Figure 1(b), both source processors reside on A. In this case, both can send

(a)

processorprocessor

processor

processor

processorprocessor

Switch A

processor processor

Switch

processor

Switch

Switch A

(c)

processor

processor

Switch

processor

Switch

processor

Switch

switch A

(b)

Fig. 1. Example cases that avoid contention on the inter-switch channels

168 Y.-F. Lin et al.

messages to destinations in different subtrees of A simultaneously. Note that
a destination node could be any processor in these two subtrees. In the third
case two messages travel through four subtrees of switch A, as indicated in
Figure 1 (c). If the two messages both go through switch A, there will be no link
contention between them.

3 Agent-Based Algorithms

3.1 Single Multicast

For a given multicast message m and a switch v we will define two functions
– an agent function A(m, v) that returns a processor within the subtree rooted
at v and will be responsible for relaying multicast message m, and a cost func-
tion C(m, v) that estimates the total cost of sending m to all of its specified
destinations within the subtree rooted at v.

We define these agent and cost functions recursively. Let D(m, v) be the set
of destination processors of message m that are connected to switch v. For a
leaf v, A(m, v) is defined to be an arbitrary destination processor in D(m, v),
and C(m, v) is log |D(m, v)|. For an internal node v, if |D(m, v)| > 0, we pick
an arbitrary destination of m in D(m, v) to be A(m, v). Otherwise we consider
all the children of v that m must be sent to, and set A(m, v) to be the agent
from these subtrees that has the highest cost. Formally, let S(m, v) be the set
of children of v that have destinations of m in their subtrees, then A(m, v) = w
such that w ∈ S(v) and C(m, w) ≥ w′ for all w′ ∈ S(v). For the cost function
part, if |D(m, v)| is 0, the agents of tree nodes from S(v) will first perform a
multicast among themselves using a binomial multicast [14], then as soon as an
agent a from S(m, v) finishes receiving m, it recursively performs a multicast
to all the destinations in the subtree where it is defined as the agent. The total
communication cost is then defined as C(m, v).

When |D(m, v) > 0|, the situation is more complicated since the agent of
v can send m to other destinations in D(m, v), or to the agents of S(m, v).
We apply a procedure ForwardInSwitch that determines the order for those in
D(m, v) and S(m, v) to receive messages. The algorithm ForwardInSwitch takes
D(m, v) and C(w, m) for all w ∈ S(m, v) as inputs, then computes an optimal
schedule and the total cost. The details of ForwardInSwitch will be given later.

When |D(m, v)| > 0, v does have some destination processors for message m
and one of them is the agent of v. When the agent sends messages to those des-
tinations in D(m, v) (Figure 1 (a)), the messages will not interfere with each
other. Also when the agent of v sends messages to those agents in S(m, v)
(Figure 1 (b)), no contention is possible if no cross edges are involved. In addi-
tion, the message passing from one category (Figure 1 (a)) will not contend with
those in the other category (Figure 1 (b)). When |D(m, v)| = 0, we use a single
multicast to send the messages among all the agents of S(m, v), with one of them
now being assigned as the agent of v. From Figure 1 (c) we conclude that these
messages will not contend with each other unless cross edges are involved, since
the agents of different subtrees in S(m, v) will not be in the same subtree.

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 169

3.2 Multiple Multicast

Let r be the root of the up-down routing tree. The agent-based multiple multicast
is carried out in three steps as described below. First for each message m we
choose a primary agent among the agents of S(m, r) - the set of subtrees of root r.
Each source processor then sends its message to its primary agent. Second, the
primary agent sends its message m to a destination d in D(m, r) if any, and
to the agents of S(m, v). Finally, each agent a of S(m, r) sends messages to
its destinations by calling RAM, and a sends m to D(m, r) with a binomial
multicast.

4 ForwardInSwitch

We have two kinds of nodes in our ForwardInSwitch scheduling. The first is called
local nodes, which are processors within a switch (or a local cluster). Local nodes
can send and receive data among themselves. The second is remote nodes. Each
remote node represents a remote agent that we need to send the message to.
Once a remote agent receives the data from one of the local nodes, it will be
responsible for distributing the data among the processors within that subtree.

Initially we have the agent local node as the source of the broadcast. The
agent needs to send the data to all the other nodes (local and remote nodes) in
the system. We define the finishing time as the time for all nodes in the system
to receive the data, and, we would like to find a broadcast schedule with the
minimum finishing time.

We assume that the local nodes are homogeneous, so that it takes one unit
time for any local node to send a data to any other nodes. However, it takes very
different amount of time for a remote node to receive a data, and this time is at
least 1 time unit. To be more specific, when a local node sends data to another
local node at time t, both local nodes can start sending data to another node at
time t + 1. However, if a local node sends data to a remote node at time t, the
local node can start sending data to another node at time t + 1, but the remote
node will not complete its operation until C(m, r), which will be determined
recursively from bottom to the top of the routing tree. Recall that C(m, r) is
the cost for an agent r to send messages m to all the destination processors
located in the subtree rooted at r. As a result we define the finishing time of a
remote node r to be the t + C(m, r), where t is the time the parent of r starts
sending the data to r. The total time of ForwardInSwitch is then determined by
the maximum of all nodes.

4.1 Scheduling Algorithm

Let n and m be the number of local and remote nodes. The remote nodes are
r1, r2, . . . , rm with costs c1, c2, . . . , cm. Without lose of generality we assume that
ci ≥ ci+1, for 1 ≤ i ≤ m − 1. We use l(n) to denote the level number of a node
n. We first observe that the remote nodes should be scheduled according to
non-decreasing order according to their costs. That is, there exists an optimal

170 Y.-F. Lin et al.

ForwardInSwitch schedule in which l(ri) ≤ l(ri+1), for 1 ≤ i ≤ m − 1. If we
assume that there exists an optimal ForwardInSwitch schedule in which l(ri) >
l(ri+1) for some i, it is easy to see that by switching ri and ri+1 the finishing
time will not increase.

We use a binary search to determine the optimal ForwardInSwitch finishing
time. If we could determine that, given a target finishing time T , whether all tree
nodes can finish, we could use at most O(log C) round of testings to determine
the optimal ForwardInSwitch finishing time, where C is maximum possible finish
time. As a result, the key point of our algorithm is to determine, given a time
constraint T , whether all nodes can finish in time.

We divide the remote nodes into two groups – critical and non-critical. A
remote node ri is critical at time t if t + ci is at least T , where T is the target
finishing time constraint. If a remote node is critical, it should be scheduled
immediately otherwise it will miss the deadline T . If the node is non-critical,
then it can wait.

We now describe our testing algorithm which determines whether it is possible
to obtain a ForwardInSwitch scheduling within time T . At every time step, all
the local nodes that have already received the message, select the destinations
according to the following priority. (1) critical remote nodes, (2) local nodes, (3)
non-critical remote nodes.

Theorem 1. There exists an optimal ForwardInSwitch schedule that obeys the
priority.

Proof. Since a critical node must be scheduled immediate to avoid missing its
deadline, it has the highest priority. We only need to show that there exists an
optimal ForwardInSwitch schedule that will schedule non-critical remote nodes
only when there is no local node to send messages to.

We assume that there is an optimal schedule in which a non-critical remote
node r is scheduled at time t and a local node b is scheduled at a later time
t′ > t. Let a be the local node that sends data to r in the optimal schedule. Now
we will do the following changes. We will make a to send data to b instead of r
at time t, and make b to send data to r at time t+1, then make b to send data to
c at time t + 2, where c is the node b sends data to at time t′ + 1 in the optimal
schedule. Since r is not critical at time t, delaying it to t + 1 will not miss the
deadline T . The subtree rooted at c started at time t′ +1 in the original optimal
schedule, and now starts at time t + 2. Since that t′ > t, or t′ + 1 ≥ t + 2. The
subtree of c will not be delayed either.

We use this checking algorithm to verify whether a finishing time T is feasible.
From Theorem 1 we know that if there exists an optimal schedule for For-
wardInSwitch, the checking algorithm will find it. Now with a binary search on
T , we can easily determine the optimal T , hence the optimal ForwardInSwitch
schedule. It is easy to see that the finish time will not be more than n+

∑m
i=1 ci,

so at most O(log(n+C)) rounds of checking, where C is the summation of costs
from remote nodes, suffice to find the optimal finish time.

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 171

5 Simulation Experiments and Results

In this section, we present results of simulation experiments to compare the algo-
rithms proposed in Section 3 and the two order-chain-based algorithms proposed
in prior works (CCO, SPCCO).

We developed a C++, discrete event-based simulator for our experiments.
The simulator can model wormhole routing switches with arbitrary network
topologies. We chose system parameters as follows. Communication start-up
time was 5.0 microseconds, link transmission time was 10.5 nanoseconds, and
routing delay at switch was 200 nanoseconds. The default buffer size at each
port was assumed to be 1 flit. The default numbers of input ports and output
ports were assumed to be 16. The network topologies were generated randomly.
For each data point, the multicast performance was averaged over 100 different
network topologies.

For all experiments, we assumed a default system configuration of a 512-
processor system interconnected by 64 sixteen-port switches in an irregular topol-
ogy. 50% of the ports on a switch are connected to processors, and the other 50%
of the ports are connected to other switches. Links were not allowed between
ports of the same switch. A random number generator was used to decide the
port and switch or the processing node to which a given switch port should be
connected to.

For our study, we varied each of the following parameters one at a time:
the message length (NBM), the number of destinations in each multicast (ND),
the number of simultaneous multicast operations (NM), the number of switches
(NS), and the number of ports on a switch (HP). Since message length, number
of multicast operations, and system size varied in our experiments, instead of
using latency as the measurement of performance, we use throughput, which is
defined by M/T , where M is the total length of the messages and T is the
parallel completion time of the (multiple)multicast operation.

Effect of Number of Multicast Operations. First we examined the effect of vari-
ation in the number of multicast operations on the performance of the pro-
posed algorithms. Other parameters were assumed to be as follows: number of
switches NS = 64 (and thus 512 processors), number of ports connected to
processors HP = 8, 12, and number of destinations in each multicast ND =
153, 204, 537, 716. The destinations were generated randomly. For each data
point, the multicast performance was averaged over 50 different sets of
destinations.

As shown in Figure 2, when there are few (less then eight) multicast op-
erations, ordered-chain-based algorithms perform better than our agent-based
algorithms. This is because when the number of multicast operations is small,
message contention is not significant and thus the importance of reducing number
of communication stages outweighs that of reducing message contention. How-
ever, when the number of multicast operations increases, the impact of message
contention becomes more important and therefore the benefit of agent-based
optimization becomes more significant.

172 Y.-F. Lin et al.

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

number of multicast operations

(e) varied NM, fixed NBM = 66%, ND = 153, HP = 12, and NS = 64

RAM
IMM

SPCCO
CCO

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

number of multicast operations

(f) varied NM, fixed NBM = 66%, ND = 204, HP = 16, and NS = 64

RAM
IMM

SPCCO
CCO

Throughput under different number of multicast operations.

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t

number of the switches

(c) varied NS, fixed NBM = 11%, NM = 32, ND = 134, and HP = 12

RAM
IMM

SPCCO
CCO

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t

number of the switches

(d) varied NS, fixed NBM = 11%, NM = 32, ND = 179, and HP = 16

RAM
IMM

SPCCO
CCO

The throughput under different numbers of switches.

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t

number of the destinations

(e) varied ND, fixed NBM = 66%, NM = 4, HP = 12, and NS = 64

SPCCO
RAM
IMM

CCO

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t

number of the destinations

(f) varied ND, fixed NBM = 66%, NM = 4, HP = 16, and NS = 64

RAM
IMM

SPCCO
CCO

Throughput under different numbers of destinations.

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t

percentage of long-message multicasts

(e) varied NBM, fixed NM = 32, ND = 153, HP = 12, and NS = 64

RAM
IMM

SPCCO
CCO

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t

percentage of long-message multicasts

(f) varied NBM, fixed NM = 32, ND = 204, HP = 16, and NS = 64

RAM
IMM

SPCCO
CCO

Throughput under different numbers of long-message multicasts.

Fig. 2. Simulation result comparison by varying different parameters

Effect of Number of Switches. We studied the scalability of the proposed algo-
rithms on different systems sizes. We varied the number of switches from 16 to
128, with 50% of the ports connected to processors and the other 50% connected
to switches. For each switch size, number of multicast operations NM=32. Num-
ber of multicast destinations ND=134, 179. For each data point, the multicast
performance was averaged over 50 different sets of destinations.

As shown in Figure 2, the throughput of the agent-based algorithms, the
throughput of the ordered-chain-based algorithms, and the improvement ratio of
the agent-based algorithms over the ordered-chain-based algorithms all increase
when the number of switches (and processors) increases. A possible reason is
that when number of switches increases, the level of the up-down routing BFS
tree also increase, hence the number of hops between the sender and the receiver
of a cross-subtree message may increase. Longer path increases the potential of

An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy 173

contention. Since our agent-based algorithms guarantee the path of each message
be no more than 2 hops, they are scalable with respect to number of switches.

Effect of Number of Destinations. In this experiment, number of switches NS =
64 and number of ports connected to processors HP = 8. We chose two different
numbers of multicast operations NM = 4, 32. We varied the number of desti-
nations for each multicast from 100 to 900. Figure 2 shows the throughput of
these algorithms. As we can see, the throughput of these algorithms increases
when the number of destinations increases, and the improvement ratio of the
agent-based algorithms over the ordered-chain-based algorithms also increases
on size increase in destinations.

Effect of Message Length. We examined the effect of message length on the
performance of proposed algorithms. We chose two message lengths, 128KB for
short messages and 32MB for long messages, and varied the number of mul-
ticast operations with long messages (NBM). The source and destinations of a
multicast were generated randomly. As shown in Figure 2, when the number
of long-message multicast operations is small, the performance discrepancy be-
tween agent-based algorithms and the ordered-chain-based algorithms is small.
The possible reason is that long messages are likely to increase the chance of
contention, and when the number of long-message multicast operations is small,
they may not be evenly distributed in the BFS tree and thus may cause hot-spots
in communication.

6 Conclusion

This paper describes an agent-based approach for scheduling multiple multicast
on switch-based networks. Our approach assigns an agent to each subtree of
switches such that the agents can exchange information efficiently and indepen-
dently. The entire multicast problem is recursively solved with each agent sending
message to those switches that it is responsible for. Communication is localized
by the assignment of agents to subtrees. In addition, the agent mechanism pro-
vides an easy mechanism in performing multiple multicasts simultaneously, with
very low chances of network contention.

We compare the results with SPCCO [13] and found that SPCCO, a highly
efficient multicast algorithm based on Partial Ordered Chains, incurs high con-
tention in large cases. Our agent-based approach minimizes contention by prop-
erly interleaving multiple multicast and optimally scheduling message passings
between agents and destination processors to avoid hot spots.

References

1. Dally, W.: Deadlock-free message routing in multiprocessor interconnection net-
works. IEEE Trans. Comput. C-36(5) (1987) 547–553

2. Duato, J.: On the design of deadlock-free adaptive routing algorithms for multi-
computers. In: Proceedings of Parallel Architectures and Languages Europe 91.
(1991)

174 Y.-F. Lin et al.

3. Duato, J.: A necessary and sufficient condition for deadlock-free adaptive routing
in wormhole networks. In: Proceedings of the 1994 International Conference on
Parallel Proceeding. (1994)

4. Glass, C., Ni, L.: The turn model for adaptive routing. J. ACM 41 (1994) 847–902
5. Gaughan, P.T., Yalamanchili, S.: Adaptive routing protocols for hypercube inter-

connection networks. IEEE Computer 26(5) (1993) 12–23
6. Gravano, G., Pifarre, G.D., Berman, P.E., Sanz, J.L.C.: Adaptive deadlock- and

livelock-free routing with all minimal paths in torus networks. IEEE Trans. Parallel
and Distributed Systems 5(12) (1994) 1233–1251

7. P.K. McKinley, H. Xu, A.H.E., Ni, L.: Unicast-based multicast communication in
wormhole-routed networks. IEEE Transactions on Parallel and Distributed Sys-
tems 5(12) (1994) 1252–1265

8. Boden, N.J., Cohen, D., Felderman, R.F., Kulawik, A.E., Seitz, C.L., Seizovic, J.,
Su, W.: Myrinet - a gigabit per second local area network. IEEE Micro (1995)
29–36

9. et. al., M.D.S.: Autonet: A high-speed, self-configuring local area network using
point-to-point links. Technical Report SRC research report 59, DEC (1990)

10. Horst, R.: Servernet deadlock avoidance and fractahedral topologies. In: Proceed-
ings of the International Parallel Processing Symposium. (1996) 274–280

11. Qiao, W., Ni, L.: Adaptive routing in irregular networks using cut-through
switches. In: Proceedings of the 1996 International Conference on Parallel Pro-
ceeding. (1996) I:52–60

12. Fan, K.P., King, C.T.: Efficient multicast on wormhole switch-based irregular
networks of workstations and processor clusters. In: Proceedings of the Internationl
Conference on High Performance Computing Systems. (1997)

13. Kesavan, R., Panda, D.K.: Efficient multicast on irregular switch-based cut-
through networks with up-down routing. In: IEEE Trans. Parallel and Distributed
Systems. Volume 12. (2001)

14. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, hypercubes. (Morgan Kaufmann)

15. Lin, Y.F., Liu, P., Wu, J.J.: Efficient agent-based multicast on wormhole switch-
based irregular networks. In: International Parallel and Distributed Processing
Symposium. (2003)

Methods for Partitioning Data to Improve

Parallel Execution Time for Sorting on
Heterogeneous Clusters�

Christophe Cérin1, Jean-Christophe Dubacq1, and Jean-Louis Roch2

1 Université de Paris Nord, LIPN, CNRS UMR 7030,
99 avenue J.B. Clément, 93430 Villetaneuse - France

{cerin, jcdubacq}@lipn.univ-paris13.fr
2 ID-IMAG, CNRS - INRIA - INPG - UJF, Projet MOAIS,

51 Av. J. Kuntzmann, 38330 Montbonnot-Saint-Martin - France
Jean-Louis.Roch@imag.fr

Abstract. The aim of the paper is to introduce general techniques in
order to optimize the parallel execution time of sorting on a distributed
architectures with processors of various speeds. Such an application re-
quires a partitioning step. For uniformly related processors (processors
speeds are related by a constant factor), we develop a constant time
technique for mastering processor load and execution time in an het-
erogeneous environment and also a technique to deal with unknown cost
functions. For non uniformly related processors, we use a technique based
on dynamic programming. Most of the time, the solutions are in O(p)
(p is the number of processors), independent of the problem size n. Con-
sequently, there is a small overhead regarding the problem we deal with
but it is inherently limited by the knowing of time complexity of the
portion of code following the partitioning.

Keywords: parallel in-core sorting, heterogeneous computing, complex-
ity of parallel algorithms, data distribution.

The advent of parallel processing, in particular in the context of cluster com-
puting is of particular interest with the available technology. A special class of
non homogeneous clusters is under concern in the paper. We mean clusters whose
global performances are correlated by a multiplicative factor. We depict a cluster
by the mean of a vector set by the relative speeds of each processor.

In this paper we develop general techniques in order to control the execu-
tion time and the load balancing of each node for applications running in such
environment. What is important over the application we consider here, is the
meta-partitioning schema which is the key of success. All the approaches we de-
velop can be considered as static methods: we predetermine the size of data that

� Work supported in part by France Agence Nationale de la Recherche under grants
ANR-05-SSIA-0005-01 and ANR-05-SSIA-0005-05, programme ARA sécurité.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 175–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 C. Cérin, J.-C. Dubacq, and J.-L. Roch

we have to exchange between processors in order to guarantee that all the pro-
cessors end at the same time before we start the execution. So, this work can be
considered in the domain of placement of tasks in an heterogeneous environment.

Many works have been done in data partitioning on heterogeneous platforms,
among them Lastovetsky’s and Reddy’s work [1] that introduces a scheme for
data partitioning when memory hierarchies from one CPU to another are differ-
ent. There, the heterogeneity notion is related to the heterogeneity of the memory
structure. Under the model, the speed of each processor is represented by a func-
tion of the size of the problem. The authors solve the problem of partitioning n
elements over p heterogeneous processors in O(p2 × log2 n) time complexity.

Drozdowski and Lawenda in [2] propose two algorithms that gear the load
chunk sizes to different communication and computation speeds of applications
under the principle of divisible loads (computations which can be divided into
parts of arbitrary sizes; for instance painting with black pixels a whole image).
The problem is formalized as a linear problem solved either by branch and bound
technique or a genetic algorithm. Despite the fact that the architecture is large
enough (authors consider heterogeneous CPU and heterogeneous links), we can
not apply it here because our problem cannot be expressed under the frame-
work of ’divisible loads’: in our case, we need to merge sorted chunks after the
partitioning step and the cost is not a linear one. . . thus our new technique.

The organization of our paper is the following. In section 1 we introduce the
problem of sorting in order to characterize the difficulties of partitioning data
in an heterogeneous environment. The section motivates the work. In section 2
we recall our previous techniques and results. Section 3 is devoted to a new
constant time solution and deals also with unknown cost functions. In section 4
we introduce a dynamic programming approach and we recall a technique that
do not assume a model of processors related by constant integers but in this
case the processor speed may be “unrelated”. Section 5 is about experiments
and section 6 concludes the paper.

1 Target Applications and Implementation on
Heterogeneous Clusters

Assume that you have a set of p processors with different speeds, interconnected
by a crossbar. Initially, the data is distributed across the p processors and ac-
cording to the speeds: the slowest processor has less data than the quickest.
This assumption describes the initial condition of the problem. In this section
we detail our sorting application for which performance are directly related to
this initial partitioning.

1.1 Parallel Sort

Efficient parallel sorting on clusters (see [3, 4, 5, 6, 7, 8] for the homogeneous case
and [9, 10, 11, 12, 13] for the heterogeneous case) can be implemented in the fol-
lowing ways:

Methods for Partitioning Data to Improve Parallel Execution Time 177

1. Each processor sorts locally its portion and picks up representative values in
the sorted list. It sends the representative values to a dedicated node.

2. This node sorts what it receives from the processors and it keeps p−1 pivots;
it distributes the pivots to all the processors.

3. Each processor partitions its sorted input according to the pivots and it
sends p − 1 portions to the others.

4. Each processor merges what it received from the others.

Note that the sorting in step 1 can be bypassed but in this case the last step is
a sort not a merge. Moreover note that there is only one communication step:
the representative values can be selected by sampling few candidates at a cost
much lower than the exchange of values. In other words, when a value moves, it
goes to the final destination node in one step.

2 Previous Results and Parallel Execution Time

Consider the simple problem of local sorting, such as presented in [10] (and our
previous comments). The sizes ni of data chunks on each node is assumed to be
proportional to the speed of processors.

Let us now examine the impact on the parallel execution time of sorting of
the initial distribution or, more precisely, the impact of the redistribution of
data. We determine the impact in terms of the way of restructuring the code
of the meta partitioning scheme that we have introduced above. In the previous
section, when we had N data to sort on p processors depicted by their respective
speeds k1, · · · , kp, we had needed to distribute to processor pi an amount ni of
data such that:

n1/k1 = n2/k2 = = np/kp (1)

and
n1 + n2 + + np = N (2)

The solution is:
∀i, ni = N × ki/(k1 + k2 + ... + kp)

Now, since the sequential sorts are executed on ni data at a cost propor-
tional ni lnni time cost (approximatively since there is a constant in front of
this term), there is no reason that the nodes terminate at the same time since
n1/k1 lnn1 �= n2/k2 lnn2 �= · · · �= np/kp lnnp in this case. The main idea that
we have developed in [14] is to send to each processor an amount of data to be
treated by the sequential sorts proportional to ni lnni. The goal is to minimize
the global computation time T = min(maxi=1,...,p ni lnni) under the constraints∑

ni = N and ni ≥ 0.
It is straightforward to see that an optimal solution is obtained if the com-

putation time is the same for all processors (if a processor ends its computation
before another one, it could have been assigned more work thus shortening the
computation time of the busiest processor). The problem becomes to compute
the data sizes n′

1, · · · , n′
p such that:

178 C. Cérin, J.-C. Dubacq, and J.-L. Roch

n′
1 + n′

2 + · · · + n′
p = N (3)

and such that

(n′
1/k1) lnn′

1 = (n′
2/k2) lnn′

2 = · · · = (n′
p/kp) lnn′

p (4)

We have shown that this new distribution converges to the initial distribution
when N tends to infinity. We have also proved in [14] that a constant time
solution based on Taylor developments leads to the following solution:

ni =
ki

K
N + εi, (1 ≤ i ≤ p) where εi =

N

lnN

⎡
⎣ ki

K2

p∑
j=1

kj ln
(

kj

ki

)⎤⎦ (5)

and where K is simply the sum of the ki. These equations give the sizes that we
must have to install initially on each processors to guaranty that the processors
will terminate at the same time. The time cost of computing one ki is O(p) and
is independent of n which is an adequate property for the implementations since
p is much lower and not of the same order than n.

One limitation of above the technique is that we assume that the cost time
of the code following the partitioning step should admit a Taylor development.
We introduce now a more general approach to solve the problem of partitioning
data in an heterogeneous context. It is the central part of the work. We consider
an analytic description of the partitioning when the processors are uniformly
related: processor i has an intrinsic relative speed ki.

3 General Exact Analytic Approach on Uniformly
Related Processors

The problem we solved in past sections is to distribute batches of size N accord-
ing to (4). We will first replace the execution time of the sorting function by a
generic term f(n) (which would be f(n) = n lnn for a sorting function, but could
also be f(n) = n2 for other sorting algorithms, or any function corresponding
to different algorithms). We assume that f is a strictly increasing monotonous
integer function. We can with this consider a more general approach to task
distribution in parallel algorithms. Since our processors have an intrinsic rela-
tive speed ki, the computation time of a task of size ni will be f(ni)/ki. This
(discrete) function can be extended to a (real) function f̃ by interpolation. We
can try to solve this equation exactly through analytical computation. We define
the common execution time T through the following equation:

T =
f̃(n1)

k1
=

f̃(n2)
k2

= · · · =
f̃(np)

kp
(6)

and equation
n1 + n2 + + np = N (7)

Methods for Partitioning Data to Improve Parallel Execution Time 179

Let us recall that monotonous increasing functions can have an inverse function.
Therefore, for all i, we have f̃(ni) = Tki, and thus:

ni = f̃−1(Tki) (8)

Therefore, we can rewrite (7) as:
p∑

i=1

f̃−1(Tki) = N (9)

If we take our initial problem, we have only one unknown term in this equation
which is T . The sum

∑p
i=1 f̃−1(Tki) is a strictly increasing function of T . If we

suppose N large enough, there is a unique solution for T . The condition of N
being large enough is not a rough constraint. f̃−1(T) is the number of data that
can be treated in time T by a processor speed equals to 1. If we consider that
f̃−1(0) = 0 (which is reasonable enough), we obtain that

∑p
i=1 f̃−1(Tki) = 0 for

T = 0.
Having T , it is easy to compute all the values of ni = f̃−1(Tki). We shall show

later on how this can be used in several contexts. Note also that the computed
values have to be rounded to fit in the integer numbers. If the numbers are
rounded down, at most p elements will be left unassigned to a processor. The
processors will therefore receive a batch of size ni =

⌊
f̃−1(Tki)

⌋
+ δ̃i to process.

δi can be computed with the following (greedy) algorithm:

1. Compute initial affectations ñi =
⌊
f̃−1(Tki)

⌋
and set δi = 0;

2. For each unassigned item of the batch of size N (at most p elements) do:
(a) Choose i such that (ñi + δi + 1)/ki is the smallest;
(b) Set δi = δi + 1.

The running time of this algorithm is O(p log p) at most, so independant of
the size of the data N .

3.1 Multiplicative Cost Functions

Let us consider now yet another cost function. f is a multiplicative function if it
verifies f(xy) = f(x)f(y). If f is multiplicative and admits an inverse function
g, its inverse is also multiplicative:

g(ab) = g(f(g(a))f(g(b))) = g(f(g(a)g(b))) = g(a)g(b)

If f̃ is such a function (e.g. f(n) = nk), we can solve equation (9) as follows:

N =
p∑

i=1

f̃−1(Tki) =
p∑

i=1

f̃−1(T)f̃−1(ki) = f̃−1(T)
p∑

i=1

f̃−1(ki) (10)

We can then extract the value of T :

f̃−1(T) =
N∑p

i=1 f̃−1(ki)
(11)

180 C. Cérin, J.-C. Dubacq, and J.-L. Roch

Combining it with (8) we obtain:

ni = f̃−1(Tki) = f̃−1(T)f̃−1(ki) =
f̃−1(ki)∑p
i=1 f̃−1(ki)

N (12)

Hence the following result:

Theorem 1. If f is a cost function with the multiplicative property f(ab) = f(a)f(b),
then the size of the assigned sets is proportional to the size of the global batch with
a coefficient that depends on the relative speed of the processor ki:

ni =
f̃−1(ki)∑p
i=1 f̃−1(ki)

N

This results is compatible with the usual method for linear functions (split ac-
cording to the relative speeds), and gives a nice generalization of the formula.

3.2 Sorting: The Polylogarithmic Function Case

Many algorithms have cost functions that are not multiplicative. This is the case
for the cost Θ(n log n) of the previous sequential part of our sorting algorithm,
and more generally for polylogarithmic functions. However, in this case equation
9 can be solved numerically. Simple results show that polylogarithmic functions
do not yield a proportionality constant independent of N .

Mathematical resolution for the case n ln n. In the case f(n) = n lnn,
the inverse function can be computed. It makes use of the Lambert W function
W (x), defined as being the inverse function of xex. The inverse of f : n �→ n lnn
is therefore g : x �→ x/W (x).

The function W (x) can be approached by well-known formulas, including
the ones given in [15]. A development to the second order of the formula yields
W (x) = lnx − ln ln(x) + o(1), and also:

x

W (x)
=

x

ln(x)

1

1 − (ln ln(x)/ ln(x)) + o(1)
=

x

ln(x)

(
1 +

ln ln(x)

ln(x)
+ O
((

ln ln(x)

ln(x)

)2
))

This approximation leads us to the following first-order approximation that can
be used to numerically compute in O(p) the value of T :

Theorem 2. Initial values of ni can be asymptotically computed by

p∑
i=1

Tki + Tki ln ln(Tki)
(ln(Tki))2

= N and ni =
Tki + Tki ln ln(Tki)

(ln(Tki))2

3.3 Unknown Cost Functions

Our previous method also claims an approach to unknown cost functions. The
general outline of the method is laid out, but needs refinement according to

Methods for Partitioning Data to Improve Parallel Execution Time 181

the specific needs of the software platform. When dealing with unknown cost
functions, we assume no former knowledge of the local sorting algorithm, just
linear speed adjustments (the collection of ki). We assume however that the
algorithm has a cost function, i.e. a monotonous increasing function of the size
of the data C.1 Several batch of data are submitted to our software. Our method
builds an incremental model of the cost function. At first, data is given in chunks
of size proportionnal to each node’s ki. The computation time on node i has a
duration of Tni and thus a basic complexity of C(ni) = Tniki. We can thus build
a piecewise affine function (or more complex interpolated function, if heuristics
require that) that represents the current knowledge of the system about the time
cost n �→ C(n). Other values will be computed by interpolation. The list of all
known points can be sorted, to compute f efficiently.

The following algorithm is executed for each task:

1. For each node i, precompute the mapping (T, i) �→ ni as previously, using
interpolated values for f if necessary (see below). Deduce a mapping T �→ n
by summing the mappings over all i.

2. Use a dichotomic search through T �→ n mapping to find the ideal value of
T (and thus of all the ni) and assign chunks of data to node i;

3. When chunk i of size ni is being treated:
(a) Record the cost C = Tniki of the computation for size ni.
(b) If ni already had a non-interpolated value, choose a new value C′ accord-

ing to whatever strategy it fits for the precise platform and desired effect
(e.g. mean value weighted by the occurrences of the various C found for
ni, mean value weighted by the complexity of the itemset, max value).
Some strategies may require storing more informations than just the
mapping n �→ C(n).

(c) If ni was not a known point, set C′ = C.
(d) Ensure that the mapping as defined by n �= ni �→ C(n) and the new

value ni �→ C′ is still monotonous increasing. If not, raise or lower values
of neighboring known points (this is simple enough to do if the strategy
is to represent the cost with a piecewise function). Various heuristics can
be applied, such as using the weighted mean value of conflicting points
for both points.

4. At this point, the precomputation of the mappings will yield consistent re-
sults for the dichotomic search. A new batch can begin.

The initial extrapolation needs care. An idea of the infinite behavior of the
cost function toward infinity is a plus. In absence of any idea, the assumption
that the cost is linear can be a starting point (a “linear guess”). All “linear
guesses” will yield chunks of data of the same size (as in equation (4)). Once at
least one point has been computed, the “linear guess” should use a ratio based
on the complexity for the largest chunk size ever treated (e.g. if size 1, 000 yields
a cost of 10, 000, the linear ratio should be at least 10).

1 If some chunks are treated faster than smaller ones, their complexity will be falsely
exaggerated by our approach and lead to discrepancies in the expected running time.

182 C. Cérin, J.-C. Dubacq, and J.-L. Roch

4 A Dynamic Programming Technique for Non-uniformly
Related Processors

In the previous sections we have developed new constant time solution to esti-
mate the amount of data that each processor should have in its local memory in
order to ensure that the parallel sorts end at the same time. The complexity of
the method is the same than the complexity of the method introduced in [14].

The class of functions that can be used according to the new method intro-
duced in the paper is large enough to be useful in practical cases. In [14], the
class of functions captured by the method is the class of functions that admit a
Taylor development. It could be a limitation of the use of the two methods.

Moreover, the approach of [14] considers that the processor speeds are uni-
formly related, i.e. proportional to a given constant. This is a restriction in the
framework of heterogeneous computers since the time to perform a computation
on a given processor depends not only on the clock frequency but also on various
complex factors (memory hierarchy, coprocessors for some operations).

In this section we provide a general method that provides an optimal parti-
tioning ni in the more general case. This method is based on dynamic program-
ming strategy similar to the one used in FFTW to find the optimal split factor
to compute the FFT of a vector [16].

Let us give some details of the dynamic approach. Let fi(m) be the computa-
tional cost of a problem of size m on machine i. Note that two distinct machines
may implement different algorithms (e.g. quicksort or radix sort) or even the
same generic algorithm but with specific threshold (e.g. Musser sort algorithm
with processor specific algorithm to switch from quicksort to merge sort and
insertion sort). Also, in the sequel the fi are not assumed proportional.

Given N , an optimal partitioning (n1, . . . , np) with
∑p

i=1 ni = N is defined
as one that minimizes the parallel computation time T (N, p);

T (N, p) = max{fi(ni);
i=1,...,p

} = min
(x1,...,xp)∈Np:

∑p
i=1 xi=N

max{fi(xi);
i=1,...,p

}

A dynamic programming approach leads to the following inductive character-
ization of the solution:∀(m, i) with 0 ≤ m ≤ N and 1 ≤ i ≤ p : T (m, i) =
minni=0..m max(fi(ni), C(m − ni, i − 1)).

Then, the computation of the optimal time T (N, p) and of a related partition
(ni)i=1,...,p is obtained iteratively in O(N2.p) time and O(N.p) memory space.

The main advantage of the method is that it makes no assumption on the
functions fi that are non uniformly related in the general case. Yet, the potential
drawback is the computational overhead for computing the ni which may be
larger than the cost of the parallel computation itself since T (N, p) = o(N2p).
However, it can be noticed, as in [16], that this overhead can be amortized if
various input data are used with a same size N . Moreover, some values T (m, p)
for m ≤ K may be precomputed and stored. Than in this case, the overhead
decreases to O

(
p.
(

N
K

)2)
. Sampling few values for each ni enables to reduce the

overhead as desired, at the price of a loss of optimality.

Methods for Partitioning Data to Improve Parallel Execution Time 183

5 Experiments

We have conducted experiments on the Grid-Explorer platform in order to com-
pare our approach for partitioning with partitioning based only on the relative
speeds. Grid-Explorer2 is a project devoted to build a large scale experimental
grid. The Grid-Explorer platform is connected also to the nation wide project
Grid50003 which is the largest Grid project in France. We consider here only the
Grid-Explorer platform which is built with bi-Opteron processors (2Ghz, model
246), 80GB of IDE disks (one per node). The interconnection network is made
of Cisco switches allowing a bandwidth of 1Gb/s full-duplex between any two
nodes. Currently, the Grid-Explorer platform has 216 computation nodes (432
CPU) and 32 network nodes (used for network emulation - not usefull in our
case). So, the platform is an homogeneous platform.

For emulating heterogeneous CPU, two techniques can be used. One can
use the CPUfreq driver available with Linux kernels (2.6 and above) and if the
processor supports it; the other one is CPU burning. In this case, a thread with
high priority is started on each node and consumes Mhz while another process
is started for the main program. In our case, since we have bi-opteron processors
we have chosen to run 2 processes per node and doing CPU burning, letting
Linux to run them one per CPU. Feedback and experience running the CPUfreq
driver on a bi-processor node, if it exists, is not frequent. This explain why we
use the CPU burning technique.

Figure 1 shows the methodology of running experiments on the Grid-Explorer
or Grid5000 platforms. Experimenters take care of deploying codes and reserve
nodes. After that, they configure an environment (select specific packages and a
Linux kernel, install them) and reboot the nodes according to the environment.
The experiments take place only after installing this “software stack” and at
a cost which is significant in term of time. We have implemented the sorting
algorithm depicted in subsection 1.1 and according to Theorem 2 for the com-
putation of the initial amount of data on each node for minimizing the total
execution time. Note that each node generates its local portion on the local disk
first, then we start to measure the time. It includes the time for reading from
disk, the time to select and to exchange the pivots, the time for partitioning data
according to the pivots, the time for redistributing (in memory) the partitions,
the time for sorting and finally the time to write the result on the local disks.

We sort records and each record is 100 bytes long. The first 10 bytes is a
random key of 10 printable characters. We are compliant with the requirements
of Minute Sort4 as much as possible in order to beat the record in a couple of
weeks.

We proceed with 50 runs per experiment. We only consider here experiments
with a ratio of 1.5 between processor speeds. This is a strong constraint: the
more the ratio is high the more the difference in execution time is important
and in favor of our algorithm. So we have two classes of processor but the choice
2 See: http://www.lri.fr/~fci/GdX
3 See: http://www.grid5000.fr
4 See: http://research.microsoft.com/barc/SortBenchmark/

184 C. Cérin, J.-C. Dubacq, and J.-L. Roch

Fig. 1. Methodology of experiments on the Grid-Explorer platform

between the performance (1 or 1/1.5) is made at random. We set half of the
processors with a performance of 1 and the remainder with a performance of
1/1.5. We recall that the emulation technique is ‘CPU burning’.

Since we have observed that the communication time has a significant impact
on the total execution time, we have developed two strategies and among them,
one for using the second processor of the nodes. In the first implementation
communication take place in a single thread that is to say in the thread also
doing computation. In the second implementation we have created a thread for
sending and a thread for receiving the partitions. We guess that the operating
system allocates them on the ‘second’ processor of our bi-opteron cards equiped
with a single Gigabit card for communication.

The input size is 541623000 records (54GB) because it provides about an
execution time of one minute in the case of an homogeneous run using the entire
2Ghz. Note that it corresponds approximatively to 47% of the size of the 2005
Minute Sort record.

We run 3 experiments. Only experiments A.2 et A.3 use our technique to par-
tition the data whereas experiment A.1 corresponds to a partitioning according
to the relative speed only. In other words, experiment A.1 corresponds to the case
where the CPU burns X.Mhz (where X is either 1Ghz or 1/1.5 GHz) but the per-
formance vector is set according to an homogeneous cluster, we mean without us-
ing our method for re-balancing the work. Experiment A.2 also corresponds to
the case where communication are not done in separate threads (and thus they
are done on the same processor). Experiment A.3 corresponds to the case where
the CPU burns X Mhz (also with X is either 1Ghz or 1/1.5 GHz) and communica-
tion are done in separate threads (and thus they are done on separate processors
among the two available on a node). We use the pthread library and LAM-MPI
7.1.1 which is a safe-thread implementation of MPI. sorting 54GB on 96 nodes

Methods for Partitioning Data to Improve Parallel Execution Time 185

A1 experiment A2 experiment A3 experiment

125.4s 112.7s 69.4s

Fig. 2. Summary of experiments

is depicted in Figure 2. We observe that the multithreaded code (A.3) for imple-
mentating the communication step is more efficient than the code using a single
thread (A.2). This observation confirms that the utilization of the second proces-
sor is benefit for the execution time. Concerning the data partitioning strategy
introduced in the paper, we observe a benefit of about 10% in using it (A.2) com-
paring to A.1. Moreover, A.3 and A.2 use the same partitioning step but they differ
in the communication step. The typical cost of the communication step is about
33% of the execution time for A.3 and about 60% for A.2.

6 Conclusion

In this paper we address the problem of data partitioning in heterogeneous en-
vironments when relative speeds of processors are related by constant integers.
We have introduced the sorting problem in order to exhibit inherent difficulties
of the general problem.

We have proposed new O(p) solutions for a large class of time complexity
functions. We have also mentioned how dynamic programming can find solu-
tions in the case where cost functions are “unrelated” (we cannot depict the
cpu performance by the mean of integers) and we have reminded a recent and
promising result of Lastovetsky and Reddy related to a geometrical interpreta-
tion of the solution. We have also described methods to deal with unknown cost
functions. Experiments based on heteroneous processors correlated by a factor
of 1.5 and on a cluster of 96 nodes (192 AMD Opteron 246) show better perfor-
mance with our technique compared to the case where processors are supposed
to be homogeneous. The performance of our algorithm is even better if we con-
sider higher factor for the heterogeneity notion, demonstrating the validity of
our approach.

In any case, communication costs are not yet taken into account. It is an
important challenge but the effort in modeling seems important. In fact you
cannot mix, for instance, information before the partitioning with information
after the partitioning in the same equation. Moreover, communications are diffi-
cult to precisely modelize in a complex grid archtitecture, where various network
layers are involved (Internet/ADSL, high speed networks,. . .). In this context,
a perspective is to adapt the static partitioning, such as proposed in this paper,
by a dynamic on-line redistribution of some parts of the pre-allocated chunks
in reaction to network overloads and resources idleness (e.g. distributed work
stealing).

186 C. Cérin, J.-C. Dubacq, and J.-L. Roch

References

1. Lastovetsky, A., Reddy, R.: Data partitioning with a realistic performance model
of networks of heterogenenous computers. In: Proc. 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), Santa-Fe, New-Mexico. (2004)
CD–ROM publication

2. Drozdowski, M., Lawenda, M.: On optimun multi-installment divisible load pro-
cessing in heterogeneous distributed systems. In 3648, L., ed.: Proc. 11th Interna-
tional Euro-Par Conference, Lisbon, Portugal. (2005) 231–240

3. Li, H., Sevcik, K.C.: Parallel sorting by overpartitioning. In: Proceedings of the
6th Annual Symposium on Parallel Algorithms and Architectures, New York, NY,
USA, ACM Press (1994) 46–56

4. Reif, J.H., Valiant, L.G.: A Logarithmic time Sort for Linear Size Networks. Journal
of the ACM 34(1) (1987) 60–76

5. Reif, J.H., Valiant, L.G.: A logarithmic time sort for linear size networks. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
Boston, Massachusetts (1983) 10–16

6. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing 14(4) (1992) 361–372

7. Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H.: On the versatility
of parallel sorting by regular sampling. Parallel Computing 19 (1993) 1079–1103

8. Helman, D.R., JáJá, J., Bader, D.A.: A new deterministic parallel sorting algorithm
with an experimental evaluation. Tech. Rep. CS-TR-3670 and UMIACS-TR-96-54,
Institute for Advanced Computer Studies, Univ. of Maryland (1996)

9. Cérin, C., Gaudiot, J.L.: Evaluation of two BSP libraries through parallel sorting
on clusters. In: Proceedings of WCBC’00 (Workshop on Cluster-Based Computing)
in conjunction with ICS’00 (International Conference on Supercomputing), Santa
Fe, New Mexico (2000) pp 21–26

10. Cérin, C., Gaudiot, J.L.: An over-partitioning scheme for parallel sorting on clusters
running at different speeds. In: Cluster 2000. IEEE International Conference on
Cluster Computing. T.U. Chemnitz, Saxony, Germany. (Poster). (2000)

11. Cérin, C., Gaudiot, J.L.: Parallel sorting algorithms with sampling techniques on
clusters with processors running at different speeds. In: HiPC’2000. 7th Inter-
national Conference on High Performance Computing. Bangalore, India. Lecture
Notes in Computer Science, Springer-Verlag (2000)

12. Cérin, C., Gaudiot, J.L.: On a scheme for parallel sorting on heterogeneous clusters.
FGCS (Future Generation Computer Systems 18(issue 4) (2002) The special issue
is preliminary scheduled for publication in future vol.

13. Cérin, C.: An out-of-core sorting algorithm for clusters with processors at differ-
ent speed. In: 16th International Parallel and Distributed Processing Symposium
(IPDPS), Ft Lauderdale, Florida, USA. (2002) Available on CDROM from IEEE
Computer Society

14. Cérin, C., Koskas, M., Jemni, M., Fkaier, H.: Improving parallel execution time of
sorting on heterogeneous clusters. In: Proc. 16th Int. Symp. on Comp. Architecture
and High Performance Computing (SBAC’04), Foz-do-Iguazu, Brazil. (2004)

15. Corless, R., Jeffrey, D., Knuth, D.: A sequence of series for the lambert w function.
In: Proc. of ISSAC’97, Maui, Hawaii. W.W. Kuechlin (ed.). New York, ACM. (1997)
197–204

16. Frigo, M., Johnson, S.G.: The design and implementation of fftw3. In: Proceedings
of the IEEE, Special issue on Program Generation, Optimization, and Platform
Adaptation. (2005) 216–231

Detecting Unaffected Message Races in Parallel

Programs�

Mi-Young Park and Yong-Kee Jun��

Computer Science, Gyeongsang National University,
Jinju, 660-701, South Korea

{park, jun}@race.gnu.ac.kr

Abstract. Detecting unaffected race conditions is important to debug-
ging message-passing programs effectively, because such a message race
can affect other races to occur or not. Unfortunately, the previous tech-
nique to efficiently detect unaffected races does not guarantee that all of
the detected races are unaffected. This paper presents a novel technique
that manages the states of the detected races by examining if every re-
ceived message is affected until the execution terminates. Our technique
guarantees to efficiently detect unaffected races, because it maintains
affects-relations of the races all along the execution of program.

1 Introduction

In message-passing programs, a message race [4, 11, 17] occurs in a receive event,
if two or more messages are sent over communication channels on which the re-
ceive listens and they are simultaneously in transit without guaranteeing the
order of arrival of them. Message races should be detected for effectively debug-
ging a large class of parallel or grid programs [7, 10, 23], because nondeterminis-
tic order of arrival of the racing messages causes unintended nondeterminism of
programs. Especially, it is important to efficiently detect unaffected races before
which no other races happened, because such races may make other affected
races appeared or make them hidden.

Previous methods to detect races dynamically can be classified with the point
of detection time into two classes: on-the-fly detection [1, 2, 3, 4, 11, 17, 18, 12, 21]
and post-mortem analysis [14, 19, 22, 24]. On-the-fly detection detects partial in-
formation or only a subset of races appeared in an execution of program without
requiring as much space as post-mortem analysis does for a trace file. Some on-
the-fly techniques [1, 2, 12, 18] just verifies the existence of race, but the other set
[3, 4, 11, 17, 21] can detect unaffected races. The most efficient technique [17] to
detect unaffected races detects racing messages by halting at the located receive
� This work was supported in part by Grant No. R05-2003-000-12345-0 from the Basic

Research Program of the Korea Science and Engineering Foundation.
�� Corresponding author. Also involved in Research Institute of Computer and Infor-

mation Communication (RICIC) as a research professor in Gyeongsang National
University.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 187–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 M.-Y. Park and Y.-K. Jun

event of the first race to occur in each process. However, this technique does not
guarantee that all of the detected races are unaffected.

This paper presents a novel technique which guarantees to detect efficiently
all unaffected races, because it maintains affects-relations of the races all along
the execution of program. We tested our technique in MPI [23] using MPICH
implementation [8] on a Linux cluster system which consists of four Compaq-
Alpha processor nodes. We implemented our technique as a C-library using MPI
Profiling Interface to make it transparent to user programs, and justified its
efficiency and accuracy using a set of published benchmark programs [15, 9, 20].

The experimentation results show that the technique incurs overhead only
about 1% more in its slowdown than the previous technique, but detects all of
unaffected races which is a subset of races reported by the previous technique.
This small overhead of detecting unaffected races is still important for debugging
large-scale scientific programs which run on computational grids [6], because
debugging such grid applications [10] is often a much more exhausting task than
sequential or even parallel programs [25].

The following section explains the significance of detecting unaffected races
and the serious problems of previous techniques in detecting such a kind of races.
We present a novel solution in section 3 which captures affects-relations among
processes and efficiently maintains the state transitions of the detected race to
determine if it is an unaffected race. Section 4 shows the results of experimenta-
tion justifying that our technique is reasonable in its efficiency and is accurate
enough using a set of published benchmarks. The final section summarizes our
technique, and argues its significance with some future work.

2 Background

Message-passing programs [7, 10, 23] consists of a set of parallel processes that
communicate with each other. We model a message-passing between processes
as occurring over logical channels [17], and assume that each send or receive
specifies a set of logical channels over which it operates to send copies of one
message or to receive one message from the channels. If more than one chan-
nel has a message available, the receive nondeterministically chooses a channel
among them to receive one message. We assume that any message sent over a
channel is received by exactly one receive event, and all messages sent are even-
tually received at the corresponding receive. This model with logical channel is
general, because most message-passing schemes can be represented.

A message race [4, 11, 18] occurs toward a receive event, if two or more mes-
sages are sent over communication channels on which the receive listens and that
they are simultaneously in transit without guaranteeing the order of arrival of
them. A message race is represented as 〈r, M〉, where r is a receive event and
M is a set of racing messages toward r. Thus, r receives the message delivered
first in M , and the send event s which sent a message in M does not satisfy
r → s. Here, r → s denotes a happened-before relation [13] which means r al-
ways occurs before s in all executions of the program. We denote a message

Detecting Unaffected Message Races in Parallel Programs 189

x

y

w

w 1

w 2

P 1 P 2 P 3 P 4 P 5

y1

x2

x1

y2

a

b

x

y

w

P 1 P 2 P3 P 4

w 1

w 2

P 5

y1

x2

x1

y2

Initial Initial Initial Initial Initial

Un -
affected

Affected

Affected

Un -
affected

Affected

(b)(a)

x

y

w

w 1

w 2

P 1 P 2 P 3 P 4 P 5

y1

x2

x1

y2

a

b

x

y

w

P 1 P 2 P3 P 4

w 1

w 2

P 5

y1

x2

x1

y2

Initial Initial Initial Initial Initial

Un -
affected

Affected

Affected

Un -
affected

Affected

(b)(a)

Fig. 1. Message Races

sent by a send event s as msg(s). Figure 1(a) shows a partial order of events
that occurred during an execution of message-passing program. A vertical arc
in the figure represents an event stream executed by each process along with
time; and a slanting arc between any two vertexes optionally labelled with their
identifiers represents a delivery of message between a pair of send and receive
operations.

Suppose that there exist any two message races {〈m, M〉, 〈n, N〉} in an exe-
cution of a program, and they satisfy (m → s ∨ m → n) where the message
msg(s) ∈ N . Then the message msg(s) is an affected message by 〈m, M〉 because
m → s; and the race 〈n, N〉 is an affected race by 〈m, M〉 because m → n. And
we say that 〈m, M〉 is an unaffected race, if there does not exist any message
such that msg(t) ∈ M satisfying (n → t) and there exists no such event that
satisfies (n → m). For example, figure 1.b shows one unaffected race 〈w, W 〉
where W = {msg(w1), msg(w2)} and two affected races {〈x, X〉, 〈y, Y 〉} where
X = {msg(x1), msg(x2)} and Y = {msg(y1), msg(y2)}; six affected messages
by the unaffected race are represented with dotted arcs. {〈x, X〉, 〈y, Y 〉} are af-
fected by 〈w, W 〉, because msg(x2) ∈ X satisfies w → x2 and 〈y, Y 〉 satisfies
w → y. Unaffected races such like 〈w, W 〉 is important to debugging message
passing programs effectively, because those races occurs always in all execution
instances with the same input and may make other affected races appeared or
make them hidden. A locally-unaffected race is the first race to occur in a pro-
cess. Although the locally-unaffected race of a process is unaffected by any other
race occurred in the local process, it is not guaranteed to be unaffected from
another race occurred in the other processes. For example, figure 1 shows that
all of the races appeared in the figure are locally-unaffected races, two of which
{〈x, X〉, 〈y, Y 〉} are affected by another locally-unaffected race 〈w, W 〉.

190 M.-Y. Park and Y.-K. Jun

To dynamically detect races, the previous methods may be either on-the-
fly detection [1, 2, 3, 4, 11, 17, 18, 12, 21] or post-mortem analysis [14, 19, 22, 24].
An on-the-fly techniques can be either one [1, 2, 12, 18] to verify the race exis-
tence or the other [3, 4, 11, 17, 21] to detect unaffected races. With respect to
the degree of monitoring parallelism, unaffected races can be detected either in
One-thread-at-One-time (OtOt) [3, 4, 21] for detecting locally-affected races or in
Multi-threads-at-One-time (MtOt) [11, 17] for detecting globally-affected races.
MtOt techniques are classified into two classes with respect to the required
number of monitored executions: one-pass [11] and two-pass [17] technique. The
one-pass technique shows impractical space complexity which is dependent on
the number of messages, because it checks all of the previous receive events at
each receive event to detect all of the races related to every previous receive
event. On the other hand, the two-pass technique finds some information in the
first execution to detect a locally-unaffected race of each process, and then try
to detect globally-unaffected races by halting each process at every first racing
receive in the second execution. This technique consumes space and time which
are independent of the number of messages.

Although the two-pass technique is the most efficient to detect unaffected
races, it can not guarantee that all of the detected races are globally-unaffected.
It is because a process which is halted at its first racing receive cannot send
messages to notify other processes of their being affected, and then such pro-
cesses which can not receive such messages will report their affected races as
unaffected erroneously. For example, consider the two-pass technique for an ex-
ecution instance shown in figure 1. In the first execution, each process writes
some information into a trace file to locate its locally-unaffected races {w ∈
P3, x ∈ P4, y ∈ P2}. In the second execution, it halts the three processes at
the location {w, x, y}, and then receives the racing messages into their receive
buffers. This results in the three receive buffers of (P2, P3, P4) to contain three
sets of messages (∅, W, α) respectively, where W = {msg(w1), msg(w2)} and
α = {msg(x1)} ⊆ X . Consequently, this two-pass technique reports two races
{〈w, W 〉, 〈x, X〉} as unaffected, but actually 〈x, X〉 is affected by 〈w, W 〉 as shown
in figure 1.b. This kind of erroneous reports is resulted from halting at w of P3,
and then not delivering msg(x2) ∈ X at P4 to capture affects-relation.

3 Detecting Unaffected Races

Figure 2 shows our pass-1 algorithm. To decide if the current receive event is
involved in the locally-unaffected race, it is necessary to determine if the receive
event is involved in a race and if the race occurs first in the current process.
The first line of pass-1 stores into preRecv the location of the previous receive
event which received a message over the current channel. This is because that
location makes it determine if the current receive is involved in a race in line
2 by examining the mutual concurrency between the previous receive and the
send event which sent the current message. A vector timestamp [5, 16] is used for
the concurrency information to check the happened-before [13] relation between

Detecting Unaffected Message Races in Parallel Programs 191

0 CheckReceivePass1(Send)
1 prevRecv := PrevBuf [thisChan];
2 if (prevRecv � Send) ∧ (Send[me] → cutoff) then
3 cutoff := Send[me];
4 firstChan := thisChan;
5 endif
6 for all i in Channels do
7 PrevBuf [i] := Recv [me]
8 endfor

Fig. 2. Pass-1 Algorithm

every two events. Secondly, it determines if the detected race is the first to occur
in the current process by comparing cutoff, which represents the location of the
current locally-unaffected race, with Send[me] which is the current process in-
formation in the received vector timestamp. If Send[me] happened before cutoff,
the currently detected race is the first race to occur until now in the process. For
example, when msg(y2) is received in figure 1, cutoff of 〈y, Y 〉 is b, because it is
the most recent send event which happened before y2 in P2. Lastly, the current
receive event Recv[me] is stored into PrevBuf which has entries as many as the
number of channels associated with the current receive event. This is because
the current receive event will be the previous receive event prevRecv at the next
receive event to detect races.

Figure 3 shows the pass-2 algorithm which uses cutoff and firstChan gener-
ated by the pass-1. This algorithm run at every receive event detects the first
racing receive and the messages involved in the locally-unaffected race, and then
calls an algorithm to manage the state of the detected race. The line 1 and 2
check the happened-before relation between cutoff and the current receive event,
examine if firstChan is included in Channels which is a set of logical channels
associated with the current receive event, and check if the receive is affected.
This is because the current receive event is involved in the locally-unaffected
race occurred in the process, if the receive is an unaffected event occurred first
after cutoff and associated with firstChan. To produce affects-relation informa-
tion that will be attached to messages to notify other processes of their being
affected, the line 7 evaluates a disjunction of affecting and Msg(affecting). It is
because messages sent by the current process can affect other processes, if either
a race occurred or affected messages were received from other process. The line
8 checks if the received message is racing toward the first racing receive denoted
firstRecv in the process. The firstRecv that is not null means that there exists
the first racing receive in the process, and the firstRecv that does not happen
before send means that the received message is racing toward the first racing
receive.

The line 12 passes three values to the state transition algorithm: Msg(affecting)
indicating affects-relation information included in the received message, state in-
dicating the current state of the race, and racing indicating if the received message
races. First, the affects-relation information included in a received message is im-
portant to capture if a locally-unaffected race is affected via an affected message

192 M.-Y. Park and Y.-K. Jun

0 CheckReceivePass2(Send, recv, Msg, cutoff, firstChan)
1 for all i in Channels do
2 if (cutoff → recv) ∧ (firstChan = i) ∧ ¬ affecting) then
3 firstRecv := recv;
4 affecting := true;
5 endif
6 endfor
7 affecting := affecting ∨ Msg[affecting];
8 if (firstRecv = ¬ null ∧ firstRecv � send) then
9 racingMsg := racingMsg ∪ Msg ;

10 racing := true
11 endif
12 state := CheckRace(state, Msg[affecting], racing);

13 CheckRace(state, affected, racing)
14 if (state = Initial ∧ ¬ affected ∧ racing) then
15 return Unaffected;
16 endif
17 if (state = Initial ∧ affected) then
18 return Affected;
19 endif
20 if (state = Unaffected ∧ affected ∧ racing) then
21 return Affected;
22 endif

Fig. 3. Pass-2 Algorithm

sent by other processes. In its initial state, for example, if a process receives an
affected message before its locally-unaffected race occurs, then the race becomes
affected then; if a process receives an affected message after its unaffected locally-
unaffected race occurred, then the unaffected race becomes affected. Second, the
existence of the first receive event toward which the currently received message
races is important, because a race 〈r, M〉 is affected if there exists an affected mes-
sage in M . For example, although a received message is affected, the state of 〈r, M〉
should not be changed if the message is not included inM . It is because the message
can not affect the occurrence of 〈r, M〉.

There are three states of the detected race in each process: Initial, Unaffected,
and Affected. Figure 3 shows our algorithm to manage race state transition.
Figure 1(b) illustrates the states of the locally-unaffected races and the affected
messages, when we apply this algorithm to figure 1(a). In the figure, a dotted
line represents affected messages.

Given c is the number of logical channels and p is the number of processes,
this technique requires O(c)-space for keeping information to locate the first race
to occur in all the channels associated with every current receive, and O(p)-space
for maintaining a vector timestamp used to check concurrency between any pair
of send and receive events. Therefore the space complexity of this technique is
O(c + p) in both of the Pass-1 and Pass-2. In the time complexity, it requires
O(c)-time to compare the location information in every channel at a receive,

Detecting Unaffected Message Races in Parallel Programs 193

and O(p)-time to update the vector timestamp at each send or receive event.
Therefore the time complexity of this technique is O(c+p) in both of the Pass-1
and Pass-2.

4 Experimentation

Our cluster system consists of four Compaq-Alpha processor nodes, each of which
is equipped with a mother-board specifically designed for the Alpha-21264 pro-
cessor with 600 MHz clocks speed. Each main memory is 256MB ECC RAM
with the capability of 1-bit error compensation, and the capacity of each cache
memory is 2MB. Each hard disk stores up to 40GB via IDE interface. These
nodes are connected via 100Mbps Fast Ethernet; a switching hub connected to
each node through a 3Com Ethernet Network Interface Card. We installed Linux
under kernel version 2.2.14-6 on the cluster system, and tested our technique in
the non-overtaking MPI programs [23] for which we installed MPICH [8].

In addition to the algorithms introduced in the section 3, we implemented
three additional functions to produce a vector timestamp [5] in each send or
receive, to determine and write down {cutoff, firstChan} to a trace file in Pass-1,
and to read cutoff and firstChan from the trace file for our Pass-2 algorithm. We
implemented these functions using MPI Profiling Interface to make it transparent
to user programs, so that users apply the library to their programs without
modifying them. MPI Profiling Interface included in MPI specification allows
anyone to intercept calls to the MPI library and perform arbitrary actions.

Actually, the number of the wrapped MPI functions are five synchronous
functions but can be extended to asynchronous functions with ease: MPI Comm-
size(), MPI Comm rank(), MPI Send(), MPI Recv(), and MPI Finalize(). We
implemented two different wrapped functions for each of Pass-1 and Pass-2, be-
cause our technique requires the different wrapped functions to be performed
in the two passes of monitored executions. Consider the functions for Pass-1.
MPI Comm size() and MPI Comm rank() initialize all data structures for de-
tecting races. MPI Send() produces a vector timestamp and attach it to messages
to be sent to other processes. MPI Recv() produces a vector timestamp using
the sender’s timestamp received, and determine {cutoff, firstChan} to find the
first racing receive. MPI Finalize() stores to a trace file {cutoff, firstChan} which
are detected for a racing receive of locally-unaffected race. Consider the func-
tions for Pass-2. MPI Comm size() and MPI Comm rank() initialize all data
structures and read {cutoff, firstChan} from the trace file. MPI Send produces
a vector timestamp and attach it to messages with the boolean value of affecting
to be sent to other processes. MPI Finalize() reports the state of the detected
locally-unaffected race in each process.

The benchmark programs are three MPI applications written in C language:
Broadcast in MPBench [15], Stress in mpptest [9], and Exchange in PMB [20].
We measured the time overhead using MPI Wtime() at each process invoked
by each technique in the three benchmark programs. We measured three kinds
of time: the time to run the original benchmark programs, the time to monitor

194 M.-Y. Park and Y.-K. Jun

Table 1. Race Detected in the Modified Stress

loc. of Netzer’s Report Our Report
pid first racing locally-unaffected � of racing locally-unaffected � of racing

receive races messages races messages

0 4 Affected 1 Affected 3

1 5 Affected 0 Affected 3

2 1 Unaffected 2 Unaffected 2

3 1 Unaffected 2 Affected 3

the programs with the previous technique, and the time with our technique.
We measured each kind of time in 10 times, and acquired the average time. For
Stress and Exchange that shows no races, the two techniques showed very similar
slowdowns; the worst case of our technique incurs overhead at most 1% more
than the previous technique. Especially, the slowdowns of Exchange is smaller
than those of Stress , although Exchange generates more messages than Stress .
This shows that the overhead of message-passing is larger than the overhead of
monitoring a program to detect races.

To evaluate accuracies of the two techniques, we modified Stress and com-
pared those results of race detection with the analysis of trace files generated
just for this job. We modified one static receive call in Stress source code to re-
ceive tagged messages with MPI ANY TAG to intentionally make races as bugs.
Table 1 shows the results of the two techniques applied to the modified Stress .
The two techniques are same in the reported location of the first racing receives,
but are different in the views of the numbers of unaffected races and racing mes-
sages. The previous technique reported two unaffected races, and the other two
races occurred in P0 and P1 are reported as races affected. On the other hand,
our technique reported only one unaffected race occurred in P2 in the modified
program. The number of racing messages detected in the previous technique is
less than ours. This is because the message to be sent after the point that a race
occurs can not be sent to other processes by halting an execution of the process.
Therefore, the previous technique is less accurate than our technique.

5 Conclusion

We presented a novel technique to efficiently maintain the state transition of the
detected races, and to report all unaffected races. We justified our technique in
the aspects of efficiency and accuracy using a set of published benchmark pro-
grams. From the results of the experimentation, we found that the two techniques
have very similar slowdowns in the aspect of efficiency, and only our technique
reports all unaffected races in the aspect of accuracy. This small overhead of
detecting unaffected races is still important for debugging large-scale scientific
programs which run on computational grids, because debugging such grid ap-
plications is often a much more exhausting task than sequential or even parallel
programs.

Detecting Unaffected Message Races in Parallel Programs 195

When a programmer can set the value of {cutoff, firstChan}, our technique can
be used in a stand-alone mode without running Pass-1. This technique therefore
helps programmers avoid detecting intended races, and discriminate unaffected
or affected races from unintended races. And, if programmers repetitively debug
the detected races by applying the gradually increased value of cutoff, all of
the races existed in each process can be detected. Future work includes the
development of effective techniques to visualize the states of the detected races
in various levels of visual abstractions.

References

1. Claudio, A. P., and J. D. Cunha, “A Race Detection Mechanism Embedded in a
Conceptual Model for the Debugging of Message-Passing Distributed Programs,”
Int’l Conf. on Parallel and Distributed Computing (Euro-Par), Klagenfurt, Austria,
LNCS, 2790: 57-65, Springer-Verlag, August 2003.

2. Cypher, R., and E. Leu, “Efficient Race Detection for Message-Passing Programs
with Nonblocking Sends and Receives,” 7th Symp. on Parallel and Distributed
Processing, pp. 534-541, IEEE, Oct. 1995.

3. Damodaran-Kamal, S. K., and J. M. Francioni, “Nondeterminacy: Testing and De-
bugging in Message Passing Parallel Programs,” ACM/ONR Workshop on Parallel
and Distributed Debugging, Sigplan Notices, 28(12): 118-128, ACM, Dec. 1993.

4. Damodaran-Kamal, S. K., and J. M. Francioni, “Testing Races in Parallel Pro-
grams with an OtOt Strategy,” Int’l Symp. on Software Testing and Analysis, pp.
216-227, ACM, August 1994.

5. Fidge, C. J., “Partial Orders for Parallel Debugging,” SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, pp. 183-194, ACM, May 1988.

6. Foster,I., and C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan-Kaufmann, 1999.

7. Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
“PVM: Parallel Virtual Machine,” A Users Guide and Tutorial for Networked Par-
allel Computing, Cambridge, MIT Press, 1994.

8. Gropp, W., and E. Lusk, User’s Guide for Mpich, A Portable Implementation of
MPI, TR-ANL-96/6, Argonne National Laboratory, 1996.

9. Gropp, W., and E. Lusk, “Reproducible Measurements of MPI Performance Char-
acteristics,” 6th European PVM/MPI Users’ Group Conf., LNCS, 1697:11-18,
Springer-Verlag, Sept. 1999.

10. Karonis, N., B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled Implementa-
tion of the Message Passing Interface,” J. of Parallel and Distributed Computing,
63(5): 551-563, Academic Press, May 2003.

11. Kilgore, R., and C. Chase, “Re-execution of Distributed Programs to Detect Bugs
Hidden by Racing Messages,” 30th Annual Hawaii Int’l. Conf. on System Sciences,
Vol. 1, pp. 423-432, Jan. 1997.

12. Krammer, M. S. Müller, and M. M. Resch, “MPI Application Development Using
the Analysis Tool MARMOT,” 4th Int’l Conf. on Computational Science (ICCS),
LNCS, 3038: 464-471, Springer-Verlag, June 2004.

13. Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, 21(7): 558-565, ACM, July 1978.

196 M.-Y. Park and Y.-K. Jun

14. Lei, Y., and K. Tai, “Efficient Reachability Testing of Asynchronous Message-
Passing Programs,” 8th Int’l Conf. on Engineering of Complex Computer Systems
pp. 35-44, IEEE, Dec. 2002.

15. Mucci, P. J., and K. London, The MPBench Report , CEWES MSRC/PET TR-
98-26, Nichols Research, Programming Environment Training (PET), Major Shred
Res. Center (MSRC), DoD HPC Modernization Program CEWES, March 1998.

16. Mattern, F., “Virtual Time and Global States of Distributed Systems,” Parallel
and Distributed Algorithms, pp. 215-226, Elsevier Science, North holland, 1989.

17. Netzer, R. H. B., T. W. Brennan, and S. K. Damodaran-Kamal, “Debugging Race
Conditions in Message-Passing Programs,” ACM Sigmetrics Symp. on Parallel and
Distributed Tools (SPDT), pp. 31-40, ACM, May 1996.

18. Netzer, R. H. B., and B. P. Miller, “Optimal Tracing and Replay for Debugging
Message-Passing Parallel Programs,” Int’l Conf. on High Perf. Networking and
Computing , pp. 502-511, ACM/IEEE, Minneapolis, Minn., Nov. 1992.

19. Park, M., and Y. Jun, “Detecting Unaffected Race Conditions in Message-Passing
Programs,” 11th European PVM/MPI User’s Group Meeting (EuroPVM/MPI),
Budapest, Hungary, LNCS, 3241: 268-276, Springer-Verlag, Sept. 2004.

20. Pallas GmbH, Pallas MPI Benchmarks - PMB, Pallas GmbH, Hermuelheimer
Street 10, 50321 Bruehl, Germany, March 2000.

21. Park, M., Y. Kim, M. Kang, and Y. Jun, “Improving On-the-fly Race Detection
for Message-Passing Programs,” Int’l Conf. of Computational Methods in Sciences
and Engineering (ICCMSE), Korinthos, Greece, Lecture Series on Computer and
Computational Science, 4: 449-454, Brill Academic, Oct. 2005.

22. Park, M., S. Park, S. Bae, and Y. Jun, “Scalable Race Visualization for Debugging
Message-Passing Programs,” Workshop on State-of-the-Art in Scientific Comput-
ing (PARA), pp. 179-188, Copenhagen, Denmark, June 2004.

23. Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Com-
plete Reference, MIT Press, 1996.

24. Tai, K. C., “Race Analysis of Traces of Asynchronous Message-Passing Programs,”
Int’l. Conf. on Dist. Computing Systems (ICDCS), pp. 261-268, IEEE, May 1997.

25. Wang, W., B. Fang, H. Zhang, and Y. Yao, “Ad Hoc Debugging Environment for
Grid Applications,” 3rd Int’l Conf. on Grid and Cooperative Computing (GCC),
Wuhan, China, Oct. 2004. LNCS, 3251: 113-120, Springer-Verlag, Sept. 2004.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 197 – 206, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Combined Technique of Non-uniform Loops

Sam Jin Jeong, Kun Hee Han, and Young Chul Park

Division of Information and Communication Engineering, Cheonan University,
Anseo-dong 115, Cheonan City, Korea 330-704

{sjjeong, hankh, ycpark}@cheonan.ac.kr

Abstract. This paper proposes efficient methods such as Improved Tiling
Method for non-uniform dependence loops with only flow dependences and
Improved Region Partitioning Method for loops with both flow and anti de-
pendences. In the Improved Tiling Method, we propose our incrementing
minimum dependence distance technique and loop interchanging technique. In
Improved Region Partitioning Method, we eliminate anti dependences from the
nested loop by variable renaming. After variable renaming, this method can di-
vide the iteration space into two parallel regions as large as possible and one or
less serial region as small as possible. By combination of existing methods and
our proposed methods, it exposes more parallelism.

1 Introduction

The execution of DO loops spends most of time in computationally expensive pro-
grams. Therefore, an efficient approach for exploiting potential parallelism is to con-
centrate on the parallelism available in loops in ordinary programs [1].

Some parallelization techniques, based on Convex Hull theory [2] which has been
proved to have enough information to handle non-uniform dependences, are minimum
dependence distance tiling method [3], the unique set oriented partitioning method [4]
and three region partitioning method [5], [6].

This paper will focus on parallelization of flow and anti dependence loops with
non-uniform dependences.

Example l. Example 2. Example 3.
do i = 1, 10 do i = 1, 10 do i = 1, 50

do j = 1, 10 do j = 1, 10 do j = 1, 50
A(2*i+3, j+1) = . . . A(2*j+3, i+j+5) = . . . A(3*i+1, 4*i+2*j+1) = . . .

. . .=A(i+j+3, i+2*j+1) . . . = A(2*i+j-1, 3*i-1) . . .= A(2*i-4, i+j-4)
enddo enddo enddo

enddo enddo enddo

Example 1 illustrates a non-uniform dependence loop. Fig. 1(a) shows the de-

pendence patterns of Example 1 in the iteration space.

198 S.J. Jeong, K.H. Han, and Y.C. Park

(a) (b)

Fig. 1. (a) Iteration spaces with Non-uniform dependencies (b) CDCH of Example 1

2 Program Model and Dependence Analysis

The loop model has the form in Fig. 2, where f1(I, J), f2(I, J), f3(I, J), and f4(I, J) are
linear functions of loop variables. The loop in Fig. 2 carries cross iteration dependences
if and only if there exist four integers (i1, j1, i2, j2) satisfying the system of linear dio-
phantine equations given by (1) and the system of inequalities given by (2). The general
solution to these equations can be computed by the extended GCD and forms a DCH
(Dependence Convex Hull).

do I = l1, u1

 do J = l2, u2

A(f1(I, J), f2(I, J)) = . . .
 . . . = A(f3(I, J), f4(I, J))
 enddo
enddo

Fig. 2. A doubly nested loop model

f1(i1, j1) = f3(i2, j2) and f2(i1, j1) = f4(i2, j2) (1)

l1 ≤ i1,i2 ≤ u1 and l2 ≤ j1, j2 ≤ u2 (2)

From (1), (i1, j1, i2, j2) can be represented as

 (i1, j1, i2, j2) = (g1(i2, j2), g2(i2, j2), g3(i1, j1), g4(i1, j1))

where gi are linear functions.
From (2), two sets of inequalities can be written as

l1 ≤ i1 ≤ u1 and l2 ≤ j1 ≤ u2 and

 l1 ≤ g3(i1, j1) ≤ u1 and l2 ≤ g4(i1, j1) ≤ u2

(3)

l1 ≤ i2 ≤ u1 and l2 ≤ j2 ≤ u2 and

l1 ≤ g1(i2, j2) ≤ u1 and l2 ≤ g2(i2, j2) ≤ u2

(4)

 A Combined Technique of Non-uniform Loops 199

And, (3) and (4) form DCHs denoted by DCH1 and DCH2, respectively [4]. The
union of DCH1 and DCH2 is called Complete DCH (CDCH), and all dependences lie
within the CDCH. Fig. 1(b) shows the CDCH of Example 1, which is given in [6].

If iteration (i2, j2) is dependent on iteration (i1, j1), then we have a dependence vector
d(i1, j1) = (di(i1, j1), dj(i1, j1)) = (i2-i1, j2-j1)

So, for DCH1, we have

di(i1, j1) = g3(i1, j1) - i1 = (α11 - 1)i1 + β11j1 + γ11 and

dj(i1, j1) = g4(i1, j1) - j1 = α12i1 + (β12 - 1)j1 + γ12

(5)

For DCH2, we have

di(i2, j2) = i2 - g1(i2, j2) = (1 - α21)i2 – β21j2 - γ21 and

dj(i2, j2) = j2 - g2(i2, j2) = -α22i2 + (1 - β22)j2 - γ22

(6)

The properties of DCH1 and DCH2 can be found in [4].
The dependence distance function d(i1, j1) in flow dependence loops gives the de-

pendence distances di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. We can
write these dependence distance functions in a general form as

di(i1, j1) = p1*i1 + q1*j1 + r1

di(i2, j2) = p3*i2 + q3*j2 + r3

(7)

where pi, qi, and ri are real values and i1 and j1 are integer variables of the iteration
space.

3 Improved Tiling Method for Flow Dependence Loops

The minimum dependence distance tiling method [3] presents an algorithm to convert
the extreme points with real coordinates to the extreme points with integer coordinates.
The method obtains an IDCH from a DCH. It can compute dimin and djmin, the minimum
value of the dependence distance function di(i1, j1) and dj(i1, j1) from the extreme points of
the IDCH, respectively.

The properties for tiling of nested loops with flow dependence can be described as
follows.

Property 1. If there is only flow dependence in the loop, DCH1 contains flow de-
pendence tails and DCH2 contains flow dependence heads.
Property 2. If there is only flow dependence in the loop, then di(x, y) = 0 or dj(x, y) = 0
does not pass through any DCH.
Property 3. If there is only flow dependence in the loop, the minimum and maximum
values of the dependence distance function d(x1, y1) appear on the extreme points.
Property 4. If there is only flow dependence in the loop, the minimum dependence
distance value dimin is equal or greater than zero.
Property 5. If there is only flow dependence in the loop, the difference between the
distance of a dependence and that of the next dependence, dinc, is equal to or greater
than zero.

200 S.J. Jeong, K.H. Han, and Y.C. Park

From property 5, when p1 > 0 and q1 ≥ 0, we know that dinc is equal to or greater than
zero. For each i1, dimin is incremented as the value of i1 is incremented. So, the second
dimin is equal to or greater than the first one, and the third one is greater than the second
one, and so on.

The improved tiling method for doubly nested loops with non-uniform and flow
dependence is described as Algorithm Tiling_Method, which is the algorithm of tiling
loop by the incrementing minimum dependence distance as shown in Fig. 3.

This algorithm computes the incrementing minimum dependence distance, tiles the
iteration space efficiently according to the incrementing minimum dependence dis-
tance, and transforms it into parallel loops.

Algorithm Tiling_Method(i

1
, j

1
, l

1
, l

2
, u

1
, u

2
, d

i
(i

1,
 j

1
))

i
1
, j

1
: i and j value for the source of the first minimum

dependence in the loop computed by the extreme points of the
IDCH

l
1
, l

2
, u

1
, u

2
: the lower and upper bounds of outer loop and inner

loop, respectively
d
i
(i

1,
 j

1
): the dependence distance function of the IDCH

begin
Step 1: when the first source point, (i

1
, j

1
), is given, the

first minimum dependence distance d
imin

 and first tile size
are computed.

Step 2: Next d
imin

 is computed.
If (next sink point is greater than bound), Goto Step 4.

Step 3: Next tile size is computed, and Goto Step 2.
Step 4: the original loop is transformed into n parallel tiles.

end Tiling_Method.

Fig. 3. Algorithm of tiling loop by the incrementing minimum dependence distance

An example given in Example 3 illustrates the case that there is non-uniform and
flow dependence. Fig. 4(a) shows CDCH(Complete Dependence Convex Hull) of
Example 3. As the example, we can obtain the following results using the improved
tiling method proposed in this section.

j

i

(a)

DCH1

1

1 18

22

DCH2

j

i

(a)

DCH1

1

1 18

22

DCH2

j

i

(b)

1

1 19

22

50

504 10

j

i

(b)

1

1 19

22

50

504 10

Fig. 4. (a) CDCH, (b) Tiling by minimum dependence distance in Example 3

The i value for the source of the first dependence in the second tile is 4. The i value in
the third tile is 10, and next values are 19, 31, and 49. Then, we can divide the iteration
space by four tiles as shown in Fig. 4(b).

 A Combined Technique of Non-uniform Loops 201

4 Region Partitioning Method

In this section, we present an improved method to partition doubly nested loops with
flow and anti dependence sets.

If the line di(i, j) = 0 passes through the CDCH, then it divides a DCH into DCH1
and DCH2 as shown in Fig. 5(a).

 (a) (b)
Fig. 5. (a) Dependence and Anti Dependence unique set, (b) FDT and FDH of Example 1

We define FDT and FDH, and four lines such as LMLH, RMLH, LMLT and RMLT
as follows.

Definition 1. If line di(i1, j1) = 0 intersects DCH1, the flow dependence tail set of the
DCH1 is called as FDT.

Definition 2. If line di(i2, j2) = 0 intersects DCH2, the flow dependence head set of the
DCH2 is called as FDH.

Definition 3. The line that can be formed by the two left most extreme points in FDT is
called the LMLT (dli(i1, j1) = 0). And the line by the two left most extreme points in FDT
is called RMLT (dri(i1, j1) = 0).

Definition 4. The line that can be formed by the two left most extreme points in FDH is
called the LMLH (dli(i2, j2) = 0). And the line by the two left most extreme points in
FDH is called RMLH (dri(i2, j2) = 0).

Property 6. Suppose line di(i, j) = p*i+q*j+r passes through CDCH. If q > 0,
FDT(FDH) is on the side of di(i1, j1) ≥ 0 (di(i2, j2) ≥ 0), otherwise, FDT(FDH) is on the
side of di(i1, j1) ≤ 0 (di(i2, j2) ≤ 0).

Fig. 5(b) shows FDH and FDT of the loop in Example 1 after variable renaming.

4.1 Two Parallel Region Partitioning Method

If intersection of FDT and FDH is empty, FDT does not overlap FDH and the iteration
space is divided into two parallel regions, AREA1 and AREA2, by the line di(i2, j2) = 0
as shown in Fig. 5(b). From (6), we can get di(i2, j2) = i2/2 - j2/2, and the equation is j = i.
So, the iteration space is divided into two parallel regions, AREA1 and AREA2, by the
line j = i.

202 S.J. Jeong, K.H. Han, and Y.C. Park

The execution order is AREA1 → AREA2. Transformed loops are given as follows.

/* AREA1 */ /* AREA2 */
do i = l1, u1 do i = l1, u1

 do j = max(l2, i), u2 do j = l2, min(u2, i)
 A(2*i+3, j+1) = . . . A(2*i+3, j+1) = . . .
 . . . =A(2*j+i+1, i+j+3) . . . =A(2*j+i+1, i+j+3)
 enddo enddo
enddo enddo

Fig. 6. Transformation of the loop by two parallel region partitioning method in Example 1

4.2 Improved Region Partitioning Method

The three region partitioning method [5], [6] divides the iteration space into two par-
allel regions and one serial region by the line di(i1, j1) = 0 and the line di(i2, j2) = 0.

In our proposed method, the Improved Region Partitioning Method, we select one or
two appropriate lines among four lines such as LMLH, RMLH, LMLT and RMLT, as
given in Definition 3 and 4. One or two selected lines divide the iteration space into two
parallel regions and/or less than one serial region.

To partition the iteration space, we use the Algorithm Region_Partition, which is the
algorithm of selecting the bounds in the transformed loop in two-dimensional solution
space as shown in Fig. 7. The main functionality of this algorithm is to select one or two
appropriate lines among four lines by position of two given lines di(i1, j1) = 0 and di(i2,
j2) = 0, and two real values q1 and q3 given in (7). From property 6, we know that the real
value q1(q3) determines whether the position of FDT(FDH) is on side of di(i1, j1) ≥
0(di(i2, j2) ≥ 0) or not. These two (or one) selected lines are the bounds of three (or two)
loops.

Algorithm Region_Partition
INPUT: four lines (LMLT, RMLT, LMLH, RMLH)
OUTPUT: two parallel regions and/or less than one serial region
BEGIN
IF (line d

i
(i

1
, j

1
)= 0 is on the left side of line d

i
(i

2
, j

2
) = 0)

 Switch (q
1
, q

3
) BEGIN

 CASE 1: q
1
 > 0 and q

3
 > 0

 Select dl
i
(i

2
, j

2
) = 0 (= LMLH) and d

i
(i

1
, j

1
) = 0 (= RMLT);

 Call Transformation11(dl
i
(i

2
, j

2
), d

i
(i

1
, j

1
));

 CASE 2: q
1
 > 0 and q

3
 < 0

 /* FDH does not overlap FDT */
 Call Transformation12(d

i
(i

1
, j

1
));

 CASE 3: q
1
 < 0 and q

3
 > 0

Select d
i
(i

1
, j

1
) = 0 (= LMLT) and d

i
(i

2
, j

2
) = 0 (= RMLH);

Call Transformation13(d
i
(i

1
, j

1
), d

i
(i

2
, j

2
));

 CASE 4: q
1
 < 0 and q

3
 < 0

 Select d
i
(i

2
, j

2
) = 0 (= LMLH) and dr

i
(i

1
, j

1
) = 0 (= RMLT);

 Call Transformation14(d
i
(i

2
, j

2
), dr

i
(i

1
, j

1
));

 End Switch
ELSE IF (d

i
(i

1
, j

1
) = 0 is on the right side of d

i
(i

2
, j

2
) = 0)

 Switch (q
1
, q

3
) BEGIN

 CASE 1: q
1
 > 0 and q

3
 > 0

 A Combined Technique of Non-uniform Loops 203

 Select dl
i
(i

1
, j

1
) = 0 (=LMLT) and d

i
(i

2
, j

2
) = 0 (=RMLH);

 Call Transformation21(dl
i
(i

1
, j

1
), d

i
(i

2
, j

2
));

 CASE 2: q
1
 > 0 and q

3
 < 0

 Select d
i
(i

2
, j

2
) = 0 (=LMLH) and d

i
(i

1
, j

1
) = 0 (= RMLT)

 Call Transformation22(d
i
(i

2
, j

2
), d

i
(i

1
, j

1
));

 CASE 3: q
1
 < 0 and q

3
 > 0

 /* FDH does not overlap FDT */
 Call Transformation23(d

i
(i

1
, j

1
));

 CASE 4: q
1
 < 0 and q

3
 < 0

 Select d
i
(i

1
, j

1
) = 0 (=LMLT) and dr

i
(i

2
, j

2
) = 0 (=RMLH);

 Call Transformation24(d
i
(i

1
, j

1
), dr

i
(i

2
, j

2
));

 End Switch
ELSE /* the line d

i
(i

1
, j

1
) intersects the line d

i
(i

2
, j

2
) */

 Select d
i
(i

1
, j

1
) = 0 and d

i
(i

2
, j

2
) = 0;

 Call Transformation13(d
i
(i

1
, j

1
), d

i
(i

2
, j

2
));

END Region_Partition

Fig. 7. Algorithm of selecting the bounds of the transformed loop

After selecting one or two appropriate lines, Algorithm Region_Partition executes
one among eight procedures, i.e., Transformation11 ~ Transformation24, which are
algorithms of transforming the original loop as shown in [7]. In this algorithm, the
expressions j = A1i+B1 and j = A2i+B2 used in the index bounds correspond to the first
and the second input parameter in each procedure, respectively. We know that two
input parameters can be the upper or lower bound in the transformed loops based on the
corresponding region of the loop.

j

i

j2=4*i2-10

AREA1

AREA2di’(i2,j2)=0
j

i

j2=4*i2-10

AREA1

AREA2di’(i2,j2)=0

j

i

di(i1,j1)=0

FDT

j2=4*i2-10

AREA1

AREA3

AREA2
FDH

j1=2*i1-6

dli(i2,j2)=0
j

i

di(i1,j1)=0

FDT

j2=4*i2-10

AREA1

AREA3

AREA2
FDH

j1=2*i1-6

dli(i2,j2)=0

 (a) (b)

Fig. 8. Regions of the loop partitioned by (a) the improved region partitioning, (b) the unique set
oriented partitioning in Example 2

Fig. 8(a) shows regions of the loop partitioned by our proposed technique in Ex-
ample 2. In this case, the iteration space is divided into two parallel regions, AREA1
and AREA2, and one serial region, AREA3, by the two selected lines j = 4i2 - 10 and j =
2i1 – 6 as shown in Fig 6(a). The execution order is AREA1 → AREA3 → AREA2.

5 Combining Technique for Loop Parallelization

We consider these cases separately and propose suitable loop tiling and partitioning
method as follows.

204 S.J. Jeong, K.H. Han, and Y.C. Park

Case 1. DCH1 does not overlap DCH2.
In this case, we can find two parallel regions, DCH1 and DCH2, by the algorithm of
finding DCH1 or DCH2 in two-dimensional solution space [2].

Case 2. There is only flow dependence and DCH1 overlaps DCH2.
When there is only flow dependence in the loop, we proposed the Improved Tiling
Method in section 3. Our proposed method tiles the iteration space by the incrementing
minimum dependence distance.

Case 3. FDT does not overlap with FDH.
When there are both flow and anti dependence sets, we eliminate anti dependence from
the doubly nested loop by variable renaming. After variable renaming, if there remains
only flow dependence in the nested loop and FDT does not overlap with FDH, the it-
erations within each area can be fully executed in parallel by the Two Parallel Region
Partitioning Method in section 4.1.

And in our another proposed method - the Improved Region Partitioning Method in
section 4.2, we can determine whether the intersection of FDT and FDH is empty by
position of two given lines di(i1, j1) = 0 and di(i2, j2) = 0, and two real values. If the
intersection of FDT and FDH is empty, we divide the iteration space into two parallel
regions by the line di(i1, j1) = 0 or di(i2, j2) = 0.

Case 4. FDT overlaps with FDH and di(i1, j1)=0 does not intersect di(i2, j2)=0.
In this case, we proposed the Improved Region Partitioning Method in section 4.2.
When FDT overlaps FDH, two selected lines among our defined four lines divide the
iteration space into two parallel regions as large as possible and one serial region as
small as possible.

Case 5. di(i1, j1)=0 intersects di(i2, j2)=0.
In this complicated case, Pean and Chen [8] presented the Optimized Dependence
Convex Hull Partitioning Method (ODCHP), which divides the iteration space into
many and variable sized parallel region.

6 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. The total
time of execution is equal to the number of parallel regions, Np, plus the number of
sequential iterations, Ns. Generally, speedup is represented by the ratio of total se-
quential execution time to the execution time on parallel computer system as follows:

Speedup = (Ni * Nj)/(Np + Ns)

where Ni, Nj are the size of loop i, j, respectively.
In Example 1, the three region partitioning method [5], [6] and the unique set ori-

ented partitioning method [4] divide the iteration space into one parallel region,
AREA2, and one serial region, AREA1, as shown in Fig. 9(a). So, the speedup that can
be achieved by this method is (10*10)/(1+45) = 2.2.

 A Combined Technique of Non-uniform Loops 205

j

i
1

1 18

22

AREA3

AREA4

AREA2

AREA1

 (a) (b)

Fig. 9. Regions of the loop partitioned by (a) the three region partitioning in Example 1, (b) the
unique sets oriented partitioning in Example 3

By the minimum dependence distance tiling method [3], the minimum value of
dj(i, j), djmin, occurs at the extreme point (1, 1) and djmin = 2. The space can be tiled with
width = 1 and height = 2, thus 50 tiles are obtained. The speedup for this method is
(10*10)/(50) =2.

Applying our proposed method to this loop is the case which FDT does not overlap
the FDH as shown in Fig. 5(b). The speedup for this method is (10*10)/2 =50.

Fig. 4(a) shows original partitioning of Example 3. Applying the unique set oriented
partitioning to this loop illustrates case 2 of [4]. This method can divides the iteration
space into three parallel regions, and one serial region, AREA 3, as shown in Fig. 9(b).
The speedup for this method is (50*50)/(3+44) = 53.2.

By the minimum dependence distance tiling method, dimin occurs at the extreme
point (1, 1) and dimin = 3. The space can be tiled with width = 3, thus 17 tiles are ob-
tained. The speedup for this method is (50*50)/17 = 147.

By our proposed method, the Improved Tiling Method, this loop is tiled by four
parallel areas as shown in Fig. 4(b). The speedup for this method is (50*50)/4 = 625.

j

i

di(i1,j1)=0
j1=2*i1-6

AREA3

AREA1

(a)

j2=2*i2-8
di(i2,j2)=0

AREA2
j

i

di(i1,j1)=0
j1=2*i1-6

AREA3

AREA1

(a)

j2=2*i2-8
di(i2,j2)=0

AREA2

 (b)

j

i

j2=2*i2-8

AREA3 AREA1

di(i2,j2)=0

(b)

j

i

j2=2*i2-8

AREA3 AREA1

di(i2,j2)=0

Fig. 10. Regions of the loop partitioned by (a) the improved region partitioning method, (b) the
three region partitioning method in Example 2

In Example 2, the improved three region partitioning [6] can divide the iteration
space into two parallel regions, AREA1 and AREA2, and one serial region, AREA3, by
line di(i2, j2) = 0 and line di(i1, j1) = 0 as shown in Fig. 10(a). The speedup can be
computed as (10*10)/(2+55) = 1.75.

206 S.J. Jeong, K.H. Han, and Y.C. Park

The three region partitioning [5] divides the iteration space into one parallel region,
AREA1, and one serial region, AREA3, by line di(i2, j2) = 0 (j2 = 2i2 - 8) as shown in
Fig. 10(b). The speedup can be computed as (10*10)/(2+66) = 1.47.

Applying the unique set oriented partitioning divides the iteration space into one
parallel region, AREA1, and one serial region, AREA2, by line j2 = 4i2 - 10 as shown in
Fig. 8(b). AREA2 is tiled into 34 tiles with width = 1 and height = 2, thus the speedup
for this method is (10*10)/(1+34) = 2.9.

Applying the proposed method to this loop is the case that FDT overlaps with FDH.
Two lines j2 = 4i2 - 10 and j1 = 2i1 - 6 divide the iteration space into two parallel regions,
AREA1 and AREA2, and a serial region, AREA3, as shown in Fig. 8(a). The speedup
for this method is (10*10)/(2+18) = 5.

In the above comparisons, our proposed partitioning method exploits more paral-
lelism than the other related methods.

7 Conclusions

In this paper, we studied the problem of transforming nested loops with non-uniform
dependences, and proposed efficient methods such as improved loop tiling method and
region partitioning method to maximize parallelism.

In comparison with some previous partitioning methods, such as minimum de-
pendence distance tiling, unique sets oriented partitioning and three region partitioning,
our combination technique gives much better speedup and extracts more parallelism
than other existing methods.

Our future research work is to improve parallelization for non-perfectly nested loop.

References

1. D. J. Lilja, "Exploiting the parallelism available in loop," IEEE Computer, (1994). 13-26
2. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE

Trans. Parallel and Distributed Systems, vol. 4, no. 5, (1993) 547-558
3. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops

with non-uniform dependences," in Proc. Symp. Parallel and Distributed Processing, (1994)
74-81

4. J. Ju and V. Chaudhary, "Unique sets oriented Partitioning of nested loops with non-uniform
dependences," in Proc. Int. Conf. Parallel Processing, vol. III, (1996) 45-52

5. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependencies," in
Proc. Int. Conf. Parallel Processing, vol. II, (1994) 11-19

6. C. K. Cho and M. H. Lee, "A Loop Parallization Method for Nested Loops with Non-uniform
Dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, (1997) 314-321

7. S. J. Jeong, "Maximizing Parallelism for Nested Loops with Non-uniform Dependences", in
Lecture Notes in Computer Science 3046, Part IV, Springer-Verlag, (2004) 213-222

8. D. -L. Pean and C. Chen, "CDCHP: a new effective mechanism to maximize parallelism of
nested loops with non-uniform dependences", The Journal of Systems and Software, vol. 56,
(2001) 279-297

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 207 – 216, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Neighbor-Aided Multicast Protocol
for Streaming Transmission on MANETs*

Min-Ping Lin, Chung-Ta King, and Ming-Tsung Sun

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
g924309@oz.nthu.edu.tw, king@cs.nthu.edu.tw,

g934344@oz.nthu.edu.tw

Abstract. Streaming transmission on MANETs requires a high data delivery
rate, few jitters and short delay, while consuming little network bandwidth. This
paper presents the Neighbor-Aided Multicast Protocol for Streaming
transmission on MANET (NAMPS). NAMPS is an on-demand, mesh-based
protocol which provides multiple paths for data transmission. The key issue in
mesh-based streaming transmission is the maintenance of the mesh structure.
This involves the detection of the change to the mesh and restructuring of the
mesh. In this paper, we take advantage of the continuous streaming packets and
broadcast signals in wireless radio to detect the changes in link states. For the
restructuring problem, we propose to use mesh neighbor to maintain group
information, which facilitates route recovery and optimization. The simulation
results show that NAMPS has both high effectiveness and efficiency.

1 Introduction

Mobile ad-hoc networks (MANETs) are a kind of wireless networks that have no
fixed infrastructure. The nodes in the network may move around and thus the network
topology is dynamic. MANETs typically have high packet loss rate, low bandwidth,
limited power, and high node failure rate. These characteristics make it challenging to
design applications on MANETs.

There are many applications on MANETs that require communication between
members of a group, i.e. group communication. Consider a group of tourists visiting a
historical site. The guide can use a microphone attached to a mobile device, such as a
PDA, to inform the members of the historical significances of that site. The messages
of the voice stream are broadcasted to the group and the members can listen using the
earphone of their mobile device. Since the group members may move around, we thus
have a MANET.

Multimedia streaming applications require real-time transmission. They typically
induce heavier traffic than normal data transmission. They are sensitive to delay,

* This work was supported in part by the National Science Council, R.O.C., under Grant NSC

93-2752-E-007-004-PAE, by the Advanced Mobile Context Aware Application & Service
Technology Development Project of the Institute for Information Industry, and by the
MOEA, R.O.C.

208 M.-P. Lin, C.-T. King, and M.-T. Sun

particularly delay variance (jitter). Excessive delay impairs human interaction. On the
other hand, multimedia streaming can tolerate some amount of data losses. Packet
losses may cause minor glitches, but they can be concealed if only a few. Finally,
multimedia streaming transmits data continuously. Packets should be received in time
and in order for “smooth” playback. Late arriving data is useless and may generate
playback delay.

Many multicast protocols on MANETs have been proposed [5], but they do not
address media streaming. The goal of this paper is to design a multicast protocol,
called Neighbor-Aided Multicast Protocol for Streaming (NAMPS), to support
streaming transmissions on MANETs. NAMPS is mesh-based and does not require
periodic transmission of control packets, which results in low communication
overhead. It supports multiple multicast operations simultaneously, with sources
creating the mesh structure “on-demand” when they have streaming data to send.
NAMPS uses mesh neighbors to facilitate route recovery and optimization on node
mobility and topology change. Disconnected nodes could quickly find a new route to
the group mesh using few control packets with the assistance of the closest mesh
neighbors. In this way, NAMPS tries to minimize network cost while reducing
network delay in streaming multicast.

The rest of this paper is organized as follows. Section 2 reviews existing multicast
protocols on MANETs. Section 3 describes our NAMPS multicast protocol for data
streaming. Section 4 evaluates the performance of NAMPS in simulation. Finally,
conclusion of this work is presented in Section 5.

2 Related Works

A straightforward way to perform multicast on MANETs is flooding [7]. It works
well for highly mobile ad hoc networks. However, blind flooding causes serious
redundancy, contention, and collision. Multicast protocols to alleviate the problem on
MANETs have been proposed, including: tree-based approaches ([13], [16]), mesh-
based approaches ([4], [6], [9]), stateless approaches ([3], [8]), and hybrid
approaches ([1], [14]).

It has been shown that ODMRP outperforms some of the other protocols [1] [6]
[16] in presence of high mobility [10]. Its simplicity and exploitation of the broadcast
nature of the wireless radio contribute to high data delivery rate for highly mobile ad
hoc networks. Its use of up-to-date shortest routes may reduce the delay for packet
delivery. However, each source in ODMRP has to flood control packets to the entire
network periodically. Thus, as the number of multicast groups (sources) increases in
the network, the control overhead also increases, causing congestion and reducing the
data delivery ratio. There are many proposals [11] [12] to reduce the control overhead
of ODMRP.

We can say that a protocol is effective if it has high data delivery ratio, low latency,
and few playback delays. On the other hand, we can say that a protocol is efficient if it
requires low control and data packet overhead. Most of the protocols mentioned

 Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETs 209

above do not address both issues at the same time. In this paper, we try to address
both issues and design a protocol having high effectiveness and high efficiency.

3 Protocol Description

Unlike other multicast protocols [9] that require periodic flooding of control packets
to maintain the group membership and the mesh topology, NAMPS performs on-
demand mesh creation and route recovery. Under the assumptions that all links in the
wireless networks are symmetric and streaming packets are continuous during the
transmission period, NAMPS takes the advantage of the continuous streaming data
and the broadcast natural of wireless radio to detect link breakage. Forwarding nodes
maintain the mesh by overhearing continuous streaming data packets sent by other
downstream forwarding nodes. A forwarding node stops forwarding data packets
when it does not hear data packets from its downstream nodes. In other words,
useless routes will be “self-pruned” gradually without any control packet. Route
recovery is initiated when a downstream node detects that its upstream node stops
forwarding data packets. Note that we do not consider network partition in this
work.

Some terminologies and notations used in this paper are listed below. Figure 1
illustrates an example. Let the total number of nodes in the network be N.

• Group Members (G): the nodes that are willing to receive the multicast data
• Forwarding Nodes (F): the nodes, perhaps non-members, that relay data packets

for the members
• Group Mesh (M): consisting of forwarding nodes and group members, where the

leaf nodes are group members, where M = G F
• Mesh Neighbors (B): the nodes that are one-hop away from the group mesh except

those already belonging to the group mesh, where B ⊂ (N - M)

Nodes near the group mesh are called mesh neighbors. Since most link failure
recoveries can be localized to a small region [11], charging mesh neighbors to keep
the group information facilitates route recovery and route optimization. The route
recovery process initiated by a forwarding node requires less overhead, because it can
find the mesh neighbors in fewer hops with a high probability. It follows that
disconnected nodes can quickly find a new route to the group mesh with the
assistance of the closest mesh neighbors. In addition, mesh neighbors can help route
optimization when there is a better route via a mesh neighbor.

3.1 Packet Formats and Data Structures

There are seven types of packets in NAMPS, classified as control and data packets.
The control packets have the same header format and the data packet header has one
extra field “UpstreamNode”. We use the IP option field to attach all the above
headers.

210 M.-P. Lin, C.-T. King, and M.-T. Sun

Control Packets
JoinQuery a flooding packet sent by a source to create a mesh
JoinReply a reply packet to a JoinQuery packet
RecoveryQuery a route recovery packet broadcasted by a disconnected node
RecoveryReply a reply packet to a RecoveryQuery packet
Optimization a packet sent when a node detects a shorter route via itself
Ack a packet sent after receiving a RecoveryReply or Optimizaiton

packet for acknowledgement
Data Packets
Data a streaming data packet

In NAMPS, each node maintains the following data structures.

• Routing Table: A Routing Table is created on demand for each multicast group.
When a new JoinQuery or RecoveryQuery packet is received, an entry is inserted
in the Routing Table containing information as follows: The “UpstreamNode”
column shows the next node when transmitting JoinReply or RecoveryReply. The
“HopCount” value records the number of hops to the multicast source. The
“Timestamp” value indicates the time when the upstream nodes were refreshed.

• Member Table and Mesh Neighbor Table: When a node joins a group, it inserts
an entry to Member Table. Likewise, while a node becomes a neighbor of the
group mesh, it inserts an entry to Mesh Neighbor Table.

• Forwarding Node Table: While a node becomes a forwarding node, it inserts an
entry to its Forwarding Node Table for that group. Note that each forwarding node
has only one upstream node but can have several downstream nodes.

• Message Cache: The message cache is used to detect duplicate Data packets,
JoinQuery packets, or RecoveryQuery packets.

3.2 Multicast Mesh Creation

In NAMPS, group membership and multicast mesh are established by the source “on-
demand”. The mesh creation process is similar to ODMRP [9]. When a multicast
source wants to start a session, it floods a JoinQuery packet to the entire network with
a unique GroupID. On receiving a JoinQuery message, nodes willing to participate in
the multicast group respond by broadcasting a JoinReply packet and fill the
“NextHop” field of the packet with its upstream node. On receipt of a JoinReply
message, each node checks whether the next hop address matches its own node ID. If
it does, this node becomes a forwarding node. It then broadcasts its own JoinReply
based on the match in its Routing Table. The JoinReply message gets propagated to
the multicast source via the shortest path. These forwarding nodes are connected as a
mesh joining all the group members. Each forwarding node and group member knows
its corresponding upstream node and downstream node.

After establishing the multicast mesh, the source can multicast streaming data
packets to the receivers. A multicast data packet contains a sequence number and a hop
count value in addition to data payload. The sequence number is used for duplicate
detection. When a forwarding node receives a new data packet, it rebroadcasts the
packet. Since data packets are broadcasted by forwarding nodes to all their one-hop

 Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETs 211

neighbors, a forwarding node or group member may receive redundant data packets
which improve robustness.

3.3 Multicast Mesh Maintenance

Link breakage detection and self-pruning
NAMPS is a “soft-state” protocol which takes the advantage of broadcast natural of
ad hoc networks. After the multicast mesh is created, non-forwarding-node group
member periodically broadcasts the JoinReply packet containing its upstream node
ID. Since streaming data packet is continuous, data packets and periodically
broadcasted JoinReply packets can be used by the forwarding nodes to detect link
breakage. This is done by “overhearing” the continuous data packets re-broadcasted
by the downstream node. If the downstream forwarding node has not broadcasted data
packets for a while or the “UpstreamNode” field of the data packets does not match
its own node ID, the upstream node assumes that the link is broken.

Similarly, the upstream node of a non-forwarding-node group member insures the
link connectivity according to the periodically broadcasted JoinReply packet sent by
the group member. If an upstream node detects the link breakage and this node has no
other downstream nodes, it changes itself to a non-forwarding node. Therefore, group
members can leave the multicast group at any time without informing other nodes.
Furthermore, while a downstream node detects that its upstream node stops
forwarding data packets, it starts to recover the path.

Mesh neighbors
In general, most link failure recoveries can be localized to a small region along a
previous route [11]. Mesh neighbors are used in NAMPS to assist route recovery and
optimization. Since a packet is broadcasted to all neighboring nodes in a radio-based
wireless network, a node can determine whether it is a mesh neighbor of the group by
eavesdropping. Nodes which do not belong to the group mesh but detect the Data or
JoinReply packet become a mesh neighbor. Because the header of data packets and
JoinReply packets contain “HopCount”, each mesh neighbor can calculate its own
hop count in the Mesh Neighbor Table. These mesh neighbors keep additional
information and behave as good neighbors to help its neighbor mesh. The
neighborhood relationship is removed as the mesh neighbor no longer hears the data
packet or JoinReply packet from the group mesh nodes of that group.

Route recovery
A route recovery process is invoked when a downstream node is disconnected from
its upstream node because of node mobility. If a forwarding node A is disconnected
from its upstream node B but can still receive data packets from another upstream
node C due to the mesh topology, node A will then view node C as its new upstream
node. Node C detects the new downstream node A by overhearing the data packet and
then adds A to its Forwarding Node Table.

212 M.-P. Lin, C.-T. King, and M.-T. Sun

(a) Link breakage (b) Route recovery

Fig. 1. Route recovery with the help of a mesh neighbor

If a node does not receive any data packet from its upstream node for a time

interval, it assumes that the link between itself and its upstream node is broken. The
timer interval of each node is related to its hop count. The larger the hop count, the
longer the time interval. In Figure 1(a), if a node A is disconnected from its upstream
node B, and if it has no other forwarding node in its one-hop range, it starts the route
recovery process by broadcasting a RecoveryQuery with TTL=1. When a mesh
neighbor D receives the RecoveryQuery packet, it broadcasts a RecoveryReply packet
with node A in the “NextHop” field. After node A receives the RecoveryReply packet,
it adds node D into the “UpstreamNode” column of its Forwarding Node Table and
sends an Ack packet to Node D. Node D becomes a forwarding node after receiving
the Ack packet. Node C detects the new downstream node D by overhearing the data
packet sent by node D and then puts node D into its Forwarding Node Table. In this
way, a new route is constructed. Node B will be pruned away from the group mesh. If
more than one route is recovered, the node can choose one of them as its new route.
The resulting graph is shown in Figure 1(b).

If the time of a route recovery process expires, the node will increase the TTL
value of the RecoveryQuery packet and broadcast it again. In Figure 2(a), node A
moves outside the range of its upstream node B and there is no mesh neighbor node

(a) Link breakage (b) Route recovery
Fig. 2. Route recovery with the help of non-neighbor and neighbor nodes

 Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETs 213

beside it. Node A broadcasts a RecoveryQuery packet with TTL = 2 after its previous
route process (with TTL = 1) expires. The intermediate node C records the group
information in its Routing Table and rebroadcasts the packet. When the
RecoveryQuery packet reaches the mesh neighbor node D, node D then sends
RecoveryReply packet along the reverse path back to the disconnected node A. Upon
receiving the RecoveryReply packet, node A sends an Ack packet along the new route
to inform node C and node D. Node C and D then become forwarding nodes. A new
route is thus re-built. Node E adds node D into its Forwarding Node Table after
hearing the data packet from node D. Node B and its upstream node will be pruned
away from the forwarding mesh, since it has no other downstream node. The resulting
graph is shown in Figure 2(b).

4 Performance Evaluation

The simulation is based on the GloMoSim simulator [15]. In our experiments, the
radio propagation range for each node was set to 250 meters and channel capacity to 2
Mbits/sec. IEEE 802.11 was used as the MAC protocol. We considered 100 wireless
mobile nodes in the simulation. At the beginning of the simulation, nodes were
uniformly placed in a 1200m × 1200m area. Node movements used the random way-
point model [2] with no pausing. Each simulation was executed for 300 seconds of the
simulation time.

There is one source for each multicast group. The group source and group
members were randomly selected. All members joined the multicast group at the
beginning of the simulation and remained members till the end of the simulation. The
source node sent data in constant bit rate into the network. The data payload was set
to 512 bytes. Data packets were generated at each source at a rate of 16 packets per
second.

We compared NAMPS with Flooding [7] and ODMRP [9]. We assumed that no
node was equipped with GPS, so a multicast source in ODMRP should periodically
broadcast the “JoinQuery” packet. Parameters used for ODMRP are as follows:
JoinQuery refresh interval is 3 seconds, JoinReply acknowledgment timeout is 75 ms,
maximum JoinReply retransmissions is 3 times, and Fg_FLAG timeout is 6 seconds.
Parameters for NAMPS are as follows: JoinReply broadcast interval is 3 seconds,
route broken timeout is 1 second, recovery retransmission is 3 times, and self-prune
timeout is 6 seconds.

To evaluate the performance of the proposed protocol, we use two metrics in this
paper. The average data delivery ratio is defined as

(KNn
K

i
i */)(

1=

),

where ni is the number of packets received by each group member, and N and K are
the total number of packets sent from the source and the number of group members,
respectively. The second metric is the average end-to-end delay, which is defined as

(Kntt i

K

i

n

j
jj

i

*/)(
1 1

12
= =

−),

214 M.-P. Lin, C.-T. King, and M.-T. Sun

where t1j is the time a packet is sent from the source and t2j is the time the packet is
received by a particular group member. The parameters, ni and K, are the same as the
previous metric.

(a) Mobility v.s. data delivery ratio (b) Mobility v.s. delay

Fig. 3. Effects of node mobility on system performance

We first examine the effects of node mobility on the system performance. From
Figure 3, we see that both ODMRP and NAMPS can tolerate mobility change well.
As the mobility increases, NAMPS slightly outperforms ODMRP. This is because
ODMRP floods JoinQuery by piggybacking data packet requests, which results in
more contention of the radio channel. In NAMPS, only leaf member nodes
periodically broadcast control packets and nodes invoke the route recovery process
on-demand. The mesh neighbors reduce the ReocveryQeury packets used in the route
recovery process. Flooding shows a low data delivery ratio and long delays even with
slow mobility. The results above show that NAMPS is more robust than ODMRP and
Flooding in high mobility situations.

(a) Group size v.s. data delivery ratio (b) Group size v.s. delay

Fig. 4. Effects of group size on system performance

We next examine the effects of group size. In Figure 4(a), we can see that, as the
group size increases, NAMPS shows a high data delivery ratio compared to that of
ODMRP. In ODMRP, when group members increase, the periodically flooded
JoinQuery packets build more redundant routes to each group member. In NAMPS,

 Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETs 215

useless routes are soon self-pruned. Flooding shows poor performance in this kind of
traffic load. Figure 4(b) shows the average delay each data packet takes to reach the
group members. ODMRP has too many forwarding nodes to relay the data packets in
a large group size. This incurs more contention and collision, which in turn increases
the delay time. NAMPS usually takes a shorter delay time to transmit data packets
owing to the route optimization process and the assistance of mesh neighbors. The
simulation result shows that NAMPS outperforms ODMRP since it uses an on-
demand route recovery process and also takes the advantage of the mesh neighbors to
reduce the control packet transmissions. These results also show that NAMPS is less
affected by the group size than ODMRP.

5 Conclusion

In this paper, we propose NAMPS -- a robust, scalable, efficient, on-demand protocol
for streaming data multicast in mobile ad hoc networks. It takes advantage of the
broadcast natural of radio-based ad hoc networks and collects information from the
packets that its one-hop neighbors broadcast to reduce the control packet overhead.
We use the mesh neighbors to maintain group information to facilitate route recovery
and optimization. Our simulation results show that NAMPS has better performance
than Flooding and ODMRP under different mobility condition and group size.
NAMPS achieves a higher data delivery ratio with a shorter end-to-end delay. For
future works, we want to evaluate the performance of the protocol under multiple
sources for a multicast group. We also want to modify and evaluate the performance
of our protocol for other applications as well.

References

1. E. Bommaiah, M. Liu, A. McAuley, and R. Talpade, “AMRoute: Adhoc Multicast
Routing Protocol,” Internet-Draft, draft-talpade-manetamroute-00.txt, Aug. 1998, Work in
progress.

2. J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance Comparison of
Multi-hop Wireless Ad Hoc Network Routing Protocols,” Proc. of ACM/IEEE MOBICOM ,
pp. 85–97, October 1998.

3. K. Chen and K. Nahrstedt, “Effective Location-Guided Tree Construction Algorithms for
Small Group Multicast in MANET,” Proc. INFOCOM, 2002, pp. 1180–89.

4. C.-C. Chiang, M. Gerla, and L. Zhang, “Forwarding Group Multicast Protocol (FGMP) for
Multihop, Mobile Wireless Networks,” Journal of Cluster Computing, Special Issue on
Mobile Computing, vol. 1, no. 2, 1998, pp. 187–96.

5. C. Cordeiro, H. Gossain, and D. Agrawal, “Multicast over Wireless Mobile Ad Hoc
Networks: Present and Future Directions,” IEEE Network Magazine, vol. 17, no. 1, pp. 52-
59, January/February 2003.

6. J.J. Garcia-Luna-Aceves and E.L. Madruga, “The Core-Assisted Mesh Protocol,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 8, Aug. 1999, pp. 1380-1394.

7. C. Ho, K. Obraczka, G.. Tsudik, K. Viswanath, “Flooding for Reliable Multicast in Multi-
hop Ad Hoc Networks,” Proc. of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, p.64-71, August 20-20, 1999,
Seattle, Washington, United States.

216 M.-P. Lin, C.-T. King, and M.-T. Sun

8. L. Ji, and M. S. Corson, “Differential Destination Multicast — A MANET Multicast
Routing Protocol for Small Groups,” Proc. INFOCOM, pp. 1192–02.

9. S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-Demand Multicast Routing Protocol,” Proc. of
IEEE WCNC, New Orleans, LA, Sep. 1999, pp. 1298-1304.

10. S.-J. Lee et al., “A Performance Comparison Study of Ad Hoc Wireless Multicast
Protocols,” Proc. INFOCOM, Mar. 2000, pp. 565–74.

11. S. Lee and C. Kim, “Neighbor Supporting Ad Hoc Multicast Routing Protocol,” Proc.
ACM MobiHOC, Aug 2000.

12. S. Park, D. Park, “Adaptive Core Multicast Routing Protocol,” Wireless Networks, vol.
10(1), 2004, pp. 53-60.

13. E. M. Royer and C. E. Perkins, “Multicast Operation of the Ad Hoc On-Demand Distance
Vector Routing Protocol,” Proc. ACM MOBICOM, Aug. 1999, pp. 207–18.

14. P. Sinha, R. Sivakumar, V. Bharghavan, “MCEDAR: Multicast Core-Extraction
Distributed Ad hoc Routing,” Proc. IEEE Wireless Communication and Network Conf.,
1999.

15. GloMoSim: A Scalable Simulation Environment for Wireless and Wired Network Systems,
Computer Science Dept, UCLA, http://pcl.cs.ucla.edu/projects/domains/glomosim.html

16. C.W. Wu, Y.C. Tay, and C.-K. Toh, “Ad hoc Multicast Routing Protocol Utilizing
Increasing id-Numbers (AMRIS) Functional Specification,” Internet-Draft, draft-ietf-
manet-amris-spec-00.txt, Nov. 1998, Work in progress.

An Entropy-Based Stability QoS Multicast

Routing Protocol in Ad Hoc Network

Baolin Sun1,3, Layuan Li1, Qiu Yang2, and Yang Xiang1

1 School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, 430063, P.R. China

blsun@163.com
2 School of Mathematics and Physics,

China University of Geosciences, Wuhan, 430074, P.R. China
3 Department of Mathematics and Physics,

Wuhan University of Science and Engineering,
Wuhan, 430073, P.R. China

Abstract. Due to the dynamic nature of the network topology and
restricted resources, quality of service (QoS) and multicast routing in
MANET is a challenging task. This paper discusses the multicast routing
problem with multiple QoS constraints, which may deal with the delay,
bandwidth and cost metrics, and describes a network model for research-
ing the Ad Hoc network QoS multicast routing problem. It presents an
Entropy-based stability QoS Multicast Routing protocol in ad hoc net-
work (EQMR). The key idea of EQMR algorithm is to construct the new
metric-entropy and select the stability path with the help of entropy met-
ric to reduce the number of route reconstruction so as to provide QoS
guarantee in the ad hoc network. In this paper, the proof of correctness
and complexity analysis of the EQMR are also given. The simulation re-
sults show that the proposed approach and parameters provide an accu-
rate and efficient method of estimating and evaluating the route stability
in dynamic mobile networks.

1 Introduction

Mobile ad hoc network (MANET) is a multi-hop wireless network formed by
a collection of mobile nodes without the intervention of fixed infrastructure.
They are autonomously formed without any pre-configured infrastructure or
centralized control. Since nodes are mobile, the network topology changes at
any time whenever a wireless link is broken or reestablished due to a pair of
nodes moving toward or away from each other[1-7]. Moreover, they are usually
deployed in an unattended environment, such as battlefields or disaster areas,
and have to rely on battery power. These characteristics demand a new way of
designing and operating this type of networks. For such networks, an effective
routing protocol is critical for adapting to node mobility as well as possible
channel error to provide a feasible path for data transmission.

The use of multicasting with the network has many benefits. Multicasting
reduces the communication cost for applications that send the same data to

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 217–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

218 B. Sun et al.

many recipients. Instead of sending via multiple unicast, multicast reduces the
channel bandwidth, sender and router processing and delivery delay. In addi-
tion, multicast gives robust communication whereby the receiver address is un-
known or modifiable without the knowledge of the source within the wireless
environment[1-6,10]. Due to the wireless ad hoc networks’ features and the en-
larging of it’s application area, the research on the designing theory and method
of wireless ad hoc networks QoS multicast routing protocol has become an im-
portant research topic in network area. Recently, quite a few scholars proposed
some impacting QoS algorithms of ad hoc networks[7-11].

Entropy[12,13,14] presents the uncertanity and a measure of the disorder in
a system. There are some common characteristics among self-organization, en-
tropy, and the location uncertainty in mobile ad hoc wireless networks. The
corresponding methodology, results and observations can be used by the routing
protocols to select the most stable route between a source and a destination, in
an environment where multiple paths are available, as well as to create a con-
venient performance measure to be used for the evaluation of the stability and
connectivity in mobile ad hoc networks.

In this paper, we designed an Entropy-based stability QoS Multicast Routing
protocol in ad hoc network (EQMR). The key idea of EQMR protocol is to
construct the new metric-entropy and select the stability path with the help of
entropy metric to reduce the number of route reconstruction so as to provide
QoS guarantee in the ad hoc network. The goal of this paper is to develop a
protocol to find out QoS-based multicast routing provisioning for guaranteed
QoS, and to reduce the protocol’s complexity through the local broadcasting
feature in the ad hoc networks.

The rest of the paper is organized as follows: In section 2, we present entropy
metric in ad hoc network. Section 3 introduces the ad hoc network model and
routing issues. Section 4 describes the EQMR protocol. Section 5 deals with
proofs of correctness and complexity analysis of the EQMR. Some simulating
results are provided in section 6. Finally, the paper concludes in section 7.

2 Entropy Metric

We also associate each node m with a set of variable features denoted by am,n

where node n is a neighbour of node m. In this paper, two nodes are considered
neighbours if they can reach each other in one hop (e.g. direct communication).
These variable features am,n represent a measure of the relative speed among two
nodes and are defined rigorously later in this section[12,13,14]. Any change of
the system can be described as a change of variable values am,n in the course of
time t such as am,n(t) → am,n(t+Δt). Let us also denote by v(m,t) the velocity
vector of node m and by v(n,t) the velocity vector of node n at time t. Please
note that velocity vectors v(m,t) and v(n,t) have two parameters, namely speed
and direction. The relative velocity v(m,n,t) between nodes m and n at time t
is defined as:

v(m,n,t) = v(m,t) − v(n,t)

An Entropy-Based Stability QoS Multicast Routing Protocol 219

Let us also denote by p(m,t) the position vector of node m and by p(n,t) the
position vector of node n at time t. Please note that position vectors p(m,t) and
p(n,t) have two parameters, namely position. The relative position p(m,n,t) be-
tween nodes m and n at time t is defined as:

p(m,n,t) = p(m,t) – p(n,t)

Then, the relative mobility between any pair (m, n) of nodes during some
time interval is defined as their absolute relative speed and position averaged
over time. Therefore, we have:

am,n =
1
N

N∑
i=1

|p(m, n, ti) + v(m, n, ti) × Δti | − |p(m, n, ti+1)|
R

where N is the number of discrete times ti that velocity information can be
calculated and disseminated to other neighbouring nodes within time interval Δt.
R is radio range of nodes. Based on this, we can define the entropy Hm(t, Δt)
at mobile during time interval Δt. The entropy can be defined either within the
whole neighbouring range of node (e.g., within set Sm), or for any subset of
neighbouring nodes of interest. In general the entropy Hm(t, Δt) at mobile is
calculated as follows:

Hm(t, Δt) =
− ∑

k∈Fm

Pk(t, Δt) log Pk(t, Δt)

log C(Fm)

where Pk(t, Δt) = (am,k /
∑

i∈Fm
am,i).

In this relation by Fm we denote the set of the neighbouring nodes of node
m, and by C(Fm) the degree of set Fm. If we want to calculate the local network
stability (with reference to node m), then Fm refers to the set that includes
all the neighbouring nodes of mobile node m (e.g., Fm = Sm), while if we are
interested in the stability of a part of a specific route then Fm represents the
two neighbouring nodes of mobile node m over that route. As can be observed
from the previous relation the entropy Hm(t,Δt) is normalized so that 0≤ Hm(t,
Δt) ≤1. It should be noted that the entropy, as defined here, is small when the
change of the variable values in the given region is severe and large when the
change of the values is small [12,13,14]. Let us present the route stability (RS)
between two nodes s and u ∈ U during some interval Δt as RS. We also define
and evaluate two different measures to estimate and quantify end to end route
stability, denoted by F

′
(s, u) and F (s, u) and defined as follows respectively:

F (s, u) =
Nr∏
i=1

Hi(t, Δt)

where Nrdenotes the number of intermediate mobile nodes over a route between
the two end nodes (s, u).

F (s, u) = − lnF
′
(s, u) = −

Nr∑
i=1

lnHi(t, Δt)

220 B. Sun et al.

3 Network Model and Routing Issues

A network is usually represented as a weighted digraph G = (N, E), where N
denotes the set of nodes and E denotes the set of communication links connect-
ing the nodes. |N | and |E| denote the number of nodes and links in the network
respectively[2-6,9-11]. In G(N , E), considering a QoS constrained multicast rout-
ing problem from a source node to multi-destination nodes, namely given a non-
empty set M={s, u1, u2, . . . , um}, M ⊆ N , s is source node, U={u1, u2, . . . , um}
be a set of destination nodes. In multicast tree T= (NT , ET), whereNT ⊆ N ,
ET ⊆ E. If C(T) is the cost of T , PT (s, u) is the path from source node s to
destination u ∈ U in T , BT (s, u) is the usable bandwidth of PT (s, u).

Definition 1: The cost of multicast tree T is:

C(Te) =
∑

e∈ET
C(e), e ∈ ET .

Definition 2: The bandwidth, delay and stability route of multicast tree T is
the value of link bandwidth, delay, and entropy metric in the path from source
node s to each destination node u ∈ U . i.e.

BT (s, u)= min(B(e), e ∈ ET).
DT (s, d)= max(

∑
e∈PT (n0,d) D(e), d ∈ U).

FT (s, d)= min (F
′
(e), e ∈ ET).

Definition 3: Assume the minimum bandwidth constraint of multicast tree is B,
the maximum delay constraint is D, the minimum entropy metric constraint of
multicast tree is F , given a multicast demand R, then, the problem of bandwidth,
delay, and entropy metric constrained multicast routing is to find a multicast
tree T , satisfying:

(1) Bandwidth constraint: BT (s, d) ≥ B, d ∈ U .
(2) Delay constraint: DT (s, d)≤ D, d ∈ U .
(3) Entropy metric constraint: FT (s, d)≤ F, d ∈ U .

Suppose S(R) is the set, S(R) satisfies the conditions above, then, the multicast
tree T which we find is:

C(T) = min (C(Ts), Ts ∈ S(R))

Definition 4: In G(N, E), for any ∀(i, j) ∈ E, P (i, j) is the link from node i to
node j, if P (i, j) satisfying:

P (i, j) = (B(i, j) ≥ B) ∧ (D(i, j) ≤ D) ∧ (F
′
(i, j) ≤ F)

Then we call P (i, j) a feasible path.

Definition 5: In G(N, E), for a source node s, destination node j ∈ U , the feasi-
ble path with minimum cost from s to j is called the optimal path, respresented
as Pj .

An Entropy-Based Stability QoS Multicast Routing Protocol 221

4 EQMR Protocol

We are considering a full-connected, single source, flat network. The cost is dif-
ferent for different links between the nodes in the network. As mobile multimedia
applications and group communication become more and more popular for wire-
less users, ad hoc networks have to support QoS for multicasting. In EQMR,
the multicast tree is formed incrementally, and source node s is an initiate’s
multicast tree, namely:

Multicast route discovery begins either when a node wishes to join a multicast
group or when it has data to send to a multicast group and does not have a
current route to it.

(1) Source node s constructs a explorer frame p and diffuses it to node s’
neighboring node with limitation, in other words, node s sends a explorer frame
to every neighboring node i with feasible path from node s, frame p records every
intermediate nodes it passes, including source s. Table 1 shows the structure of
a explorer frame packet.

Table 1. Explorer frame packet format

Multicast source address Multicast group ID QoS parameters

Hop-count List of forwarding nodes

(2) If neighboring node i receives the explorer frame from s with constrained
time window, then it transfers this frame to all its neighboring nodes with feasible
path except source node, discarding any frame it receives over the time limit,
and at the same time, node j will remember the originating node of frame p. we
called the originating node the previous node of node j.

(3) Because every explorer frame p moves only along feasible path, and every
intermediate node points to its previously node, any destination node u(u ∈ U)
receives an explorer frame p, and P (s, u) is feasible path (if there are more than
one feasible paths from s to u, then choosing the path with minimum cost), and
the optimal path is found, the node u will discard all frames received over limited
time. At the same time, node u reverse-sends a resource reserves information and
acknowledge reply to source node s, add u into the multicast tree, then u keeps
all other feasible paths recorded by other explorer frame as backup paths.

(4) For any node g receiving resource reserves request, if g not in P (s, u), then
g discards the information, otherwise it reserves the resource and then executes
one or two of the following:

a. If g already is a node of T , then it discards the resource reserves information,
continuously transfers acknowledgement reply.

b. If g is not a node of T , then g transfers the resource reserves information.
(5) Acknowledge reply finds the path to the source node s through the pre-

vious node’s information kept among the intermediate nods, meanwhile, the

222 B. Sun et al.

Fig. 1. The QoS multicast explorer frame initiation process

intermediate nodes update their previously node’s information through the source
of the acknowledge reply information.

(6) When resource reserves information or acknowledge reply information
finally reaches source node, the destination nodes are added into the multicast
tree successfully.

Fig. 1 shows the QoS multicast explorer frame initiation process.
In our protocol, the multicast tree’s development process is the asymptotic

process in which all destination nodes are added into the multicast tree. For any
multicast task in networks, every time in the process to construct the multicast
tree, any node in the network originates and sends one explorer frame at most.
Because only optimal paths are recorded in the explorer frame, any explorer
frame which reachs destination node and not be discarded records a feasible path
from source node to destination node. When node s receives resource reservation
request or acknowledge reply information, the node is added into the multicast
tree successfully. Additionally, in protocol, the node s will set a time limit to deal
with the problems, such as discarding information or finding no feasible path.

5 Proofs of Correctness and Complexity Analysis of the
EQMR

5.1 Proof of Correctness

Theorem 1: The feasible path searched by EQMR is loop-free.

Proof: For ∀u ∈ U , if p is a explorer frame with destination node u, P (s, j)
is a path recorded by the frame, then u will choose P (s, j) plus link (j, u) as
path P (s, u). If there is a loop in P (s, u), then there must be a node a (a�=u)
choosing two optimal explorer frames or sending out two explorer frames along
path P (s, j). This contradicts with our assumed that each node can only send
out an explorer frame at most. So P (s, u) is loop-free.

Theorem 2: Whenever during EQMR’s routing searching process, all paths
searched construct a multicast tree T .

Proof: Every searched path will be identified by the explorer frames. In EQMR,
any nodes can only send out one explorer frame, and receive one or multi-frames.
So all these nodes will construct a searching tree structure, namely multicast
tree T .

An Entropy-Based Stability QoS Multicast Routing Protocol 223

Theorem 3: If a feasible path exists, it must be searched by EQMR.

Proof: We can prove with counterevidence method. If a feasible path exists, but
EQMR fails to find it, then assign P (i, j) be the first link along the path, but
EQMR fails to find it. Because P (i, j) is a link unfound along the path, and uj

must be one destination node, uj is not in initial state. According to theorem 2,
uj is in state of failure state, then ui must search all out links including P (i, j),
which is contradiction with our assumption. Thus, the theorem holds.

5.2 The Complexity Analysis

We can analyze the complex feature of QoS multicast routing protocol through
the calculation complex of derived multicast tree and needed message. The for-
mer mainly concerns the cost required for the derived multicast tree’s message
exchange. In EQMR, we can calculate path through nodes. For any node in the
networks, if there are k nodes within its transmission range, namely k neighbors,
then the node can receive k explorer frames at most. If it needs a unit time to
deal a frame for a node, then the node will take up k time units at most. So at
the worst case, the complex is O(k) for node’s calculation time, in EQMR, every
node sends out an explorer frame at most, so when EQMR searches a multicast
tree, the message complex is O(|N |) at most worst case.

6 Simulation Experiments

6.1 Simulation Model

To effectively evaluate EQMR’s performance, we compare it with other famous
multicast routing protocols MAODV[10] for cost to control information, average
link-connect time, the success rate to find the path and the feature of data trans-
mission. Our simulation modeled a network of mobile nodes placed randomly
within 1000m × 1000m area[15]. There were no network partitions throughout
the simulation. Each simulation is executed for 600 seconds of simulation time.
Multiple runs with different seed values were conducted for each scenario and
collected data was averaged over those runs. Table 2 lists the simulation param-
eters which are used as default values unless otherwise specified.

6.2 Simulation Results

The results of the simulation are positive with respect to performance. We use
the NS-2 simulator[16] to evaluate the EQMR protocol.

Fig.2 depicts a comparison of cost to control information two protocols. We
can see that EQMR’s cost is smaller than that of MAODV with the increase
of the scale of the network, the extend QoS constraints into MAODV, the cost
to control information also increases; but for EQMR, with its feasible path and
QoS restrictive diffuse scheme, the growth of cost to control information is lower,
so EQMR will not incur the flooding storm. Due to the scarcity of wireless Ad

224 B. Sun et al.

Table 2. Simulation parameters

Number of nodes 100

Terrain range 1000m × 1000m

Transmission range 250 m

seconds Node’s mobility speed 0-10 m/s

Mobility model Random way point

Channel bandwidth 3 Mbps

Links delay 20-200 ms

Traffic type CBR

Data payload 512 bytes/packet

Node pause time 0-10 seconds

Examined routing protocol MAODV

Fig. 2. Cost-Comparison with control in-
formation

Fig. 3. Comparison of success rate to find
the path

Fig. 4. Comparison of data transmission
rate

Fig. 5. Number of route reconstructions
against mobility

Hoc network resource, to ad hoc network multicast routing problems, EQMR
has apparent advantages.

Fig.3 depicts a comparison among success rate to find the path through
MAODV, EQMR protocols. With the relaxation of delay constraints, the success
rate becomes larger for MAODV, EQMR protocols, and EQMR success rate is
still higher than that of MAODV, which mean EQMR is more suitable for the

An Entropy-Based Stability QoS Multicast Routing Protocol 225

routing choosing under timely data transmission application and dynamic net-
work structure.

Fig. 4 depicts the comparison of data transmission rate under nodes’ changing
movement speed for these three protocols: the faster the node’s movement speed,
the smaller the protocol’s data transmission rate, due to the fact that when
the movement speed increase for the nodes, the network’s topology structure
changes faster. From the Fig. 4 we can see that when the node’s movement
speed increases, EQMR data transmission rate is higher than that of MAODV.
When the node movement speed is control with a range, the network’s topology
structure will not change fast, the link’s break rate of the multicast tree is low,
make EQMR QoS constraints assured within most of user’s movement speed
range, so EQMR has a good performance within the network node’s constrained
movement speed scope.

Fig. 5 depicts a comparison of number of route reconstructions against mobil-
ity through MAODV, EQMR protocols. Whenever path error occurs, it needs to
reconstruct, and route number of reconstructions characterize the route’s stabil-
ity to some extent. From Fig. 5 we can see that the times of route reconstructions
for EQMR is superior and more stable.

7 Conclusion

This paper discusses the multicast routing problem with multiple QoS constraints,
which may deal with the delay, bandwidth and cost metrics, and describes a net-
work model for researching the Ad Hoc network QoS multicast routing problem.
It presents an Entropy-based stability QoS Multicast Routing protocol in ad hoc
network (EQMR). The key idea of EQMR protocol is to construct the new metric-
entropy and select the stability path with the help of entropy metric to reduce the
number of route reconstruction so as to provide QoS guarantee in the ad hoc net-
work. In this paper, the proof of correctness and complexity analysis of the EQMR
are also given. The simulation results show that the proposed approach and pa-
rameters provide an accurate and efficient method of estimating and evaluating
the route stability in dynamic mobile networks.

Acknowledgement

This work is supported by National Natural Science Foundation of China (No.
60172035, 90304018), NSF of Hubei Province of China (No. 2005ABA231).

References

1. Li, L. Y., Li, C. L.: A QoS-guaranteed multicast routing protocol. Computer Com-
munications, Vol. 27, No. 1, (2004) 59-69

2. Li, L. Y., Li, C. L.: A distributed QoS-aware multicast routing protocol. ACTA
INFORMATICA, Vol. 40, No. 3, (2003) 211-233

226 B. Sun et al.

3. Li, L. Y., Li, C. L.: A QoS multicast routing protocol for dynamic group topology.
EOROPAR 2003 Parallel Processing, LNCS 2790, Springer Verlag, (2003) 980-988

4. Li, C. L., Lu, Z. D., Li, L. Y.: Design and implementation of a distributed com-
puting environment model for object-oriented networks programming. Computer
Communications, Vol. 25, No. 5, (2002) 516-521

5. Sun, B.L., Li, L.Y.: A QoS Based Multicast Routing Protocol in Ad Hoc Networks.
Chinese Journal of Computers, Vol. 27, No.10, (2004) 1402-1407 (in Chinese)

6. Sun, B.L., Yang, Q., et al.: Fuzzy QoS Controllers in Diff-Serv Scheduler using
Genetic Algorithms. Computational Intelligence and Security (CIS 2005), LNAI
3801, Springer-Verlag, (2005) 101-106

7. Wang, H.T., Zheng, S.R., Song, L.H.: The Researches on Guarantee Mechanisms
of QoS in Ad Hoc network. Journal of China Institute of Communications, Vol.
23, No. 10, (2002) 114-120 (in Chinese)

8. Shen, H., Shi, B.X., Zou, L., et al.: The Location-Based QoS Routing Algorithm
in Ad Hoc Network. Journal of China Institute of Communications, Vol. 24, No. 9,
(2003) 27-34 (in Chinese)

9. Chen, S., Nahrstedt, K.: Distributed Quality-of-Service Routing in Ad Hoc Net-
works. IEEE Journal on Selected Areas in Communications, Vol. 17, No. 8, (1999)
1488-1505

10. Royer, E.M., Perkins, C.E.: Multicast Operation of the Ad Hoc On-Demand Dis-
tance Vector Routing Protocol. ACM MOBICOM, August, (1999) 207-218

11. Lin, C.-R.: On-demand QoS Routing in Multihop Mobile Networks. In Proc. of
IEEE INFOCOM 2001, (2001) 1735-1744

12. An,B., Papavassiliou, S.: An Entropy-Based Model for Supporting and Evaluat-
ing Route Stability in Mobile Ad hoc Wireless Networks, IEEE Communications
Letters, Vol. 6, No. 8, (2002) 328-330

13. Shiozaki, A.: Edge extraction using entropy operator, Comp. Vis., Graphics, Image
Processing, Vol. 36, (1986) 1-9

14. Bush, S.F., Smith, N.: The Limits of Motion Prediction Support for Ad Hoc Wire-
less Network Performance. The International Conference on Wireless Networks,
Vegas, Nevada, June 27-30, (2005)

15. Waxman, B.: Routing of Multipoint Connections. IEEE Journal on Selected Areas
in Communications, No. 6, (1988) 1617-1622

16. The Network Simulator - ns-2,: http://www.isi.edu/nsnam/ns/.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 227 – 236, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Performance of a Hybrid Routing Protocol for
Blueweb: A Bluetooth-Based Multihop Ad Hoc Network

Chih-Min Yu and Chia-Chi Huang

Dept. of Communication Engineering, National Chiao Tung University,
Hsinchu, Taiwan 300, Republic of China

hankycm@ms47.hinet.net, huangcc@cc.nctu.edu.tw

Abstract. Blueweb is a self-organizing Bluetooth-based multihop network with
an efficient scatternet formation algorithm. Blueweb’s scatternet formation uses
two mechanisms. One is the role exchange mechanism in which only slave
nodes serve as relays throughout the whole scatternet. The other one is the
return connection mechanism in which we convert the scatternet from a tree-
shaped to a web-shaped topology. In this paper, a modified source routing pro-
tocol is proposed for Blueweb in which we combine the proactive method
locally with the reactive method globally to discover the optimal path for packet
transmission. In addition, we use computer simulations to evaluate the routing
performance of Blueweb with a uniform end-to-end traffic model. Our simula-
tion results show that Blueweb can achieve good system performance with the
modified source routing protocol.

1 Introduction

Bluetooth is emerging as a potential technology for short-range wireless ad hoc net-
work [1]. This technology enables the design of low power, low cost, and short-range
radio [2] that can be embedded in existing portable devices. Initially, Bluetooth tech-
nology is designed as a cable replacement solution among portable and fixed elec-
tronic devices. Today, people tend to use a number of mobile devices such as cellular
phones, PDA’s, digital cameras, laptop computers, and so on. Consequently, there
exists a strong demand for connecting these devices into networks. As a result, Blue-
tooth becomes an ideal candidate for the construction of ad hoc personal area net-
works.

A Bluetooth-based multihop ad hoc network brings some challenges. Besides the
methods of device discovery for a node to participate in multiple piconets, the scatter-
net formation algorithm and the routing protocol are two major technical issues. The
scatternet formation algorithm [3]-[6] deals with the problem of how to construct
individual piconets and connect them together into a scatternet. On the other hand, the
routing protocol deals with the problem of delivering messages efficiently in such a
scatternet.

Until now, a number of routing protocols have been proposed for Bluetooth multi-
hop networks [6]-[9]. In the proactive approach, such as in the Bluetree [6], each
master node maintains a routing table. The main problem here is the overhead in rout-
ing information exchanges, although little delay is involved in determining a route. In

228 C.-M. Yu and C.-C. Huang

the reactive approach [7][8], a flooding method is usually used to search for the opti-
mal path from a source node to a destination node and this will incur a certain amount
of delay. However, the reactive approach provides better network scalability. In [9],
the performance of a hybrid routing protocol is presented for Bluetooth scatternets
and it consumes small amount of storage, low routing overhead, and low route dis-
covery latency. Nevertheless, the paper did not try to combine this hybrid routing
protocol with a scatternet formation algorithm for Bluetooth scatternet to achieve its
excellent routing performance.

In this paper, a modified source routing protocol for Blueweb [10] is proposed to
provide the shortest path routing among nodes. The routing information is collected at
each master node during the scatternet formation. This is a hybrid routing protocol in
which we use the proactive approach locally and the reactive approach globally to
discover the optimal path for source routing. In addition, a uniform end-to-end traffic
model [11] is used to simulate and demonstrate the routing performance of Blueweb.

The rest of this paper is organized as follows: In Section 2, we describe the scatter-
net formation algorithm of Blueweb. In Section 3, a modified source routing protocol
for the Blueweb architecture is proposed. In Section 4, computer simulations are used
to evaluate the system performance of Blueweb. Finally, a conclusion is stated in
Section 5.

2 Blueweb Scatternet Formation Algorithm

The scatternet formation of Blueweb is executed in two phases. In the first phase, a
coordinator called the route master initiates the scatternet formation procedure by
paging up to 7 neighboring slave nodes, and forms the first piconet. The slave nodes
then switch their roles to masters (called S/M nodes). Each S/M node only pages one
additional neighboring slave node. After each S/M node connects to its slave, a role
exchange mechanism is executed to make the S/M node function as a relay and make
the slave node function as a master. Then the new master node begins to page up to 7
neighboring slave nodes. This procedure is iterated until the leaf nodes of the tree are
reached and a tree-shaped topology is created.

In the second phase, a return connection mechanism is used to generate more con-
nection paths among nodes and the tree-shaped topology is converted into a web-
shaped topology. Fig. 1 illustrates a simple Blueweb topology example.

3 Blueweb Routing Protocol

In the Blueweb scatternet formation period, some routing information can be ex-
changed among masters. In the first phase of scatternet formation, each master keeps a
record of its directly connected upstream master. As a result, a query path can be easily
formed by connecting all the masters in the upstream direction to the route master.

In the second phase of scatternet formation, each returning master will pass its own
piconet information together with a list of its directly connected masters to the route
master via its upstream masters. At the same time, each returning master including the
route master will pass its own piconet information to its directly connected masters.

 On the Performance of a Hybrid Routing Protocol for Blueweb 229

Here, we define the directly connected neighboring piconets within its neighboring N
tiers of a master as the N-tier piconets of the master. The associated N-tier piconet
information will be stored in the master’s N-tier piconet table. In addition, those mas-
ters affected by the return connection mechanism will update their N-tier piconet table
via relays. As a result, each master will keep its own piconet information and its
N-tier piconet information. This information is used locally when a node inquires the
master for a path to deliver packets.

After finishing the second phase of scatternet formation, the route master will have
the routing information of all nodes and store it in a piconet list table. This table con-
tains a list of all the masters and their associated slaves. Meanwhile, the route master
will compute the shortest path for any two-piconet pair using the all-pairs shortest
path algorithm [12]. This shortest path information is stored in a scatternet routing
table and is used when any node inquires the route master for routing information to
deliver packets.

In order to implement this routing protocol, a piconet-layer addressing scheme can
be used. This scheme combines the Bluetooth active member address (AM_ADDR)
with piconet identification (PID) to address each Bluetooth device throughout the
whole scatternet. In a piconet, each slave is assigned a 3-bit AM_ADDR by its mas-
ter. In addition, the PID is used to distinguish different piconets in the scatternet.

The PID’s are assigned on a layer-by-layer basis in the downstream direction dur-
ing the first phase of scatternet formation. For example, the route master is the only
layer 1 node and uses 1 as its PID. Its first attached master is assigned 1.1 as its PID,
the second attached master is assigned 1.2 as its PID, and so on. In this way, a layer 3
master will be assigned a PID of 1.a2.a3. We refer this addressing method as a pi-
conet-layer addressing scheme. This addressing scheme can be applied to Blueweb
architecture directly. An example of this scatternet addressing scheme for Blueweb is
shown in Fig. 1.

Based on the routing information collected by all the masters including the route
master, a modified source routing protocol is developed. This is a hybrid routing pro-
tocol and operates in two phases. In the first phase, an optimal path from source to
destination is searched. In the second phase, the optimal path is used to transmit the
packets.

Besides, a packet format is also designed for implementing our routing protocol.
This packet format is similar to RVM (Routing Vector Method) [7] and is shown in
Fig. 2. The SRC field contains the address of the source node according to the pi-
conet-layer addressing scheme. The DST field contains either the 48-bit Bluetooth
address for a query packet or the address of the destination node for a reply packet or
a data packet. The PATH field contains either the address of the route master for a
query packet or a sequence of PID’s according to the piconet-layer addressing scheme
for a reply packet or a data packet.

For example in Fig. 1, when the node S with address 1.1.1.1 sends a packet to the
destination node D, the node S will query its affiliated master with a query packet for
routing information. If the master node has the node D information in its N-tier pi-
conet table, the master will reply the routing path to the slave node directly. Then, the
source node will embed the routing path in the PATH field and transmit the packet.
Otherwise, the queried master 1.1.1 will forward this query message directly to the

230 C.-M. Yu and C.-C. Huang

Fig. 1. An example of a connected Blueweb topology

Layer 2
header

SRC PATH

Layer 2 payload

Layer 3 payload

Layer 3 header

DST

Fig. 2. Blueweb packet format

route master 1 via its upstream master 1.1. In this scenario, the header fields for a
sequence of query packets are shown in Table 1.

When the route master receives the query packet, it will first look up in its piconet
list table for the associated piconet addresses and then look up in the scatternet rout-
ing table for the optimal path. The route master then sends back the optimal routing
path to the source node via the downstream master nodes according to the piconet
address of SRC field. The optimal path contains a sequence of PID’s in the PATH
field. The header fields for a sequence of reply packets are shown in Table 2.

In the packet transmission phase, when a master receives a packet from another
node, it strips off its PID in the PATH field and forwards this packet to the next pi-
conet according to the next PID in the PATH field. In this way, the packet will finally
reach the destination node D. The header fields for a sequence of data packets are
listed in Table 3. Overall, the detailed Blueweb routing algorithm is described by the
pseudo code listed in Fig. 3.

Table 1. Header fields for a sequence of query packets

Query packet sequence SRC DST PATH
Node S queries its master 1.1.1.1 D’s Bluetooth address 1
Queried master forwards to
its upstream master

1.1.1.1 D’s Bluetooth address 1

Upstream master forwards to
the route master

1.1.1.1 D’s Bluetooth address 1

 On the Performance of a Hybrid Routing Protocol for Blueweb 231

Table 2. Header fields for a sequence of reply packets

Reply packet sequence SRC DST PATH
Route master sends routing path to
downstream master

1.1.1.1 1.3.0.2 1.1.1;1.2;1.3

Downstream master passes this informa-
tion to the queried master

1.1.1.1 1.3.0.2 1.1.1;1.2;1.3

The queried master passes this informa-
tion to the query node S

1.1.1.1 1.3.0.2 1.1.1;1.2;1.3

Table 3. Header fields for a sequence of data packets

Reply transmission sequence SRC DST PATH
Node S sends packet to destination node D 1.1.1.1 1.3.0.2 1.1.1;1.2;1.3
The master of node S forwards to the next

piconet
1.1.1.1 1.3.0.2 1.2;1.3

The immediate master forwards this data
packet to the master node of destination

1.1.1.1 1.3.0.2 1.3

The packet reaches the destination node D 1.1.1.1 1.3.0.2 0

Fig. 3. Blueweb routing algorithm

4 System Performance Simulation

In our simulation scenario, the scatternet topologies simulated were constructed by
using the scatternet formation algorithms as described in Section 2. Overall, we simu-
lated ten topologies each with 20, 30, and 40 nodes randomly distributed in the same
geographical area.

232 C.-M. Yu and C.-C. Huang

For data transmission, packets were generated in each node according to a Poisson
arrival pattern. Here, we assumed only a single packet was sent in each routing ses-
sion. Each data packet was assumed to last five time slots. Each route query packet
and each route reply packet were assumed to last one time slot. Each node was pro-
vided a FIFO queue with a length of 80 packets. The source-destination pair in each
routing session was selected randomly and packets were forwarded by using the
Blueweb routing protocol. To evaluate the system performance, we calculated some
selected performance metrics over twenty seconds of simulation time for each topol-
ogy. Table 4 summarized the simulation parameters.

Table 4. The simulation parameters

Simulation time (seconds) 20
Number of nodes 20, 30, 40
Traffic pattern Poisson arrival
Scheduling scheme Round robin
Routing protocols Modified source routing
FIFO buffer size 80 packets
Source-destination pair Randomly selected
Query or reply packet 1 time slot
Data packet (for each routing session) 5 time slots

4.1 System Performance

In this section, several performance metrics are evaluated by computer simulation to
demonstrate the system performance of the Blueweb scatternet. These performance
metrics include average packet throughput, average packet delay, packet dropping
probability, and so on.

4.1.1 Average Packet Throughput
The average packet throughput is defined as the ratio of the total number of success-
fully finished routing packets over the total simulation time in second. This parameter
reflects the system capacity of a scatternet.

The simulation results for average packet throughput of Blueweb are presented in
Fig. 4. The average packet throughput increases continuously as the routing packet
generation rate increases. This is because the modified source routing protocol to-
gether with the web-shaped architecture greatly enhances the system performance.
Nevertheless, the throughput performance will finally become saturated. Fig. 4 also
shows the performance of all the two-tier cases achieve better throughput perform-
ance than the corresponding one-tier simulated cases of Blueweb.

4.1.2 Average Packet Delay
The average packet delay metric is defined as the average packet transmission time
from the first transmitted bit at the source node to the last received bit at the destina-
tion node for every routing packet. In addition, our simulation adopts the Poisson
arrival traffic pattern, the round robin scheduling algorithm, and the modified source
routing protocol to evaluate this performance metric in a uniform traffic model.

 On the Performance of a Hybrid Routing Protocol for Blueweb 233

0 4 8 12 16

Packet generation rate (packets/node/sec)

0

100

200

300

400
A

ve
ra

ge
 p

ac
ke

t t
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

Throughput performance
20 nodes first tier
30 nodes first tier
40 nodes first tier
20 nodes second tier
30 nodes second tier
40 nodes second tier

0 4 8 12 16

Packet generation rate (packets/sec)

0

1000

2000

3000

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Delay performance
20 nodes first tier
30 nodes first tier
40 nodes first tier
20 nodes second tier
30 nodes second tier
40 nodes second tier

Fig. 4. Average packet throughput Fig. 5. Average packet delay

Fig. 5 shows the average packet delay performance of Blueweb. The average
packet delay increases as the packet generation rate increases. In addition, the 20-
node cases generate the smallest average delay since it produces the smallest average
path length out of all simulated cases. Clearly, the two-tier cases achieve better delay
performance than the one-tier cases of Blueweb. We observed that the delay perform-
ance deteriorated very quickly when the traffic load begins to saturate the network.
This happens when the route master and other masters eventually become bottlenecks
and cause network saturation.

Due to the fact that a smaller packet incurs larger system overhead, the average
packet delay in Fig. 5 can be reduced further when more than one packet are transmit-
ted in each packet.

4.1.3 Packet Dropping Probability
A packet dropping probability metric is used to evaluate the effect of scatternet con-
gestion caused by the buffer overflow phenomenon in some nodes. When the FIFO
buffer in a node overflows, the affected routing packets including both the newly
generated and currently active routing packets were dropped. The packet dropping
probability is defined as the ratio of the total number of dropped packets over the total
number of generated packets in all nodes.

Fig. 6 shows the packet dropping probability of Blueweb. Clearly, the 20-node
cases achieve the best performance on the packet dropping probability. In addition,
the two-tier cases also have better dropping probability performance than the one-tier
cases. As observed from our simulation, the route master and all other masters will
start to drop packets when network saturation happened.

4.1.4 Average Packet Query Time
The average route query time is defined as the average transmission time of query
packet to discover a path from either the piconet master or the route master. The
query time to the piconet master is defined as the local query time, and the query time
to the route master is defined as the global query time.

234 C.-M. Yu and C.-C. Huang

Fig. 7 shows the average route query time performance (including both the local
and global query time) represents about two third of the overall average packet delay
time. In addition, the query performance of the two-tier cases is reduced significantly
from the one-tier cases. Because the local query with a larger local routing table effec-
tively shares the working load of global query.

0 4 8 12 16

Packet generation rate (packets/node/sec)

0

0.2

0.4

0.6

P
ak

ce
t d

ro
pp

in
g

pr
ob

ab
ili

ty

Packet dropping performance
20 nodes first tier
30 nodes first tier
40 nodes first tier
20 nodes second tier
30 nodes second tier
40 nodes second tier

0 4 8 12 16

Packet generation rate (packets/node/sec)

0

500

1000

1500

2000

2500

A
ve

ra
ge

 p
ac

ke
t q

ue
ry

 ti
m

e
(s

lo
ts

)

Query time performance
20 nodes first tier
30 nodes first tier
40 nodes first tier
20 nodes second tier
30 nodes second tier
40 nodes second tier

Fig. 6. Packet dropping probability Fig. 7. Average packet query time

4.1.5 Probability of Querying the Route Master
The probability of querying the route master is defined as the ratio of the total number
of queries to the route master over the total number of queries (including both the
local and global queries). Fig. 8 shows the two-tier approach can reduce 20% in the
probability of querying the route master as compared with one-tier approach. We also
observed that most of the path queries are done at the route master instead of local
masters in the one-tier cases. This phenomenon may cause the route master to saturate
easily and become the bottleneck of packet transmission in Blueweb. Nevertheless,

0 4 8 12 16

Packet generation rate (packets/node/sec)

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

of
 q

ue
ry

in
g

ro
ut

e
m

as
te

r

Query probability
20 nodes first tier
30 nodes first tier
40 nodes first tier
20 nodes second tier
30 nodes second tier
40 nodes second tier

Fig. 8. Probability of querying the route master

 On the Performance of a Hybrid Routing Protocol for Blueweb 235

Fig. 7 and Fig. 8 show that the two-tier approach of the modified source routing pro-
tocol can improve the routing performance significantly.

5 Conclusions

In this paper, a modified source routing protocol is proposed for Blueweb. During the
scatternet formation process, the routing information is exchanged among masters and
the routing tables needed for the modified source routing protocol is established at the
same time. Using computer simulations, we simulate and demonstrate the system
performance of Blueweb with a uniform end-to-end traffic model. Our simulation
results show that Blueweb can achieve good system performance with this modified
source routing protocol.

In addition, our modified source routing protocol provides the following features.
First, this is a hybrid routing protocol that takes the advantages of both proactive and
reactive routing protocols. Second, the query-based source routing protocol generates
low overhead and small route query latency that is especially useful in the transmis-
sion of large batch of data packets. Third, the size of the piconet routing table of each

master can be increased to include its N-tier (N ≥ 2) piconet information when the size
of scatternet grows up. This property makes the scatternet easily expandable into a
large network.

References

1. http://www.bluetooth.com. Specification of the Bluetooth System, Volume 1, Core. Ver-
sion 1.1, February 22 2001.

2. Johansson, P., Johansson, N., Korner, U.; Elg, J.and Svennarp, G, “Short range radio based
ad hoc networking: performance and properties,” IEEE International Conference on Com-
munications, vol.3, pp. 1414-1420, 1999.

3. Zhifang Wang, Thomas, R.J., and Haas, Z., “Bluenet – A New Scatternet Formation
Scheme,” Proceedings of the 35th Annual Hawaii International Conference on System Sci-
ences, pp. 779-787, 2001.

4. Chiara Petrioli, Stefano Basagni, and Imrich Chlamtac, “Configuring BlueStars: Multihop
Scatternet Formation for Bluetooth Networks”, IEEE Transaction on Computers, vol. 52,
no.6, pp.779-790, June 2003.

5. Yong Liu, Myung J. Lee, and Tarek N. Saadawi, “A Bluetooth Scatternet-Route Structure
for Multihop Ad Hoc Networks”, IEEE Journal on Selected Areas in Communications,
vol. 21, no. 2, pp. 229-239, Feb. 2003.

6. Zaruba, G.V., Basagni, S.and Chlamtac, I. “Bluetrees-scatternet formation to enable Blue-
tooth-based ad hoc networks,” IEEE International Conference on Communications, vol.1,
pp. 273 –277, June 2001.

7. P. Bhagwat and A. Segall, “A Routing Vector Method (RVM) for Routing in Bluetooth
Scatternets,” IEEE International Workshop on Mobile Multimedia Communications, pp.
375-379, 1999.

8. Prabhu, B.J.and Chockalingam, A. “A Routing Protocol and Energy Efficient Techniques
in Bluetooth Scatternets,” IEEE International Conference on Communications, 2002. ICC
2002. pp. 3336 –3340.

236 C.-M. Yu and C.-C. Huang

9. R. Kapoor and M. Gerla, “A zone routing protocol for Bluetooth scatternets”, IEEE Wire-
less Communications and Networking, vol.3, pp. 1459-1464, March 2003.

10. C. M. Yu and C. C. Huang, “Introduction to Blueweb: A New Bluetooth-based Multihop
Ad Hoc Network,” International Conference on Wireless Network, June 2004.

11. D. Miorandi, A. Trainito, and A. Zanella, “On efficient topologies for Bluetooth scatter-
nets,” in Lecture Notes in Computer Science, vol. 2775, Proc. 8th IFIP TC6 Int. Conf.
(PWC 2003), Sept. 2003, pp. 726–740.

12. E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structures in C++, Com-
puter Science Press, New York, 1995.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 237 – 249, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Adaptive and Scalable Resource Advertisement
and Discovery Strategy for Mobile Ad Hoc Networks

Donggeon Noh1 and Heonshik Shin2

1 Seoul National Univ., School of Computer Science and Engineering, 301-551,
151-742 Kwanak-gu, Sillim-dong, Seoul, Korea

dgnoh@mobisys.snu.ac.kr
2 Seoul National Univ., School of Computer Science and Engineering, 301-502,

151-742 Kwanak-gu, Sillim-dong, Seoul, Korea
shinhs@snu.ac.kr

Abstract. Effective resource advertisement and discovery (Ad/D) are particu-
larly important in mobile ad hoc networks (MANETs), due to network dynamics
and resource constraints of wireless nodes. In this paper, we propose an adap-
tive and scalable resource Ad/D technique for MANETs. Based on a variable
zone size, it combines push-based Ad/D with a pull-based Ad/D that uses a
modified bordercasting resolution protocol. The scheme avoids redundant
flooding and reduces system overhead by piggybacking resource information on
the routing-layer packet, and adapts locally to changing conditions, such as mo-
bility and popularity levels, in a MANET. Simulation results verify that our
scheme can track a changing network environment while reducing the resource
Ad/D network overheads, thereby saving resources, decreasing latency and be-
ing scalable to large MANETs.

1 Introduction

Rapid advances in network application technology and its pervasive influence over our
society demand an efficient way to locate resources1 over the network. Particularly, in
self-configurable networks which are to be easily deployed and reconfigured automati-
cally when extended with new hardware and/or software capabilities, it is necessary to
efficiently execute the advertisement and discovery (Ad/D) of the network resources.
Mobile ad hoc networks (MANETs) are a special form of such self-configurable net-
works with their own peculiarities, such as network dynamics, resource constraints at
the constituent nodes, and no centralized mechanisms for managing the network. Be-
cause of these characteristics, the development of resource discovery strategies for
MANETs poses interesting challenges:

1. Enabling resource-constrained, wireless devices to discover resources dynamically,
while minimizing both the control traffic and latency.

2. Enabling resource discovery in large-scale MANETs.
3. Enabling lightweight resource discovery for resource-poor constituent nodes.

1 The resources of a network are made up of many kinds of service and information, including

peripherals, computation, storage, and the network itself.

238 D. Noh and H. Shin

To meet these requirements, we present RADIZ (resource Ad/D protocol with inde-
pendent zone), which is a directory-less hybrid adaptive resource Ad/D strategy
integrated with a network-layer protocol. RADIZ provides a zone size determination
algorithm for hybrid Ad/D, which considers the network characteristic (i.e. mobility and
call rate) and the popularity of the resource. In addition, it offers a lightweight imple-
mentation of resource Ad/D by using existing routing control packets. Moreover, it
provides an efficient resource discovery mechanism for on-demand (i.e. pull-based)
resource finding. These characteristics allow RADIZ to support Ad/D with a relatively
low overhead and latency, making it applicable to large-scale MANETs (i.e. those with
at least 100 nodes), unlike other directory-less Ad/D schemes.

The rest of this paper is organized as follows. The next section contains an analysis
of existing resource Ad/D strategies for MANET. Section 3 describes the characteris-
tics of our adaptive and scalable resource Ad/D strategy. We then give an overview of
the simulation environment and present an evaluation of our strategy in Section 4.
Finally, conclusions are drawn and future works are discussed in Section 5.

2 Resource Ad/D for MANETs

In a MANET scenario, it can be argued that the directory-less resource Ad/D model is
more suitable than the directory model, because it can be performed in a completely
distributed fashion and there is no need for any infrastructure. In the directory-less
model for MANETs, users actively send out resource request messages and servers
listen for these messages at a well-determined network interface and port. Users can
also learn about the available resources in a passive way by listening for resource
advertisements that are generated by the servers.2

In several existing directory-less resource Ad/D implementations, resource Ad/D
models are applied at the middleware layer [6], [7]. These models have to be sup-
ported by underlying ad hoc routing protocols. Both the Ad/D protocol and the routing
protocol can invoke redundant flooding of the network, and this inevitably incurs a
large overhead. Additionally, these are rather heavyweight solutions, because they
must be implemented as an independent layer. Both of these problems can be a seri-
ous drawback in MANETs, in which there is often a shortage of network and comput-
ing power.

A consideration of these problems motivates the integration of resource Ad/D proto-
cols with routing protocols. A resource Ad/D protocol has already been integrated with a
proactive routing protocol [8] and also with a reactive routing protocol [1], [2], [3].
More recently, two strategies, RUBI [5] and HAID [4], have been designed by integrat-
ing a hybrid resource Ad/D protocol with a simple routing protocol, and this approach
shows improved performance. However, the size of the push-based resource zone is
simply determined by the transmission range of the node in RUBI, or by the popularity
of the resource provider node in HAID. Furthermore, neither Oh et al [4] nor Harbird et
al [5] simulate their schemes in large-scale MANETs.

2 We refer to these methods of resource Ad/D as the pull-based Ad/D model and the push-based

Ad/D model respectively. The hybrid resource Ad/D model is a hybrid of these two models.

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 239

We conclude that existing directory-less resource Ad/D protocols have shortcom-
ings: in particular, a poor ability to adapt to dynamic network changes (e.g. mobility
and call rate level in the network, popularity level of the resource), low efficiency of
resource discovery algorithms, and dubious scalability.

3 RADIZ

RADIZ is an adaptive hybrid resource Ad/D protocol integrated with the IZR routing
protocol, as summarized in Figure 1. Integration with the routing protocol is intended
to result in a lightweight scheme and to reduce the amount of unnecessary network
flooding. The hybrid resource model is used to provide efficient advertisement and
discovery. But, RADIZ also allows nodes to adapt their own zone radii dynamically
and automatically as the network environment changes. And these changing zone
radii are used to provide an efficient resource query mechanism.

Fig. 1. Overview of the RAIDZ strategy

3.1 Hybrid Resource Ad/D Strategy Integrated with a Routing Protocol

Redundant flooding operations by middleware-oriented resource Ad/D strategies can
expose serious deficiencies in MANET environments, which are by nature poor in
resources. By piggybacking the resource information on the routing control packet,
we can implement a lightweight Ad/D scheme which can obtain the resource and
routing information for an expected resource provider simultaneously.

Our RADIZ scheme also uses a hybrid resource model, which allows each node to
perform push-based Ad/D in its zone, and pull-based Ad/D elsewhere. This is made
possible by integrating the resource Ad/D process with a hybrid routing protocol.
Previous studies of routing [10], [11] have shown that a hybrid routing protocol is

240 D. Noh and H. Shin

more efficient than simple proactive or reactive protocols, in the context of a MANET.
Therefore, by integrating the resource Ad/D protocol with an effective hybrid routing
protocol (i.e. IZR), we expect to achieve a more efficient resource Ad/D model. We
will introduce an extended version of the IARP (intra routing protocol) packet, which
carries resource information piggyback, and call it the IAIP (intra integrated protocol)
packet. And the IERP (inter routing protocol) packet is likewise expanded to become
the IEIP (inter integrated protocol) packet. The architecture of the framework for
integrating hybrid Ad/D and routing is provided in Figure 2.

Fig. 2. Integrated framework for a hybrid resource Ad/D

3.2 Zone Radius Determination

In RADIZ, each node determines the size of its own zone independently, while taking
into account the state of the network (e.g. call rate, mobility). Resource providers
must also consider popularity (e.g. the number of resource invocations). For example,
if the network has a high call rate and low mobility, most nodes should have relatively
large zone radii, in order to perform effective routing and resource Ad/D with mini-
mum impact on the network overhead and latency. Additionally, the provider of a
more popular resource operates more efficiently with a larger zone.

Since RADIZ integrates the resource Ad/D protocol with the routing protocol, the
zone of a resource provider node is now the push-based Ad/D zone as well as the
proactive routing zone. But the zone of a resource user node is only the proactive
routing zone, and does not include push-based Ad/D since a user has nothing to adver-
tise. Nevertheless, the zone of a user node is still significant in the resource Ad/D
process, because it determines the base from which we can perform effective on-
demand resource discovery, as explained in Section 3.4.

We determine zone sizes using a modified version of the IZR algorithm, which is a
hybrid of the Min_Searching and Adaptive_Traffic_Estimation (ATE) algorithms [12],
tailored to integrated Ad/D. The proactive traffic of a node is a nondecreasing function
of the zone radius, and the reactive traffic is a nonincreasing function of the radius [12].

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 241
In

te
gr

at
ed

 C
on

tro
l T

ra
ffi

c

Fig. 3. A hybrid zone determination algorithm of RADIZ: (a) Min_Searching, (b) Adap-
tive_Traffic_Estimation (ATE), and (c) Additional part of ATE for resource provider

Hence, the total control traffic, which is a sum of these two components, is a convex
function. Figure 3(a) shows how the IAIP, IEIP and total control traffic vary with zone
radius. In this figure, the total control traffic is a minimum when the zone radius is 3.
At each node, the Min_Searching algorithm can find the minimum point on the inte-
grated control traffic curve by repeated refinement of the zone size in increments and
decrements of one hop. More specifically, each node estimates the integrated control
packet traffic at each time step. If the amount of traffic has fallen, the next change to
the radius is in the same sense; if the traffic has increased, the radius is changed in the
opposite directions.

Once the lowest point on the control traffic curve has been found, the ratio of the
IEIP component to the IAIP component at the optimal zone radius is set to thres,
which is periodically used by the ATE algorithm to tune the zone radius. Let (R) be
the ratio of the IEIP traffic to the IAIP traffic, measured at a network node during an
estimation interval during which the zone radius is R. Simplistically, we can now
compare (R) with thres to determine whether the zone radius should shrink or grow.
However, since frequent changes of zone size can make the network unstable, a de-
layed triggering mechanism is introduced by the use of a multiplicative hysteresis
term, . As illustrated in Figure 3(b), if (R) > thres • , then the radius is increased by
one hop; if (R) < thres / , the radius is decreased by one hop.

In the case of a resource provider, the popularity of the resource as well as the net-
work state must be considered by the ATE algorithm. For this reason, a resource pro-
vider periodically monitors the frequency of invocation of its resource. As shown in
Figure 3(c) if Pnew (the invocation frequency during the current period) is higher than
Pold (the invocation frequency during the last period), then the radius is increased by
one hop, and vice versa. A delayed triggering mechanism is also used here to prevent
frequent changes of zone size. The multiplicative hysteresis term is .

With this hybrid algorithm, each node adapts to dynamic changes in the network
environment with little computational overhead.

3.3 Push-Based Resource Ad/D

In RADIZ, each resource provider performs push-based resource advertisement in its
dynamic zone. The provider periodically broadcasts an advertisement message to all
nodes within its zone, and resource users within that zone learn passively about the
resource by receiving these advertisements.

242 D. Noh and H. Shin

Fig. 4. RPM (resource publicity message) format

In order to implement integrated push-based resource advertisement, we designed
the IAIP packet format. We will refer to an IAIP packet used in the Ad/D mechanism
as an RPM (resource publicity message). Figure 4 shows that an RPM is composed of
two parts. One is the routing control part used by the IARP. The other is the resource
information part which includes the resource type, the resource lifetime and additional
information about the resource, such as its functional interface and QoS (quality of
service) level. This resource information part can be modified as required. If the target
service architecture is service-oriented and based on web services, then WSDL (web
services description language) can be used for resource description. In this paper, we
focus on the Ad/D architecture, and not on the device-level or service-level interop-
erability. Therefore, we use a simple resource information description.

The resource type is predefined across all the nodes and the resource lifetime field
is used to support the renewal cycle of the resource provider. If a node which receives
an RPM does not receive it again during the lifetime of that resource, the node invali-
dates that resource information. This allows the network to accommodate quickly to
the disappearance of a resource provider. The additional information field includes
the functional interface and dynamic QoS attributes of the resource. The QoS specifi-
cation includes: (i) scalability information, which specifies the capacity of the
resource to service additional requests over a specified period of time; (ii) the per-
formance and capacity of the host, including its available energy, computation power,
and network bandwidth. This specification of QoS parameters is optional but, for each
parameter, the following attributes must be specified: name, value and expiration. The
TTL (time to live) field is initially set to its own zone radius.

3.4 On-Demand Pull-Based Resource Discovery

RADIZ uses the BRP (bordercast resolution protocol) [9] as a pull-based resource
discovery method. It provides efficient mechanisms for sending a query to peripheral
nodes3, and for routing the query outward from the source beyond its own zone. Addi-
tionally, it provides a query detection mechanism to prevent query overlap.

With independent zone radii, the zone of one node may be completely included in
the zone of another. In this case, the first node cannot explore any new zone when it
receives a query from the second node. Processing such a query wastes the resources
of the first node. BRP avoids this situation by assigning query processing to nodes
which are able to explore new zones. Figure 5 illustrates the example of bordercasting
by a node with a zone radius of 3. To start bordercasting, the BRP constructs a

3 A peripheral node is a node whose minimum distance to the source node is exactly equal to

the zone radius.

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 243

Fig. 5. Example of bordercasting using BRP

bor-dercast tree that connects the source node to all peripheral nodes. Then it chooses
rebordercasting nodes on the basis of the zone radius of each node and the query de-
tection mechanism. In Figure 5, Nodes B and D are chosen as rebordercasting nodes,
since they are the closest to the source node of all the nodes which are able to access
the outside of the zone and which have not previously received the current query. The
resource user unicasts a resource query message to these rebordercasting nodes.
Lastly, the rebordercasting node executes query processing, and if it still has no in-
formation about the target resource, it performs bordercasting again.

Fig. 6. Pull-based RQM (resource query message) format

In order to achieve pull-based resource discovery using bordercasting, we need an
RQM (resource query message) and an RRM (resource reply message), which add
resource information to the general IERP request packet (IERP_REQ) and to the
IERP reply packet (IERP_REP) respectively. The format of pull-based RQM message
is shown in Figure 6. The lifetime and resource address fields of the RQM are initially
empty and are used temporarily before an RRM is generated. The resource type and
additional information fields should initially be filled with identification of the re-
source information that the user wants to find. The destination address field of the
RQM contains the address of a rebordercast node supplied by the source node.

The RRM has similar format to the RQM. It contains the resource information
which the RQM has found. After an RRM has been created by a node which has the
necessary information, it is sent to the node from which the RQM was received, as
part of a backtracking process that leads back to the node that initiated bordercasting.

The query processing algorithm is shown in Figure 7. When a rebordercasting node
receives a resource query, it performs the query processing algorithm. If a node has
the information about the resource provider which matches the RQM, and the routing
information for that resource provider node, that node creates an RRM that contains

244 D. Noh and H. Shin

Fig. 7. Pseudo-code for the query processing and bordercasting algorithm

this resource and routing information and sends it back by the reverse path. But if the
node only has resource information, and no routing information for the provider, it
only fills the resource information fields of the RQM and rebordercasts it. If a node
has no resource information that matches the RQM, it simply rebordercasts it. Now,
suppose that a node receives an RQM with the resource address field already filled in.
We can infer from this kind of RQM that resource information about a provider has
already been located, but the routing information is still missing. If the node has the
required routing information, it can create an appropriate RRM and send it back.
However, if it has no routing information about that resource provider, but it does
have resource and routing information about an alternative resource provider, it cre-
ates an RRM with information about that alternative provider and sends it back.

4 Performance Evaluation

We designed a simulation to evaluate the performance of RADIZ. Extended NS2 from
Cornell University 4 was used to implement RADIZ. On top of the IEEE 802.11 MAC
protocol, OLSR [14] was used as the proactive routing protocol integrated with a
push-based resource Ad/D protocol, and AODV [13] was used as the reactive routing
protocol integrated with a pull-based resource Ad/D protocol.

4.1 Simulation Model

We created network containing different numbers of nodes (50, 100, 150, 200),
spread randomly over an area of 1000 1000 m2. Five nodes are resource providers.
All nodes in the network have advance knowledge of the resource types. Each simula-
tion ran for 500 seconds and there were 30 runs in total.

4 http://wnl.ece.cornell.edu/Software/zrp/ns2

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 245

There are several parameters that we can use to characterize a network. The first is
the mean speed of the nodes. The faster their relative speed, the more dynamic the
network is. The second parameter is the mean pause time, which controls how long a
node can remain in one place before moving. The longer the pause time, the more
stable the network is. The third parameter is the MSID (mean session interarrival
delay) which corresponds to the call rate of the nodes. The smaller the MSID, the
more frequent calls are. From the resource provider’s point of view, there is one fur-
ther parameter which is the MTNR (mean time to next request). It represents the popu-
larity of the resource.

In order to simulate the resource Ad/D traffic, a randomly chosen node sends a re-
source query message to one resource provider. The interarrival times between que-
ries to each provider are exponentially distributed with a given MTNR (1s, 10s). Since
RADIZ is integrated with the IZR routing protocol, we need to simulate routing traffic
as well as resource Ad/D traffic. We therefore make each node send a certain number
of data packets to a randomly chosen destination. The number of data packets per
session follows a Poisson distribution with an average of 10 packets. The interarrival
time between sessions at each node is exponentially distributed with a given MSID
(3s, 150s). The source of a particular session generates 1Kbit data packets at the con-
stant rate of 16 packets per second.

4.2 Simulation Results

To evaluate the performance of RADIZ, we implemented five different resource Ad/D
strategies and conducted a simulation of each strategy. ZRP-RDP is the resource Ad/D
protocol integrated with ZRP, and AODV-RDP is the Ad/D protocol integrated with
AODV. We will also refer to pull-based RDP and push-based RDP, which are the
resource Ad/D protocols separated from the routing protocol.

Figure 8 shows comparative results for average traffic and latency for different re-
source Ad/D strategies. In this experiment, we only simulated the resource Ad/D traf-
fic and not the routing traffic. The mean speed of the nodes is 0.5 m/s, the pause time
is 100s and the MTNR of each resource node is 1s. The value of , for delayed trig-
gering is 10 and 1.5 respectively. As Figure 8 (a) indicates, RADIZ saves between
20% and 65% of the control traffic related to resource Ad/D when the number of
nodes is 50. The average control traffic mentioned in this figure refers to the control
packets passing through each node during the simulation. Therefore, the total number
of control packets in the network can be reduced substantially by using RADIZ. More-
over, the larger the number of nodes, the more definite the difference in traffic over-
head is between RADIZ and the other strategies. Among other strategies, ZRP-RDP
shows the best performance when the zone radius is 1 hop, but this pre-defined uni-
form radius may not be suited to other environments. The traffic overhead of RADIZ
does not increase exponentially as the number of nodes increases, which shows that
RADIZ is suitable for large-scale ad-hoc networks. We can also infer that the nodes
have found an approximately optimal radius from the fact that, using RADIZ, the
traffic is less than it is for ZRP-RDP, whether the zone radius is 1 or 2. The average
zone radius during this experiment was about 1.45. Figure 8(b) shows that RADIZ
also shows the best performance in term of latency.

246 D. Noh and H. Shin

Number of Nodes

A
ve

ra
ge

 R
es

o
ur

ce
 A

d/
D

 C
on

tr
ol

 T
ra

ffi
c

(p
ac

ke
t x

 1
03)

RADIZ

ZRP-RDP (R=1)

AODV-RDP

ZRP-RDP (R=2)

Pull-based RDP

Push-based RDP

Number of Nodes

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
o

nd
)

RADIZ

ZRP-RDP (R=1)

AODV-RDP

ZRP-RDP (R=2)

Pull-based RDP

Push-based RDP

Fig. 8. Performance of RADIZ with only resource Ad/D traffic: (a) Average resource Ad/D
control traffic and (b) Average Ad/D query latency

To observe the performance of RADIZ in a more realistic environment, in which
resource Ad/D and routing traffic coexist, we simulated resource Ad/D traffic and
routing traffic simultaneously. We also changed the network environment 250 sec-
onds after the start of the simulation in order to assess the adaptability of RADIZ. The
network characteristics and traffic model that we simulated are set out in Table 1.
Figure 9 shows the effect on the average control traffic of varying the resource Ad/D
strategy and the number of nodes. Again, RADIZ gives the best performance among
the six strategies, and the differential performance grows with the number of nodes.
Moreover, RADIZ saves much more traffic overhead in this realistic scenario than in a
static environment in which there is only resource Ad/D traffic.

In order to study the performance of RADIZ in more detail, we analyzed the traffic
for each strategy at each period, in a 100-node network. Figure 10(a) shows the
results. In Period 1, RADIZ, ZRP-RDP with a zone radius of 1, and AODV-RDP

Table 1. Simulation environment with realis-
tic traffic

Number of Nodes

Av
er

ag
e

In
te

gr
at

ed
 C

on
tro

l T
ra

ffi
c

(p
ac

ke
t x

 1
03)

RADIZ

ZRP-RDP (R=1)

AODV-RDP

ZRP-RDP (R=2)

Pull-based RDP

Push-based RDP

Fig. 9. Average integrated control traffic
with both resource Ad/D and routing traffic

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 247

produce relatively little traffic, while ZRP-RDP with a zone radius of 2, and push-
based RDP generate much more. We suggest that this occurs because a high level of
IAIP traffic is incurred by zone maintenance, when there is a rapidly changing net-
work topology and a high probability of link failure. In Period 2, however, RADIZ and
ZRP-RDP with a zone radius of 2 show relatively little traffic, while AODV-RDP and
pull-based RDP are now much busier. This result indicates that it is more efficient to
maintain larger zones when there is a relatively stable network environment and a
Figure 10(a), high call rate, which are the characteristics of Period 2. As we can see
from RADIZ has better performance than all the other schemes, in terms of the total
number of control packets, over both periods.

We also plotted the average zone radius of the nodes over time while varying the
, ., As we can see from Figure 10(b), the average zone radius of a node is about 1 in

Period 1, and grows to 2.4 in Period 2. The high value of , can mean that adaptation
to changing network characteristics is slow. The average zone radii of the five re-
source providers are 3.3 in Period 2, which shows that the zone determination algo-
rithm used by RADIZ can track a changing network environment while maintaining
approximately optimal zone radii. Our confidence in the validity of this assertion is
strengthened by the strong performance of ZRP-RDP with a zone radius of 1 during
Period 1, and with a zone radius of 2 during Period 2, as shown in Figure 10 (a).

0 40 80 120 160 200 240 280 320 360 400 440 480

Time (Second)

=20 =2.0

=10 =2.0

=10 =1.5

Fig. 10. Adaptability of RADIZ with both resource Ad/D and routing traffic (100-node net-
work): (a) Average integrated control traffic and (b) Average zone radius

5 Conclusions and Future Work

The characteristics of MANETs, such as the potentially highly dynamic topology and
the inclusion of heterogeneous wireless nodes whose energy needs to be saved for
enhanced autonomy, require special care in the handling of distributed resource provi-
sioning. In particular, the discovery of resources must allow access to the whole
MANET, to ensure availability, while limiting resource consumption. However, exist-
ing directory-less discovery protocols designed for MANETs are short of adaptability
and scalability.

248 D. Noh and H. Shin

RADIZ is a new lightweight adaptive resource Ad/D strategy integrated with the
IZR routing protocol. It avoids the use of redundant flooding mechanisms by integrat-
ing the Ad/D and routing protocols, and can perform more effective resource Ad/D by
applying a hybrid resource Ad/D model which combines the pull-based and push-
based approaches. The system overhead is substantially reduced because RADIZ
extends the existing routing packet, rather then requiring separate resource Ad/D
packets. In addition, each node can have its own zone size to facilitate local adapta-
tion to dynamic changes in the network environment. Maintaining an optimal zone
around each node allows RADIZ to provide an efficient query routing and processing
mechanism. The reduced overheads incurred in using RADIZ can translate to lower
power consumption, less congestion, and reduced memory and processing require-
ments. Due to these advantages of RADIZ, it has the scalability necessary for
large-scale MANETs containing several hundreds nodes unlike previous directory-less
resource Ad/D strategies.

In future, we plan to improve the zone size determination algorithm, which may
involve considering the resource status or the number of providers supplying the same
type of resource. We also intend to refine the bordercasting mechanism and to under-
take a more mathematical analysis of the integrated traffic model used by RADIZ.

References

1. W. Ma, B. Wu, W. Zhang, and L. Cheng.: Implementation of a light service advertisement
and discovery protocol for mobile ad hoc network. In: GLOBECOM. (2003)

2. L. Cheng.: Service advertisement and discovery in mobile ad-hoc networks. In: CSCW.
(2002)

3. R. Koodli and C. E. Perkins.: Service discovery in on-demand ad-hoc networks. MANET-
WG Internet Draft, IETF. (2002)

4. C. Oh, Y. Ko, and Y. Roh.: An integrated approach for efficient routing and service dis-
covery in mobile ad hoc networks. In: CCNC. (2005)

5. R. Harbird, S. Halies, and C. Mascolo.: Adaptive resource discovery for ubiquitous com-
puting. In: MPAC. (2004)

6. S. Helal.: Konark – a service discovery and delivery protocol for ad-hoc networks. In:
WCNC. (2003)

7. R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, and A. Schade.: DEAPspace:
transient ad-hoc networking of pervasive devices. The International Journal of Computer
and Telecommunications Networking, Vol. 35 (2001) 411-428

8. U. C. Kozat and L. Tassiulas.: Network layer support for service discovery in mobile ad
hoc networks. In: INFOCOM. (2003)

9. Z. J. Haas, M. R. Pearlman, and P. Samar.: The bordercast resolution protocol (BRP) for
ad hoc networks. MANET-WG Internet Draft, IETF. (2002)

10. Z. J. Haas, M. R. Pearlman, and P. Samar.: The zone routing protocol (ZRP) for ad hoc
networks. MANET-WG Internet Draft, IETF. (2002)

11. P. Samar, M. R. Pearlman, and Z. J. Hass.: Independent zone routing: an adaptive hybrid
routing framework for ad hoc wireless networks. IEEE/ACM Transactions on Networking,
Vol. 12 (2004) 595-608

12. M. R. Pearlman and Z. J. Haas.: Determination of the optimal configuration for the zone
routing protocol. IEEE Communications, Vol. 17 (1999) 1395-1414

An Adaptive and Scalable Resource Advertisement and Discovery Strategy for MANETs 249

13. C. E. Perkins, E. M. Belding-Royer, and S. Das.: Ad hoc on-demand distance vector
(AODV) routing. RFC 3561, IETF. (2003)

14. T. Clausen and P. Jacquet.: Optimized link state routing protocol (OLSR). RFC 3626,
IETF. (2003)

15. U. Kozar and L. Tassiulas.: Service discovery in mobile ad hoc networks: An overall per-
spective on architectural choices and network layer support issues. Ad Hoc Networks, Vol.
2 (2004) 23-44

16. F. Sailhan and V. Issarny.: Scalable service discovery for MANET. In: PerCom. (2005)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 250 – 258, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Binding Multiple Applications on Wireless
Sensor Networks

Ali Hammad Akbar, Ahmad Ali Iqbal, and Ki-Hyung Kim1

Graduate School of Information and Communication,
Ajou University, Suwon, 443-749, Korea

{hammad, ahmad, kkim86}@ajou.ac.kr

Abstract. Multiple applications can be invoked simultaneously on single sensor
network through pre-emptive or late binding. Triggering multiple applications
on sensor networks at a post-deployment stage results into complex interactions
between them. In this paper, we discuss considerations for multiservice sensor
networks such as resource allocation and energy conservation. First, we identify
the uniqueness of node selection strategies for such multi-service sensor net-
works. Second, we discuss their effects on network usability and longevity. We
present a holistic nodes election protocol for such networks. Simulation results
show increased longevity of networks when our protocol is implemented on the
network.

1 Introduction

Wireless sensor networks (WSNs) are a new breed of networks that are application
centric and mission oriented. Distributed in nature, these networks comprise miniatur-
ized hardware platforms and software environments adapted to a wide variety of ap-
plications. So far, most of the application frameworks suggested for wireless sensor
networks have assumed a single service supported by sensor nodes deployed in the
region of interest (ROI). Such single service architectures are relatively simpler in
implementation and management. Management architectures of some existing appli-
cations, however, support change of mission in due course of sensor lifetime.

The problem of sensor nodes management and their network-wide coordination
takes altogether a different outlook once multiple applications are considered from the
service perspective of sensor networks. For example, a sensor network that renders
multiple services simultaneously in the form of application overlays risks of computa-
tion and communication contradictions. Consider Fig.1 for the sake of illustration
where four applications running on the same sensor network share both the nodes’ as
well as the network’s resources. A resource heavy application’s requirements might
compromise another or all the other applications’ quality of service (QoS). Similarly,
due to bidding against only the best resources by applications, part of the sensor net-
work might be under-utilized [1]. The problems highlighted above can be mitigated
by pre-emptive application binding on the sensor nodes. However, it is not a valid
assumption in most of today’s applications scenarios of sensor networks. There is a

1 Corresponding author.

 Binding Multiple Applications on Wireless Sensor Networks 251

need for orchestrating nodes’ and network resources in run time. Therefore late bind-
ing of applications on sensor networks will be a plausible proposition in futuristic
applications. Our contribution here is to propose a protocol that helps applications to
commit resources on the sensor nodes in a fair manner. This load balancing protocol
ensures that all the nodes are effectively utilized to serve multiple applications. The
performance of our protocol shows an increase system longevity by allowing nodes
closer to the application sinks to conserve energy.

Fig. 1. Multiple applications support by a single wireless sensor network

The paper is organized as follows. In section 2, we present scenarios that entail
multiple services provisioning on single sensor network. In section 3, we present the
work reported so far that studies various aspects of multiservice provisioning net-
works. In section 4 we present specific questions that pose challenge to the design of
such a multiservice WSN. Assumptions necessary to propose our scheme are outlined
in section 5. Section 6 thoroughly presents the nodes’ resource bidding and reserva-
tion protocol. Simulation results and performance analysis are discussed in section 7.
Section 8 concludes the paper.

2 Scenario Illustrating Multiple Services Provisioning on a
Singular Wireless Sensor Networks

In this section, we present a scenario to provide motivation for our research. The
scenario will be elaborated for requirements in the next section.

2.1 Scenario: Military Applications

For military applications, primary considerations remain robustness, accuracy, and
timeliness. State-of-the-art vibration, acoustic and magnetic sensors for object diver-
sity are employed and onboard algorithms are used to optimize their performance.
E.g., sensor-cued images of detected threats may be rapidly relayed to chief command

252 A.H. Akbar, A.A. Iqbal, and K.-H. Kim

for real-time threat identification and prosecution. Following applications may be
rendered by sensor nodes:

Target tracking: Sensor nodes are randomly deployed through unarmed air vehicle
(UAV) in the battle zone to track enemy vehicles, measure the location of the vehicle
and send this information to the central command for decision making.

Mine detection: Nodes performing tracking may be assigned another task of mine
detection simultaneously to facilitate infantry and armoured personnel carriers to
penetrate into the enemy territory.

Friend or foe: Finally, these sensor nodes may also signal friend or foe (FoF) to
central command in order to avoid loss or casualty through friendly fire by detecting
the presence of e.g., RFID tags on friendly vehicles and personnel.

3 Related Work

In this section, we discuss the work that relates to issues regarding sensor networks
with multiservice provisioning. In particular, we review schemes and protocols that
support node and resource allocation schemes for binding applications onto sensor
networks.

Yang Yu et al presents issues that emerge in allocating resources for a single ser-
vice under various constraints in [2]. They formulate task allocation on a sensor
network as Integer Linear Programming problem and as a 3-phase heuristic. Using
simulations, they analyze energy-latency tradeoffs for the two schemes.

A more recent work by the same author in [3] has pinpointed the exact issue of
multiservice provisioning by adopting a middleware approach. They also identify the
need for resource management in cluster-based sensor networks.

A management approach is presented by Linnyer et al in [4]. They give MANNA
architecture for specifying functional, information, and physical management of sen-
sor networks. The authors itemizes the management functions such as topology dis-
covery function, node operating state control function, and network connectivity
discovery function etc. However, this paper does not propose a new resource alloca-
tion and optimization protocol.

Well known routing schemes such as [5]-[8] address optimizations over energy ef-
ficiency, reducing communication overhead, scalability and reliability. However,
there is no explicit mention to support multiple services in either of the schemes.

In summary, no work reported so far proposes nodes’ resource allocation protocol
that considers network lifetime and network utilization simultaneously.

4 Purported Challenges

Consider Fig. 2 where sensor nodes are part of various applications simultaneously
being executed on a WSN. There are specific sinks associated with every application,
though shown for just three for visual clarity. Applications solicit for resources on
individual sensor nodes through gateways to carrying out sensing for them. Another
important concern is that all the sensor nodes in the ROI must be used as fairly as

 Binding Multiple Applications on Wireless Sensor Networks 253

possible, else the network is underutilized. With usual greedy approach of choosing
the closest nodes with appropriate resources, it is quite likely that multiple applica-
tions will acquire sensing nodes in the fringes of the network. The nodes in the centre
of the network may go unused.

Fig. 2. Applications sharing sensor nodes and application specific sinks

These observations and requirements pose the following questions that we sought
answers for in the next section.

Question#1: How can gateways acquire nodes for their applications such that
nodes closer to gateways are highly available for routing data?

Question#2: How can load be balanced amongst the sensor nodes in the ROI?
Question#3: How can a system be made dynamic such that it optimizes energy-

latency-load for applications with differing QoS requirements?

These questions when seen in the context of network and node resources intrigue
our minds to put forth resource allocation protocol. In the following sections, we
define nodes’ resource bidding and allocation protocol and its variants in detail.

5 Model and Assumptions

In this section, we formulate the role of entities and other key assumptions that inter-
play in the proposed protocol.

Communication: Sensor nodes transmit data that can be received by one hop
neighbours. All the non-destined nodes can overhear the transmission. This phe-
nomenon is useful in establishing the behaviour of the surrounding nodes in dense
deployments.

Caching: The sensor nodes have the capability to cache the data or control messages.
This assumption allows a node to hold data or control information until some specific
timers expire.

254 A.H. Akbar, A.A. Iqbal, and K.-H. Kim

Deployment: Sensor nodes are randomly deployed in the region of interest. This will
result into non-uniform accessibility of nodes’ resources to application gateways.

Node architecture and constraints: Every sensor node in the network has resources
that enable it to execute certain tasks. Intelligence in a sensor node is provided
through an operating system such as TinyOS [9]. For our scenario, we assume a ho-
mogeneous model for all the sensor nodes. Assuming heavy sensing applications, we
model the ratio of sensing-cum-transmission to relaying is 1:0.3.

A single sensor node chassis can have multiple types of sensors, e.g., thermal sen-
sor, a photodetector, and a CCD etc. Execution environments such as TinyOS® pro-
vide concurrency support by add-ins such as MATE [10].

Node types: A node can be either a gateway (equivalently termed as sink when
deemed appropriate) or a sensing node. A gateway initiates the resource solicitation
on behalf of an application. A sink node can participate in sensing and/or routing data
for a specific gateway.

Routing protocol: It is assumed that an underlying address-centric routing protocol is
in-place. The protocol messages used in subsequent section will form the payload of
the usual data packets.

6 Nodes’ Resource Bidding and Reservation Protocol

The protocol answers the challenge questions raised in section 4 by providing the
following features:

 The selection of nodes and their resources is based on their current load
and remaining battery energy.

 Nodes that are closer to gateways are involved in sensing activities to a
lesser extent. This ensures network longevity.

 Nodes that are farther from the application gateways, which otherwise
were ignored, also participate in sensing activities. This yields a higher
degree of network utilization.

In remainder of the section, we present the details of our proposed protocol. The
operation of the protocol is performed using following algorithms and packet formats.

A. Application Advertisement Message

An application advertises its bid to solicit sensor nodes and their resources for its
application tasks through Application_Join_Req message. This advertisement is re-
ceived by all one-hop neighbours. The packet format for Application_Join message is
shown in Fig. 3 and explained below.

Flag App_ID TTL Threshold

Fig. 3. Packet format for application advertisement message

Flag: Application_Join_Req message; 00
Application_ID: Identifies a unique application. It is used to match a request to

a reply

 Binding Multiple Applications on Wireless Sensor Networks 255

TTL: Time to live; A hop count field that decrements on every hop.
Threshold: A field specified by the application. The node at which TTL equals

threshold, it may join an application as a sensing node. This field prevents nodes
closer to the sink from becoming part of a specific application. Thus nodes deep in-
side the network are chosen for sensing tasks and nodes closer to the gateway forward
the sensed data.

B. Node Reply Message

A node or set of nodes within one-hop neighbourhood of a gateway receive Applica-
tion_Join_Req message. From here on, we may refer to the sensor node under consid-
eration as this node. Each of these nodes starts a timer called Join_TimeOut. The
duration of timer will depend upon the following factors:

Current_Application_Load: A number that shows the number of applications this
node is already part of. Thus greater load on the sensor node will result into longer
timer duration.

Remaining_Battery: It represents the remaining units of energy affordable by this
sensor node. Incase there is enough battery power, timer duration will be shortened.

A node can reply back to the gateway in either of the messages given below. Fig. 4
shows a general format of sensor node reply message.

Flag App_ID

Fig. 4. Packet format for sensor node reply message

Application_Join_Rep message: 01
The timer of this node has expired. The TTL field does not equal the Threshold

field now. The node has not overheard any neighboring node replying back to the
gateway. It implies that this node is the only node in one hop vicinity to the gateway.
Or there may be some nodes that are beyond the reception range of this node. The
node expresses its willingness to act as a router, and rebroadcasts the Applica-
tion_Join_Req message.

Application_Join_Rep message: 10
The timer of this node has expired. The TTL field equals the Threshold field now.

The node has not overheard any neighboring node replying back to the gateway. The
node may expresses its willingness to act as a sensor node and a router. It rebroad-
casts the Application_Join_Req message.

Application_Join_Rep message: 11
The timer of this node has expired. The TTL field equals the Threshold field now.

The node has not overheard any neighboring node replying back to the gateway. The
node only agrees to be a router for the application. It rebroadcasts the Applica-
tion_Join_Req message.

Incase a node overhears a neighboring node replying back to the gateway, it gives up
any activity pertaining to this application and clears the timer. This is an indication that
there are ample number of nodes available in this area offering spatial redundancy.

256 A.H. Akbar, A.A. Iqbal, and K.-H. Kim

By analyzing the working of the proposed protocol, we realize that the Applica-
tion_Join_Req message diverges inside the topology as it traverses through multiple
hops. Hence, we refer to this phenomenon as divergecast. This protocol is greedy in
approach. Using this scheme, an application can acquire sensing nodes for as long as
the TTL does not expire.

In the following subsection, we present and discuss a variant of divergecast that
yields a different set of advantages.

6.1 Acknowledgment-Based Variant to the Proposed Protocol

In this version of the proposed protocol we introduce the notion of one-hop acknowl-
edgement. It means that in reply to Application_Join_Req message from the gateway,
receiving nodes generate an Acknowledgement. The format of Acknowledgment may
include node parameters such as current load and remaining battery. Now the gateway
decides which next hop node to select. The operation is performed recursively till all
the gateways commit nodes’ resources on the network. Here, the Applica-
tion_Join_Req message follows a unicast transmission model. This approach cau-
tiously reserves resources, making it more apt for energy starved sensor nodes.

Both the original protocol and its variant have their advantages. However, to make
the best out of the two, a policy can be spelled out at the application gateway that
allows a switch over to either of the protocols in the real time environments.

The following might form the guidelines for making a policy for soliciting and
committing resources in a sensor network.

Traffic type: If the traffic load is high, the variant protocol might be considered. It
is due to the fact that higher traffic load means more contention at the link layer. In
order to undermine the effect of contention, lesser nodes should be involved in for-
warding of data packets.

Application type: If the application defines a minimal coverage in the ROI, it is
necessary to use the original proposal. Otherwise, adopting the variant will be a com-
munication-savvy approach.

7 Performance Evaluation

A simulator based on the system in section 6 was developed in c++ to evaluate our
approach. The simulations were obtained for a topology of 400 nodes that were
randomly distributed across an area of 60*60 units as shown in Fig. 5. A total 25
sinks contested against resources by sending out their Application_Join_Req re-
quests. The number of nodes that successfully joined the applications during the
simulation time were recorded. By introducing the role of threshold field and asso-
ciating it with TTL resulted into performance gains. The number of nodes that die
during the simulation time were also recorded to see the effect of multiple applica-
tions running simultaneously.

Fig 6 shows the performance of the proposed protocol, i.e., divergecast, under two
conditions. Compare Fig. 6(a) and Fig. 6(b); when the difference between Threshold
and TTL is large, the Application_Join_Req message goes inside the sensor network.

 Binding Multiple Applications on Wireless Sensor Networks 257

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
x-axis

y-
ax

is

Non Sink Nodes

Sink Nodes

Fig. 5. Simulation topology used for proposed protocol

Divergecast at Threshold: 1; TTL: 6

0
20

40
60

80
100

120
140

160

0 5 10 15 20 25

Simulation Cycles

N
o

.
o

f
N

o
d

es

Joining Nodes

Dead Nodes

Divergcast at Threshold: 3; TTL: 6

0
20

40
60

80
100
120
140

160

0 5 10 15 20 25

Simulation Cycles

N
o

.
o

f
N

o
d

es

Joining Nodes

Dead Nodes

 (a) (b)

Fig. 6. Performance of proposed protocol

This allows an increased number of nodes to join the contending applications.
Similarly, the number of nodes that die because of drained energy is also reduced
considerably.

Fig. 7(a) shows similar scenario when the difference between threshold and TTL is
three hop. It means that nodes at three hops distance from the sink can join as sensing
nodes. The results of Fig. 7(b) show an increase in number of nodes that join the net-
work by a margin of 10. The compromise, however is the longer time for nodes join-
ing. The nodes that die during the simulation shown both in Fig 7(a) and (b) show that
using the propsed scheme network longevity can be achieved.

Unicast at Threshold: 3; TTL: 6

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25

Simulation Cycles

N
o

.
o

f N
o

d
es

Joining Nodes

Dead Nodes

Unicast at Thresh: 1; TTL: 6

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25

Simulation Cycles

N
o

.
o

f
N

o
d

es

Joining Nodes

Dead Nodes

 (a) (b)

Fig. 7. Unicast variant of proposed protocol

258 A.H. Akbar, A.A. Iqbal, and K.-H. Kim

8 Conclusion

In this paper, we have addressed the important issue of interplay between load balanc-
ing and network longevity for multiservice sensor networks. We have presented an
overlay for resource allocation that implicitly allows the nodes to balance their rout-
ing load with local sensing activity. Through simulation, our proposal demonstrates
its efficacy in terms of utilizing more sensor nodes.

References

1. Jonathan L., Jeff S., Matt W., Mema R., and Margo S.: Open Problems in Data Collection
Networks. Proceeding of 11th ACM SIGOPS European Workshop 2004, Leuven Belgium,
(2004)

2. Yu Y. and Prasanna V. K.: Energy-balanced task allocation for collaborative processing in
wireless sensor networks. MONET special issue on Algorithmic Solutions for Wireless,
Mobile, Ad Hoc and Sensor Networks, (2003)

3. Yu Y., Bhaskar K., Prasanna, V.K.: Issues in Designing Middleware for Wireless Sensor
Networks. Network, IEEE Vol. 18, Issue 1, (2004), 15-24

4. Linnyer B. R., Jose M. N., Antonio A. F.: MANNA: A Management Architecture for
Wireless Sensor Networks. In IEEE Communication Magazine, vol. 41, (2003)

5. W. Heinzelman, J. Kulik, and H. Balakrishnan, “Negotiation Based Protocols for Dissemi-
nating Information in Wireless Sensor Networks,” Wireless Networks, Vol. 8, pp. 169-185,
2002.

6. Chalermek I., Ramesh G., Deborah E. Directed Diffusion: A Scalable and Robust Com-
munication Paradigm for Sensor Networks. Proceedings of the Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networks (MobiCOM 2000), Boston
MA, Aug. 2000.

7. Kemal A., Mohamed Y.A survey on routing protocols for wireless sensor networks. Ad
hoc Networks, pp. 325-349, Mar. 2005.

8. Tatiana B., Nirupama B., Sanjay J. A Performance Comparison of Data Dissemination
Protocols for Sensor Networks. In Proceedings of IEEE Globecom Wireless Ad Hoc and
Sensor Networks Workshop (Globecom 2004), Dallas Texas, Nov. 2004.

9. TinyOS Community Forum (www.tinyos.net)
10. Phil L., David C. Maté: A Virtual Machine for Tiny Networked Sensors,” 10th Interna-

tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, Oct. 2002.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 259 – 268, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model-Aided Metadata Management for Wireless
Sensor Networks*

Chongqing Zhang, Haibing Guan, Minglu Li, Min-You Wu,
Wenzhe Zhang, and Feilong Tang

Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China

zhangchongqing@sjtu.edu.cn

Abstract. Metadata are abstraction and knowledge of wireless sensor networks
and are used to provide adequate information for query processing. The purpose
of metadata management is to provide adequate information for query process-
ing, while at the same time to make the cost of maintaining the metadata as low
as possible. In this paper, we discuss new issues about metadata management in
wireless sensor networks; and propose a metadata management solution which
includes an architecture and a model-aided approach for the base station to col-
lect meta-data from sensor nodes. Experimental results show the effectiveness
of our solution.

1 Introduction

With the rapid advancement in wireless communications technology and micro-
electro-mechanical systems (MEMS) technology, the wide deployment of large-scale
wireless sensor networks (WSNs) has been made possible. Due to their features of
reliability, accuracy, flexibility, cost-effectiveness and ease of deployment, WSNs are
promising to be used in a wide range of applications, such as environmental monitor-
ing, target tracking, etc [1].

A WSN is a data-centric network [2] and can be viewed as a distributed database [3].
In order to reply a query submitted by a user effectively, a WSN needs to parse and
optimize the query so as to work out an efficient query plan. The query parsing and
optimization work are generally done on the base station with more powerful computa-
tion ability and rich resources. After the query plan is worked out, it will be dissemi-
nated into the WSN. The decomposed query is executed on sensor nodes and may bring
forth sensing tasks and in-network processing tasks that can save energy significantly by
reducing the bandwidth usage [4].

Then there are several questions. Without knowing the knowledge of the WSN in
priori, how does the base station parse and optimize the queries to work out query
plans of high efficiency? How does an in-network processing function know the
meaning of the data it processes? How does a node adjust itself to satisfy several
queries? The answer to above questions is metadata. In a traditional DB system,
metadata are defined as the descriptive data used by the DBMS to describe the data

* This paper is supported by Natural Science Foundation of Shanghai (No.05ZR14081).

260 C. Zhang et al.

that it manages. But in fact the scope of metadata is beyond this definition. Metadata
include data schema, definition of tables and views, statistics of data, storage paths,
data distribution information, and so on. Metadata are stored in special tables called
the system catalogs. Metadata are frequently accessed and have great influence on the
performance of the DBMS so that metadata deserve being carefully designed and
managed [5].

There has been substantial work [6, 7, 8, 9, 10, 11, 12] on adopting database tech-
niques to solve the problem of collecting data in wireless sensor network. Several
works [6, 9, 10] have mentioned metadata more or less. The special nature of a WSN
makes it differ significantly from a traditional database system in many aspects. These
differences mean new challenges of metadata management in WSNs. Yet there is not
a work dedicated to the research of this issue.

In this paper, we define metadata in a WSN as the descriptive data used to describe
the WSN system, including the environment, the nodes and their states, measurement
data, and the WSN as a whole entity; metadata are knowledge of the WSN system and
can be used for the purpose of querying processing. We try to answer following ques-
tions: What metadata are needed for query processing in a WSN? How to formalize
these metadata? How do the nodes and the base station manage the metadata in a
WSN? How does the base station efficiently collect metadata from nodes in a WSN?

The remainder of this paper is organized as follows. In section II, by discussing
query and metadata, challenges of metadata management and definition of metadata
are introduced. We introduce the solution in next two sections, that is, the manage-
ment architecture in section III and the metadata collecting approach in section IV.
Experimental results are presented in section V to show the effectiveness of our solu-
tion. In section VI, related work is reviewed. We conclude and describe the future
work in section VII.

2 Query Processing and Metadata in WSNs

In this section, we first give the WSN model on which we base our research work.
Then we discuss query processing in WSNs. Based on the discussion, new challenges
of metadata management are introduced.

2.1 Wireless Sensor Network Model

Without loss of generality, the WSN model in this paper is based on following assump-
tions: 1) A WSN is composed of a base station and large number of nodes scattered on a
plane. Each node has a unique identifier. 2) Each node is aware of its location by some
localizing techniques, such as GPS or other ranging localization techniques [13]. 3)
Base station and nodes can move at a relatively low speed. Nodes don’t have to be ho-
mogeneous.

2.2 Query Processing in WSNs

Although a WSN can be viewed as a distributed database, its special nature makes it
differ significantly from a traditional database system in many aspects. A WSN is
composed of a base station and large number of sensor nodes. Base station and nodes

 Model-Aided Metadata Management for Wireless Sensor Networks 261

play different part in query processing. Query parsing and query optimization are
mainly carried out on base station and sensing and in-network processing are carried
out on nodes. As a result, new solutions for querying WSNs are needed. Figure 1
illustrates what operations happen in the course of query processing in WSNs.

Fig. 1. Operations of Query Processing

Just as Figure 1 reveals, the process of query processing in a WSN has following
operations: query parsing, query optimization, query dissemination, query execution,
sensing, in-network processing, aggregation, and result collecting, etc. All these opera-
tions need the help of metadata. For example, the query parsing and optimization work
is generally done on the base station, so the base station needs to maintain metadata,
such as nodes distribution and topology of the WSN, for the use of query parsing and
optimization.

Note different metadata are needed by different kinds of queries. There is a diver-
sity of applications for WSNs, and accordingly there are different kinds of queries for
WSNs. And there are different ways to categorize the types of queries [14], such as
long-running continuous queries and one-shot queries, aggregate queries and non-
aggregate queries, complex queries and simple queries, etc. It seems there is not a
one-fit-all solution to handle all types of queries. Every type of queries has its own
nature, which means that it should be treated specially. As a result, the metadata to
support those types of queries are different.

2.3 Challenges of Metadata Management

To cater for the new characteristics of WSNs so as to help a WSN process queries
effectively, new metadata management solution is demanded. In the following, we
summarize new challenges of metadata management in WSNs:

Internet

5).Query execution
6).Sensing
7).In-network
processing.
Metadata needed:
a).Data Schema
b).Current states
c).Configuration

etc

2).Query parsing
3).Query optimization
Metadata needed:
a).Data schema
b).Nodes information
c).States of WSN
d).Targets information
etc 1).Query

submission

4).Query
dissemination

8).Results
collection

Nodes

Base station

Data

Queries

262 C. Zhang et al.

1) Distribution of metadata. In a DBMS, metadata are generally stored concentrat-
edly. While in a WSN, metadata are totally stored distributedly. Both base station and
nodes need to maintain corresponding metadata for their use.

2) Formalization of metadata. In a DBMS, most metadata are rather stable, only
some statistical metadata are dynamic. While in a WSN, there are errors and uncer-
tainty in WSN data; and the metadata related to the residual energy, topology, etc are
of high variability. This not only means metadata already used in traditional DB sys-
tems need to be modified to meet the need of WSNs, but new techniques, such as
probabilistic and stochastic methods, may be taken to formalize and manage meta-
data.

3) Metadata collection. In a DBMS, metadata are generally predefined and stored
concentratedly, and this makes it relatively easy to maintain. In a WSN, the distributed
storage and variability of metadata make metadata management work more complex
than what it is in a DBMS. For example, base station need to collect metadata from
sensor nodes and calculate those metadata to work out new metadata describing the
global states of the WSN.

4) Cost consideration. Energy efficiency is always an important issue in WSNs.
Metadata management also consumes energy, computing and storage resources. For
example, collecting metadata from nodes consumes the energy of nodes.

3 Metadata Management

The purpose of metadata management is to provide adequate information for query
processing, while at the same time to make the cost of maintaining the metadata as
low as possible. To do this, we need to face the challenges discussed in last section.
As a reply to those challenges, we propose a solution in this section and next section
to solve the problems. The solution includes two parts: an architecture and a model-
aided metadata collecting approach. The architecture is addressed in this section.

3.1 Metadata Management Architecture

From discussed above, we know metadata can be classified according to two criteria:
distribution and variability. Further, metadata can be classified into four types: static
metadata on base station, dynamic metadata on base station, static metadata on nodes
and dynamic metadata on nodes. Different management solutions are adopted for these
different types of metadata.

As for a sensor node, static metadata can be prestored in the flash of the node in ad-
vance. When the node boots up, the static metadata are read into memory. Dynamic
metadata change with the states of the node and cannot be prestored. There should be a
process that monitors the states changes of the node and update the metadata accord-
ingly. As for base station, similar strategy can be adopted for the static metadata. How-
ever, things for dynamic metadata are quite different from what they are on sensor
nodes. The base station needs to collect metadata from sensor nodes dynamically and
calculate those metadata to generate new metadata that reflect the states of the WSN.

In order to manage the metadata effectively we propose an architecture to help the
WSN to manage metadata. The architecture is shown in Figure2, and the primary
work that the metadata manager needs to do is also given.

 Model-Aided Metadata Management for Wireless Sensor Networks 263

Data
Manager

Query
Optimizer

Interface

Metadata
Manager

Query
Parser

Data
Manager

Task
anager M

Metadata
Manager

Query
Processor

Interface

Query
Executor

Application Layer Application Layer

Data Metadata

Supporting Layer (OS, Routing, etc)

Data Metadata

Supporting Layer (OS, Routing, etc)

Queries

Queries

Results

1).Maintains local metadata
2).Provides metadata for
 base station
3).Report metadata changes
to base station

1). Maintains metadata
2). Analyzes metadata and
makes collecting decisions
3).Collects metadata

Metadata Management on Nodes Metadata Management on Base Station

Fig. 2. Metadata Management Architecture

4 Collecting Metadata from Nodes

Designing an effective approach for collecting metadata from node is a challenging
work and deserves being studied carefully. We need to take energy efficiency, fidelity
of the data, network scale, collecting methods and the regularity of metadata into
consideration. To meet these challenges, models are created on base station and are
used to guide the collecting of metadata.

4.1 Metadata Collecting Approach

Based on above discussion, we propose an approach for collecting metadata from
nodes. Following are the strategies adopted by the approach to lower the cost:

1) Models reflecting how the state of the WSN changes is created on base station
to help managing metadata.

2) Push and pull are all used and play different roles respectively.
3) Flexible strategies can be adopted to compose queries for querying metadata.
4) Nodes are grouped into different groups according to their positions, types and

other attributes.
5) In-network processing, such as aggregation and compression, can be used to re-

duce the traffic caused by metadata.

264 C. Zhang et al.

Fig. 3. Solution for Collecting Metadata from Nodes

The approach for the metadata manager of base station to collect metadata from the
nodes is based on above strategies. As figure 3 depicts, the approach has following
functional steps among which steps 3, 4, 5, 6 run on base station, steps 2, 7 run on
nodes, and step 1 runs on both base station and nodes.

1) After being deployed, base station and nodes boot up and read static metadata
into memory; then they organize into an integral WSN.

2) Nodes get dynamic metadata such as locations, neighbors, residual energy, etc.
3) At the base station side, the metadata manager issues a one-shot query to inquire

exhaustive metadata of nodes, including ID, location, hardware and software configu-
ration, resources, and functions, etc.

4) Using the retrieved metadata, models, such as nodes distribution, coverage map,
topology map, etc are created. Corresponding structures for managing metadata, e.g.
different kinds of groups, are created according to the actual condition of the WSN.
Then the metadata manager can provide basic help for query processing.

5) Based on the models and the measurement data returned by nodes, the metadata
manager can use more elaborate queries to inquire metadata of the nodes.

6) With more metadata are collected, the accuracy of models can be refined gradu-
ally by the learning algorithm.

7) On a node, metadata manager monitors the states changes and updates metadata
accordingly. It replies to the metadata queries by sending back metadata and it also
reports unlooked-for metadata to base station.

5 Experimental Results

As Figure 4, one of the simulation scenes, shows, the WSN model consists of 200
sensor nodes that are uniformly placed in a 300m×300m square area. The base station

 Base station Side Nodes Side

Use a one-shot query to
inquire exhaustive meta-

data of nodes

Analyze results and run
learning algorithm

Create or refine models

Refine strategies and
issue queries

One-shot
query

Nodes boot up and read
static metadata

Nodes and base station
organize into a network

Nodes obtain dynamic
metadata

Nodes monitor changes
of states

Nodes report changes
to base station if neces-

Base station boots
up and read static meta-

Nodes and base station
organize into a network

One-shot
results

Queries

Queries results,
change reports

 Model-Aided Metadata Management for Wireless Sensor Networks 265

is located at the center of the simulation area. All nodes have same transmission
ranges of 40 meters. The initial energy of a sensor node is 5 joules, and the energy of
the base station is infinite. We assume the WSN is deployed to monitor fires; and
nodes are equipped with sensors to measure temperature. A node is in sleep mode in
most of time and wakes up every 30 seconds to check if there is a fire. If there is a
fire, then the node sends a data packet to one of its parents chosen randomly every 5
seconds. If there is not a fire, then the node sleeps and will wake up in 30 seconds
again. Nodes within the circle of 40 meters of a fire can monitor the fire. Two fires
happen somewhere in the field randomly every 1 minute; and the lifetime of a fire is 1
minutes. The energy needed for a sensor nodes to sense, receive and transmit a packet
on average are 2×10-6 joule, 2×10-6 joule, and 1×10-5 joule respectively. The power
for a mobile node to move is 5×10-5 w. For simplicity, a query command or a reply is
also regarded as a packet and consume as much communication energy as a meas-
urement data packet.

Fig. 4. A Scene of Simulation WSNs

We use two metrics, energy cost and fidelity to evaluate different approaches in our
simulation. Energy cost is the energy consumption of disseminating queries from base
station to nodes and transmitting metadata from nodes to base station. We simply cal-
culate the energy cost by take count of the data packets used for collecting metadata,
including the queries for metadata. The higher the value is; the worse is the perform-
ance. Fidelity can be evaluated by the errors between the metadata given by base sta-
tion and the metadata on sensor nodes. We use two errors: average error and max error
to evaluate the fidelity of all approaches.

We compare five metadata management approaches: 1) approach denoted as NMLQ
is not model-aided, and metadata are reported to the base station periodically; 2) ap-
proach denoted as NMR is not model-aided, and nodes only report metadata as signifi-
cant changes happen; 3) approach denoted as MLQ is model-aided, and metadata are
reported to the base station periodically; 4) approach denoted as MOQ is model-aided,
metadata are collected with one-shot queries which means a node sends metadata to the
base station only when it receives a query command; 5) approach denoted as MR is
model-aided, and nodes report metadata as significant changes happen.

266 C. Zhang et al.

Table 1. Settings of Experiments

 Immobile Nodes Mobile Nodes
NMLQ T > 1 minutes T > 30 seconds
MLQ T > 1 minutes T > 30 seconds
NMR DataSend(T) > 12 DataSend(T) > 12 or

C(Neighbors, T) > 2
MR DataSend(T) > 12 DataSend(T) > 12 or

C(Neighbors, T) > 2
MOQ (Tdt < 0.6) and

(Troute > 0.8)
(Tn < 0.6) or
((Tdt < 0.4) and
(Troute > 0.8))

20 simulation scenes are used to evaluate the metadata management approaches.
Energy cost, average error, and maximum error are calculated by averaging the simula-
tion results of all scenes. We use DataSend to calculate average error and maximum
error. Settings for all approaches are listed in Table 1. In Table 1, T denotes the time
interval from the last time when metadata was sent till now; DataSend(T) denotes the
number of data packets sent during time T; C(Neighbors, T) denotes the number of
neighbors that changed during T; Tdt is the threshold set for DataSend.

Fig. 5. Energy Cost of All Approaches

Figure 5 and Figure 6 show the energy cost of five metadata collecting approaches.
Figure 5 compares the absolute energy cost of all approaches in one minute in detail;
while Figure 6 shows total energy cost in 10 minutes of all approaches. It can be seen
that NMLQ consumes as much energy as MLQ; NMR also consumes as much energy
as MR; and the energy cost by MOQ is less than other four approaches. It will be seen
later that the error of MOQ is also less than other four approaches.

Figure 7 and Figure 8 respectively compare average errors and maximum errors of
five approaches in 3 minutes. Horizontal axes in both figures are time; and vertical
axes are average error and maximum error that have the unit of packet. As for NMLQ
and MLQ, because immobile nodes send metadata packets every 1 minutes and mobile

 Model-Aided Metadata Management for Wireless Sensor Networks 267

Fig. 6. Energy Consumption of All Approaches

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

Time (second)

A
ve

ra
ge

 E
rr

or
 (

pa
ck

et
) NMLQ

MLQ
NMR
MR
MOQ

Fig. 7. Average Error of All Approaches

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

Time (second)

M
ax

im
um

 E
rr

or
 (

pa
ck

et
) NMLQ

MLQ
NMR
MR
MOQ

Fig. 8. Maximum Error of All Approaches

nodes send metadata packets every 30 seconds and arrivals of the packets at the base
station are distributed in an extremely short time, so the average errors and maximum
errors of NMLQ and MLQ appear to be periodic. When the base station receives the
metadata, the errors reach their minimum points. After then, the errors gradually

268 C. Zhang et al.

increase till the next arrivals of the metadata packets. The reason of the maximum error
of NMR is a fixed value lies in the nodes send metadata packet to the base station
when the number of packets sent reaches corresponding threshold. From the figures,
although consuming same amount of energy, the performances of model-aided MLQ
and MR outscore the performances of their corresponding non-model-aided counter-
part: NMLQ and NMR. Among five approaches, helped by models, one-shot queries-
based MOQ consumes least energy and has the best precision.

6 Conclusion and Future Work

The issue of metadata management for query processing in WSNs was addressed in
this paper. We discussed the new characteristics of query processing in WSNs and new
demands for metadata. As an answer to the new challenges of metadata management in
WSNs, we proposed a general solution that helps a WSN manage metadata. The solu-
tion includes a metadata management architecture and approaches for collecting meta-
data from sensor nodes. Experiments show the effectiveness of our approaches.

References

1. I.F. Akyildiz, W. Su*, Y. Sankarasubramaniam, E. Cayirci. “A survey on sensor net-
works”. Computer Networks, 2002.

2. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, "Next century challenges: Scalable
coordination in sensor networks". MobiCom 1999.

3. P. Bonnet, J. E. Gehrke, P. Seshadri. “Towards sensor database systems”. MDM 2001.
4. F. Zhao, L. Guibas. “Wireless Sensor Networks : An Information Processing Approach”.

Boston: Elsevier-Morgan Kaufmann; 2004.
5. R. Ramakrishnan, J. Gehrke. “Database Management Systems” (Third Edition), The

McGraw-Hill Companies, Inc, 2003
6. Y. Yao, J. E. Gehrke. “Query Processing for Sensor Networks”. CIDR 2003.
7. S. Madden, J. Hellerstein, and W. Hong. “TinyDB: In-Network Query Processing in

TinyOS”. Version 0.4, September 2003.
8. Y. Yao, J. Gehrke. “The cougar approach to in-network query processing in sensor net-

works”. SIGMOD Record, 2002,31(3):918.
9. S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong: “The Design of an Acquisitional

Query Processor For Sensor Networks”. SIGMOD Conference 2003: 491-502
10. W. Wong and S. Madden. “TinySchema: Managing Attributes, Commands and Events in

TinyOS”. Version 1.1, September 2003.
11. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “Tag: A tiny aggregation

service for ad-hoc sensor networks”. In OSDI 2002.
12. J. Gehrke and S. Madden. “Query Processing in Sensor Networks”, IEEE Pervasive Com-

puting, Vol. 3, No. 1, pp. 46-55, 2004.
13. C. Savarese, J. M. Rabaey, and J. Beutel. “Locationing in distributed ad-hoc wireless sen-

sor networks”. ICASSP 2001.
14. N. Sadagopan, B. Krishnamachari, and A. Helmy, "Active Query Forwarding in Sensor

Networks (ACQUIRE)", SNPA 2003.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 269 – 278, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Availability Considerations for Wireless Sensor Grids

Ali Hammad Akbar1, Ki-Hyung Kim1,*, Seung-Jin Bang2,
Waleed Mansoor1, and Won-Sik Yoon3

1 Graduate School of Information and Communication,
Ajou University, Suwon, Korea, 443-749

2 Dept. of Mathematics,
Ajou University, Suwon, Korea, 443-749

3 School of Electrical Engineering,
Ajou University, Suwon, Korea, 443-749

{hammad, kkim86, math, waleed, wsyoon}@ajou.ac.kr

Abstract. In this paper, we derive and analyze network availability for sensor
grids by considering an elaborate energy consumption model. Sensor grids that
form chain topologies are compared for two widely known grid traversal mod-
els, namely staircase and Delannoy number. Based upon the mathematical
model, we analyze two sleep modes, viz, synchronous and asynchronous for
their effects on the network availability of sensor grids with regard to energy
conservation and packet loss. We also propose a non-uniform, asynchronous
sleep scheme in sensor grids which allows nodes to sleep in a manner such that
nodes closer to the gateway sleep less than the nodes in the fringes. The per-
formance results show that the proposed scheme prolongs network availability
effectively in sensor grids.

1 Introduction

Wireless sensor networks are autonomous networks that are expected to render a
broad range of services in the emerging ubiquitous era. Once, deployed, either in an
ad hoc manner or in a preconceived arrangement into the environments, they are ex-
pected to continue to function unattended. Optimization schemes concerning their
functional behaviour are widely studied to extend their lifetime, while meeting per-
formance objectives amicably [1]. Serviceability of sensor nodes is gauged by their
continued operation in the sensor network; an issue of network availability. Various
interpretations of network availability as identified in [2] have emerged into parallel
research directions. For example, in [3], the authors propose a scheme to adjust the
sleep-awake periods of sensor nodes for energy optimization, consequently extending
operational lifetime. In [4], the authors ascertain relationship between node transmis-
sion power control and lifetime by suggesting topology control algorithms.

Assuming mostly ad hoc deployments, studies of sensor nodes and networks have
seldom exploited prior knowledge of sensor networks, e.g., location information of
sensor nodes. Exceedingly complex and computationally expensive schemes for

* Corresponding author.

270 A.H. Akbar et al.

sensor networks can therefore be tailored into light-weight equivalents by utilizing
such knowledge base.

In this paper, we target sensor grids, considering them to be candidates for future
applications in target tracking and surveillance [5]. In [6], we derived network avail-
ability expression for sensor grids and analyzed the network availability for two
widely known lattice path traversal models, namely Delannoy number and staircase-
based traversals.

In this paper, we revisit the derivation and analysis of network availability of sen-
sor grids for the two lattice path traversal models under a thorough range of assump-
tions. We then analyze two widely known sleep modes, viz, synchronous and
asynchronous for their effects on the network availability of sensor grids with regards
to energy conservation and packet loss. Finally, we propose a non-uniform, asynchro-
nous sleep scheme in sensor grids which allows nodes to sleep in a manner such that
nodes closer to the gateway sleep less than those in the fringes. The performance
results show that the proposed scheme prolongs network availability effectively in
sensor grids.

The organization of the paper is as the following. In section II, we present sensor
grid model and formulate assumptions necessary to make it practicable. In section III,
we derive an expression for network availability by considering a range of node and
network parameters. Section IV presents our proposed scheme that makes nodes sleep
in a non-uniform manner. We present simulation-based performance evaluation for
the proposed scheme in Section V. Section VI summarizes the contributions and con-
cludes the paper.

2 Model and Assumptions

As given in Fig. 1, we consider a reference grid of n×k equidistant sensor nodes. Each
node has an index as (1,1),…,(i,j),…,(n,k), where i and j refer to rows and columns of
the grid, respectively. Following assumptions are made to formulate the model;

− Every sensor node maintains energy availability tables of neighbouring nodes.
− Whenever a sensing node transmits data, it is overheard by all its neighboring
nodes that are one hop away. A neighboring node only relays the data in a unicast
manner towards the collector if i) it has the highest energy level amongst the can-
didate relay nodes and ii) it is closer to the collector as compared to the sending
node, i.e., it is a downstream neighbor.
− Every node in the sensor grid senses an event and sends it towards the gateway.
Intermediate nodes relay it downstream towards the gateway through the last node.
− hij is the initial energy of the sensor node (i,j) at the reference time t0, distributed
across the network as t

ij
ije

η
η

− with mean 1/ηij.

− The sensing process is a random memoryless process that takes place whenever
an event occurs. It is assumed that the occurrence of an event is Poisson distributed
with mean λ i j [7].

 Availability Considerations for Wireless Sensor Grids 271

Fig. 1. Reference topology of sensor networks

− Since the inter-arrival time of Poisson distribution is exponential, the energy
consumptions due to these activities are exponentially distributed with mean
1/β i j and 1/γ i j respectively.

− Sensor node (i , j) consumes energy at a rate of a i j per second to remain awake. It
means that even if there is no sensing and relaying activity, sensor node energy
will be drained at a constant rate in idle time.

− Sensor node (i , j) consumes energy at a rate of a ′i j per second during the time
they sleep. Different schemes suggest different levels of energy consumption
while sleeping. For example, [8] suggests that the energy consumption ratio dur-
ing the awake state and sleep is 1:0.05. While a node is sleeping, it does not per-
form relaying for other nodes’ data. From the routing perspective, it is equivalent
to a soft failure.

− When a node dies, either due to battery drainage or component failure, it ceases
to perform any sensing operation. Due to the dead node, a hole is created in the
network that undermines relaying activity of other nodes.

In the following section, we derive the network availability of a two-dimensional
topology in the form of Chapman-Kolmogorov equations [7] for two special cases of
data relaying models, namely Staircase and Delannoy number-based lattice path
traversals.

3 Mathematical Analysis

We denote yij as the total energy consumed by sensor node (i,j) in sensing, relaying,
during sleep, and in idle mode. Furthermore, xij denotes energy consumption just
being sensing and relaying data only. Ft(xij), ∀ij={11, …,1k,21,…,2k,…n1,…,nk} is
the joint probability density function (pdf) of all nodes at time t. Since Poisson proc-
esses are pure birth processes, the joint pdf of all the sensor nodes can be given by the
differential-difference equation as

272 A.H. Akbar et al.

() ()

()

() ()

11

11

11

1 1 1 1

11

11
11 0 0

11

11

... ,..., ,...,

exp

ij ij

ij

ij

ij ij ij ijlm lm lm

n k n k
t

tij ij ij
i j i j

xxji

t ijlm nk
ml y y

ji

ml

dF x F x
dt

F y y x

x y x y dy dy

λ λ β

γ

β γ

= = = =

−−
×

== = =

−−

==

= − +

×

− − − −

∏ ∏

(1)

Equation (1) reflects overall energy consumption in awake state and in active state,
i.e., during sensing and relaying data. An interesting observation is that the second
term on the right hand side of (1) implies that due to sensing and relaying activity, the
energy consumption reaches from yij to xij. Considering (1) to be an initial value prob-
lem, we obtain Rt(sij) as Laplace transform of Ft(xij):

(1) (1)

111 1 1 1
exp . () lm

lm lm

i j
ij

t ij ij ij
ij ij ml

n k n k

i j i j

t
s s

R s
β γλ λ

β γ
− −

− −

==
×

= = = =
=

+ +∏ ∏
 (2)

Now if we include the notion that all the sensor nodes synchronously adopt sleep
mode on detecting no activity, the total energy consumption of entire sensor network
is now characterized by an individual node’s energy consumption. The energy con-
sumption is now given by y i j =x i j+a i j t 1+a i j t2 ; t1 is the time for which sensor nodes
are awake and t2 is the time for which sensor nodes sleep, i.e., t=t1+t2. Since it is
assumed that all the nodes of a sensor grid in the region of interest sleep and wake-up
at the same time, i.e., nodes follow synchronous sleeping schedules, a synchronization
mechanism needs to be incorporated amongst the sensor nodes [8]. According to the
expression for yij, introduction of sleep mode into sensor nodes suggests reduction in
the overall energy consumption of the sensor networks proportionate to the sleep
duration of sensor nodes. Let Zt(sij) be the Laplace transform of Ft(yij).

1 2
1 1 1 1

exp '() () ij ij ij ij

n k n k

i j i j
ij ijt tZ a s t a tR s ss

= = = =
+= × . (3)

In this paper, availability At is adopted to be a measure of network lifetime and is
defined as the probability that all the nodes along all the paths are alive. Inserting (2)
into (3) and manipulating the variables, the network availability is given by

1 2
1 1

1 1 1 1

(1) (1)

1 11 1

e x p

) ' .

(

()lm
ij ij

ij ij lm lml

ij ij ij

ij ij
n k

i j

t

n k n k

i j i j

i jn k

mi j
t a t

a

A
γ η

η β η γ

η λ

λβ
= =

= = = =
− −

= == =

−

=
× −

− +

+ +
×∏ ∏ (4)

At this stage, we investigate the effect of regulating the transmission power on
network availability of spatial distributions of sensor nodes by considering two uni-
cast data relaying models, i.e., Delannoy number-based and staircase lattice path

 Availability Considerations for Wireless Sensor Grids 273

traversals. If the transmission range is adjusted to R1 as shown in Fig. 1, staircase
lattice paths are used, i.e., only leftwards or downwards () links are formed en-
route to relay data from the sensing node to the gateway, and assuming a square to-
pology, (4) can be transformed as

1

1

2

2 2

2

(1)

1

0

1

1

e x p

(1)()

()

()()

(')

.

t n j

n

i

n

j

ii

n a n t
A

n j

n a t

γ
γ ηλβη λ

η β γ
γ η

η

− +

−

=
−

=

+ +
+

− + − ×
+= −

+

− ×
 (5)

Similarly, adjusting the power level such that the transmission range changes to R2,
the data relaying activity turns out to be a different lattice path traversal, i.e., paths
from sensing node to the gateway are formed by leftwards, downwards or diagonal-
downwards () links as given by Delannoy numbers [8]. The network availabil-
ity of (4) is now given as

2 2

2

2

1

2

1

0

.

exp 2 1 ()
()

'

()

()

i
t

n

i

n a n

i

n a

t
A

t

γ
γ η

η λ
λβ

η β

η

−

= +
+

+

+ −
− ×

=

− ×

(6)

The parameters in (5) and (6) are all assumed to be independent of i, j, l, and m i.e.,
aij=a, a′ij=a′, ij= , ij= , ij= , lm= , and lm= . The numeric values are adopted
from [9] as: a = 15 μJ/s, a′ = 1.5 μJ/s, λ = 0.083 packets per second, 1/η = 12960 J,
1/β = 42.61 J, 1/ S = 140.87 J for staircase and 1/ D = 280 J for Delannoy. The number
of nodes varies from 4 (or n = 2) to 1600 (or n = 40).

Fig. 2 plots the network availabilities of (5) and (6) for various node and net-
work parameters. According to Fig. 2, when d = 1000 m, 1/ηij = 12960 J, detection

Fig. 2. Network availabilities for two grid traversal schemes

274 A.H. Akbar et al.

rate = 0.000005, and the numerical plots are obtained for t = 0 seconds to t =15552000
seconds (six months), staircase lattice path traversal shows intuitive advantage over
Delannoy number’s traversal due to half power consumption for small to medium
sized networks. For large to extremely large networks, however, Delannoy number-
based lattice path traversal offers up to 1% increase in the network availability as
compared to staircase’s. It is due to the fact that increased transmission range results
into an effective decrease in the number of hops traversed from sensing nodes to the
gateway as compared to staircase’s, saving the relaying energy for an increasing
number of nodes that use diagonal paths.

(a) Varying network size (b) Varying detection rate of all sensor nodes

Fig. 3. Difference between network availabilities under design considerations

Fig. 3 (a) is the difference between (5) and (6) to show the effect of distance varia-
tion onto network availability. It was observed at t=1000000 seconds (11.57 days) for
the two data relay models under consideration. The grid size was varied from 100 m
to 5000 m with a step size of 150 m. For very large networks, i.e., for a network size
of 1600 nodes or more, when the inter-node distance is increased for a fixed number
of sensor nodes, staircase is a better choice for relaying until the network size be-
comes exceedingly large. As can be seen, Delannoy number-based lattice path tra-
versal starts to outperform staircase-based data relay because of 40 percent more
transmission range only when the grid is too large. This suggests an advantage of
increasing the transmission power on the network availability for wide spatial distri-
butions of sensor nodes.

Fig. 3 (b) is the difference between (5) and (6) to show the effect of detection rate
variation onto network availability. It was observed at t=1000000 seconds (11.57
days) for the two data relay models under consideration. The detection rate varies
from 0 to 0.00003 with a step size of 9.09091×10-7. For small to medium sized net-
works, e.g., for network sizes up to 100 nodes, staircase traversal shows better per-
formance, however when the network sizes are large, e.g., when the number of sensor
nodes is more than 400, Delannoy number-based lattice path traversal offers up to 0.5
percent more network availability as compared to staircase-based data relay.

 Availability Considerations for Wireless Sensor Grids 275

4 Proposed Non-uniform Asynchronous Sleep Scheme

As defined in (3) and throughout our analytical modelling, we adopted synchronous
sleep mode for the sensor grid. The choice of synchronous sleep mode owes to sim-
pler treatment of network availability. In this energy conservation scheme, since all
the nodes sleep and wake up at the same time, there is no data relaying loss. However,
this choice is a compromise between energy conservation and sensing fidelity. Once
all the nodes sleep simultaneously, the probability of an event not being sensed in-
creases in proportion to the sleep duration.

In contrast to synchronous sleep mode, a sensor network may implement asyn-
chronous sleep mode. For such sensor networks, sensing fidelity is relatively higher.
The nodes that are awake sense an event and send this information towards the gate-
way. The sleeping nodes, however, do not participate in their relaying activity [8]. As
more nodes sleep, more relaying paths become unavailable, thus affecting the overall
relaying activity. Sensor networks that incorporate sleep mode conserve energy at one
hand but waste the relaying energy on the other. This implicit phenomenon occurs
simultaneously to energy conservation. Thus the overall data relay activity is com-
promised for individual nodes’ energy conservation. Coming back to the comparison
of two data relay models, Delannoy number-based traversal is a better candidate for
asynchronous sleep-schedule implementing sensor grids because it offers an addi-

tional number of increasing paths of the order of
0

() ! () ! (2 2) !

() !() ! () !() ! (1) !(1) !

n

k

n n k n

n k k n k n n=

+ −

− − −
−

as compared to Staircase, avoiding sleeping nodes effectively. Delannoy number-
based traversal can reduce such an adverse effect of sleeping nodes.

We suggest that the sleep schedules for sensor nodes deployed as a grid can be
governed by an interesting observation and an intuitive scheme that follows. Owing to
the lattice mathematics, when a node ij sleeps, it cannot participate in relaying the
data of up to (n-i+1)(n-j+1)-1 nodes. This data loss is unrecoverable for real time
applications. For non-real time applications, the data loss is compensated through
retransmissions. Not all types of sensor networks, however encourage retransmis-
sions. This relay loss is therefore critical in determining the sleeping behaviour of
sensor bodes. For sensor grids supporting retransmissions, such loss will generate
retransmissions; energy wastage.

In this paper, we propose that nodes closest to the gateway, say e.g., node (1,1)
should adopt sleep schedules with the smallest durations, commensurate to the relay-
ing load. This sleep schedule may be communicated to one hop neighbours to adjust
their sleep schedules, in a similar manner as proposed in [10]. Consequently, nodes
located on the outskirts may opt to adjust their sleep schedules according to the occur-
rence of events that they sense and the sleep schedules of downstream neighbours.

The proposed scheme can be generalized for sensor fields which form chain to-
pologies of sensor nodes. More appropriately, for scenarios where multiple sources
sense data and relay to a single sink through multiple hops. This idea is envisaged to
complement proposed routing protocols such as two-tier data dissemination model
that forms a grid from the sensing node towards the sink [11].

276 A.H. Akbar et al.

5 Performance Analysis

A simulator based on the system in section IV was developed in C++ to evaluate our
scheme. The simulation results were obtained for a topology of 10×10 nodes that
were placed in the form of a two-dimensional grid. We assumed the free space radio
propagation model. The gateway or sink node is located at the bottom-left corner of
the grid. All the nodes in the grid generate packets towards the gateway in a uniform
distribution. The routing of packets towards the gateway follows the model described
in section II. In case of data loss due to sleeping or dead node(s) along the routing
path, a source node retransmits end-to-end. Detailed network parameters are summa-
rized in Table 1.

Table 1. Simulation parameters

Simulation Parameters Value
Tx () 3
Tx () 5
Rx 3
Constant drain 1
Sleep 0

Node energy
consumption

(J)

Sense 2
Initial energy of nodes (J) 2000
Sleep duty cycle of nodes 0.3

Max. Retransmissions 1

Network availability was obtained as a performance index which is defined as the

ratio of nodes that are alive to the total number of nodes at the initialization time of
simulation.

Fig. 4 (a) illustrates simulation results obtained for staircase lattice path traversal
under the three scenarios as shown in the legend. The advantage using our scheme is

Staircase lattice path traversal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
Simulation time

N
et

w
o

rk
 a

va
ila

b
ili

ty

Uniform sleep

No sleep

Non-uniform sleep

Delannoy number-based lattice path traversal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
Simulation time

N
et

w
o

rk
 a

va
ila

b
ili

ty

Uniform sleep

No sleep

Non-uniform sleep

(a) Staircase lattice path traversal (b) Delannoy number-based path traversal

Fig. 4. Network availability comparison for sleep schemes

 Availability Considerations for Wireless Sensor Grids 277

clear. Nodes closer to the gateway either do not sleep or sleep less. Thus they do not
loose any routing data. It results into network wide energy saving when compared
with uniform sleeping scheme. Obviously, the scenario that does not implement any
sleeping strategy has the lowest availability.

Fig. 4 (b) shows the comparison and simulation results asserting the usability of
non-uniform sleep scheme in Delannoy number-based traversal. A fractional gain in
network availability is observed in this traversal when compared to staircase traversal
for all the three scenarios. This agrees with our earlier mathematical results that De-
lannoy number-based lattice path traversal performs better than staircase extending
network longevity.

6 Conclusion

In this paper, we study the spatio-temporal effects of transmission power adjustment
onto network availability of sensor nodes deployed across a two-dimensional space
that implement sleep mode under a variety of constraints. We observe that doubling
the transmission power of sensor nodes in sensor grids can help incorporate diagonal
neighbours into the data relay path from sensing nodes to the gateway, especially in
dense and large deployments of sensor nodes. This results into better network avail-
ability due to a decrease in effective number of hops for very large deployment of
sensor nodes. It is clearly against the apparent notion that lifetime reduces by increas-
ing the transmission power. This observation should be considered valid only for
sensor grids that form chain topologies. It might be deemed appropriate as a future
work to deliberate on other topologies of sensor nodes.

It is also noticeable that increasing the transmission power also increases the prob-
ability of finding alternate paths for two cases; first, when the sensor nodes are dis-
tributed in a wide area; second, when sensor nodes sleep to conserve energy and make
the intermediate paths unavailable. We propose a non-uniform, asynchronous sleep
scheme in sensor grids which allows nodes to sleep in a manner such that nodes closer
to the gateway sleep less than those in the fringes. The performance results show that
the proposed scheme prolongs network availability effectively in sensor grids.

References

1. Tilak, S., Ghazaleh, N. B. A., and W. Heinzelman.: A Taxonomy of Wireless Micro-
Sensor Network Models. ACM SIGMOBILE Mobile Computer and Communications Re-
view, vol. 6, issue. 2 (2002)

2. Sauve, J. P., Coelho, F.E.S.: Availability Considerations in Network Design. Proceedings
of International Symposium on Dependable Computing, Pacific Rim, (2001), 119-126

3. Schurgers, C., Tsiatsis, V., Ganeriwal S., and Mani, S.: Optimizing Sensor Networks in the
Energy-Latency-Density Design Space. IEEE Transactions on Mobile Computing, vol. 1,
no. 1, (2002), 70-80

4. Liu, J., Li, B. Distributed Topology Control in Wireless Sensor Networks with Asymmet-
ric Links.: IEEE GlobeComm, vol. 3, (2003), 1257-1262

278 A.H. Akbar et al.

5. Chakrabarty, K.: Grid Coverage for Surveillance and Target Location in Distributed Sen-
sor Networks. IEEE Transactions on Computers, vol. 51, no.12, (2002), 1448-53

6. Akbar, A. H., Yoon, W. S., and Kim, J. H.: Effect of Transmission Power Adjustments on
Network Availability. Information Technology Journal, 4(3), 2005 271-273

7. Kleinrock, L.: Queuing Systems Volume I: Theory. Cambridge University Press (1997)
8. Gao, Q.: Analysis of energy conservation in sensor networks. Wireless Networks, Kluwer

Press
9. Bhardwaj, M., Garnett, T., and Chandrakasan, A. P.: Upper Bounds on the Lifetime of

Sensor Networks. in Proceedings of ICC, (2001), 785-790
10. Ye, W., Heidemann, J., and Estrin, D.: An Energy-Efficient MAC Protocol for Wireless

Sensor Networks. IEEE INFOCOM, vol. 3, (2002), 1567– 1576
11. Ye, F., Luo, H., Cheng, J., Lu, S., and Zhang, L.: A Two-Tier Data Dissemination Model

for Large-Scale Wireless Sensor Networks. 8th ACM/IEEE MobiCOMM, (2002), 148-149

An Energy-Aware Position-Based Routing

Strategy

Linfeng Yuan�,��, Zongkai Yang, Liang Ou,
Wenqing Cheng, and Xu Du

Department of Electronics and Information Engineering,
Huazhong University of Science and Technology,

Wuhan, Hubei Province, 430074, P.R. China
yuanlf@163.com

Abstract. In sensor networks, the nodes are always equipped with lim-
ited power source, energy-awareness must be carefully considered in the
design of sensor networks. According to the analysis of the classical
positioned-based routing protocols, this paper introduces a novel con-
cept of Effective Transmission (ET) which ensures each forwarding node
is not only farther from the source node, but also nearer to the destina-
tion node with respect to its sender. An energy-aware routing protocol
based on ET is proposed. It decreases the energy consumption for each
hop in the transmission. The simulation results show the routing protocol
is effective on the performance of energy consumption while comparing
with some other routing protocols.

1 Introduction

Wireless Sensor Network (WSN) technology is declared as one of the most im-
portant technologies for the 21st century and it will play an important role in our
future lives [1]. It recently received tremendous attention from both academia
and industry because of its promise of a wide range of potential applications in
both civil and military areas. A WSN consists of a large number of small sen-
sor nodes with sensing, data processing, and communication capabilities, which
are deployed in a region of interest and collaborate to accomplish a common
task, such as environmental monitoring, military surveillance, and industry pro-
cess control. Distinguished from traditional wireless networks, WSNs are char-
acterized of dense node deployment, unreliable sensor node, frequent topology
change, and severe power, computation, and memory constraints. These unique
characteristics and constraints present many new challenges to the design and
implementation of WSNs. Energy efficiency is the key to prolonging the network
lifetime and is thus of primary importance in WSNs [2].

� This work is supported by the National Natural Science Foundation of China (No.
60572049) and the Natural Science Foundation of Hubei Province, China (No.
2005ABA264).

�� Corresponding author.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 279–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 L. Yuan et al.

Although many networking protocols and algorithms have been developed
for traditional wireless ad hoc networks, they cannot effectively address the
unique characteristics and constraints and application requirements of sensor
networks. To meet the new challenges, innovative protocols and algorithms are
needed to achieve energy efficiency. It is highly desirable to develop new energy-
efficient protocols for topology discovery, self-organization, route discovery, and
data dissemination.

At the same time, position is another important issue in wireless network. It is
natural to utilize location-aware routing [3]. But most of these routing protocols
(GRS [4], MFR [5], COMPASS [6]) do not consider energy consumption carefully.
The position-based protocols [3, 7] only ensure that the forwarding candidate is
nearer to the destination node and don’t care whether the forwarding candidate
is farther from the source node when comparing with the preceding node. So they
have not maximized each hop’s transmission area and thus bring less efficiency.

This paper proposes an energy-aware routing protocol in sensor networks.
We put forward a novel concept of Effective Transmission (ET) that ensures the
forwarding candidate is not only nearer to the sink, but also farther from the
source node with respect to its preceding node. So it can limit the area of the
candidate nodes and efficiently decrease the transmission energy to the least on
each hop. Each intermediate node can decide its next forwarding node according
to the value of decisive energy factor. The energy efficiency will be achieved in
this transmission mode.

2 Effective Transmission Model

The main idea in this paper is to propose an effective way to reduce the energy
consumption from the source node to the destination node during the transmis-
sion. The optimum forwarding candidate is chosen according to the computation
results of each link’s energy consumption. And this choice is based on a position-
based transmission model. So we will first discuss this model in this section.

Suppose each node’s transmission radius is R, we give the following definitions.

Definition 1. The distance of node A and node B is given by d(A, B) =√
(Ax − Bx)2 + (Ay − By)2. ��

The distance between node A and B can also simply be denoted as AB. That
is AB = d(A, B).

Definition 2. Neighbors of node Vi are defined as
{N(Vi) = Vj |d(Vi, Vj) ≤ R, j �= i}. ��
Definition 3. Effective Transmission (ET) ensures each forwarding node is far-
ther from the source node and nearer to the destination node with respect to its
preceding node. ��
Definition 4. The Forwarding Candidate Set (FCS) of node Vi is formed by
the nodes in Vi’s neighbors that comply with the criteria of ET . ��

An Energy-Aware Position-Based Routing Strategy 281

S D

A
B

C

E

F

G

H

K

P

Q UV

Fig. 1. ET and FCS model

Given the source node S and the destination node D, the node Vi’s FCS is

FCS(Vi) = {Vj |d(Vj , S) > d(Vi, S), d(Vj , D) < d(Vi, D), Vj ∈ N(Vi)}. (1)

In Figure 1, S is the center of arc FAQG and D is the center of arc HPAK.
Nodes H, C, G are on the circle with the center point of A and its transmission
radius is R. Three arcs of APH, HCG and GQA, as illustrated in the shadow
part, surround the FCS area of sender A.

Some position-based routing algorithms only require the forwarding candidate
is nearer to the destination. For example, in Figure 1, node B and node E
are the forwarding candidates of node A because BD < AD and ED < AD.
But candidate E is less efficient since ES < AS, while B can bring effective
transmission since BS > AS.

Theorem 1. The overall path is guaranteed to be loop free when the routing
scheme selects next hop nodes if they have ET . ��

Proof: Denote PS as the routing path set,
m = |PS|, Vi ∈ PS, Vj ∈ PS, 1 ≤ i < j ≤ m − 1, V1 = S, Vm = D.
If the routing path is not loop free, it means there must be a node Vj whose

forwarding node is its ancestor Vi. According to the condition of ET , there is

SVi < SVi+1 < · · · < SVj−1 < SVj . (2)

If Vi is Vj ’s forwarding node, there is

SVj < SVi. (3)

Equation (3) is contrary to equation (2). So there does not exist a node whose
forwarding node is its ancestor. The theorem holds. ��

282 L. Yuan et al.

3 Forwarding Candidate Model Based on Energy
Consumption

The selection of the forwarding candidates based on energy consumption needs
two steps. The first step is to determine the FCS. That is to determine the
candidates who can bring ET as illustrated in the above definitions.

The second step of the selection is to determine the optimal candidate within
the FCS. According to paper [8], the energy consumption formulas in sensor
networks are as follows,

ERx(l) = ERx−elec(l) = lEelec (4)
ETx(l, d) = ETx−elec(l) + ETx−amp(l, d)

=

{
lEelec + lεfsd

2, d < d0

lEelec + lεmpd
4, d ≥ d0

(5)

where Eelec is the electronics energy, εfsd
2 is the amplifier energy in the free

space and εmpd
4 is the amplifier energy in the multipath fading channel models,

l is data size (bit), d is transmission distance, d0 is a distance threshold. In a
densely deployed sensor network (it means d < d0), the first transmission energy
formula is used here. For an intermediate node in the routing path, the energy
consumption is

E(l) = ERx(l) + ETx(l, d) = 2lEelec + lεfsd
2 (6)

Whatever angle-based or distance-based is used in position-based routing pro-
tocol, the only one goal is energy efficiency. Given a sender node A, there are
two candidate nodes B and C. We compare the energy consumption relaying by
each node.

If the packets are propagated via node B, the energy consumption for the
transmitting from A to B is

EB1(l) = ETx(l, d(A, B)) = lEelec + lεfsd
2(A, B) (7)

The energy consumption for receiving of node B is

EB2(l) = ERx(l) = lEelec (8)

The energy consumption for the transmitting from B to the destination node D is

EB3(l) = ETx(l, d(B, D)) = lEelec + lεfsd
2(B, D) (9)

So the total energy consumption relaying by node B is

EB(l) = EB1(l) + EB2(l) + EB3(l)
= 3lEelec + lεfs(d2(A, B) + d2(B, D)) (10)

An Energy-Aware Position-Based Routing Strategy 283

Similarly, the total energy consumption relaying by C is

EC(l) = EC1(l) + EC2(l) + EC3(l)
= 3lEelec + lεfs(d2(A, C) + d2(C, D)) (11)

So the differences between the transmission via the two nodes lie in (d2(A, B)+
d2(B, D)) and (d2(A, C)+d2(C, D)). We denote the decisive energy factor (DEF)
as

DEA(B) = d2(A, B) + d2(B, D) (12)
DEA(C) = d2(A, C) + d2(C, D) (13)

If the energy consumption through node B is less than that through node C,
node B is more appropriate to be chosen as the forwarding node. It means that

EB(l) < EC(l) (14)

From equations (10), (11) and (12), (13), equation (14) means

DEA(B) < DEA(C) (15)

So for a specific data size, the energy consumption is decided by the De-
cisive Energy Factor (DEF). The sender node can compare each node in the
FCS by computing each DEF . And from the opinion of the energy consump-
tion, the sender will select the node with the least DEF as the optimal
candidate.

Many other position-based routing protocols cannot ensure the least energy
consumption. In SPEED [3] and GRS [4], the sender selects its neighbors the clos-
est one to its destination. MFR [5] demands the packet is forwarded to the neigh-
bor whose progress is the maximum. In Figure 1, there are two candidate nodes B
and C of sender node A, suppose CD = 7, BD = 8, AC = 5, AB = 3, BU⊥AD,
CV ⊥AD. From the opinion of SPEED and GRS, since CD < BD, node C is a bet-
ter candidate node than node B. And from the opinion of MFR, since AV > AU ,
node C is also better than node B as a candidate node. But from the energy con-
sumption formulas,

DEA(C) = AC2 + CD2 > AB2 + BD2 = DEA(B) (16)

Equation (16) shows that the energy consumption via node B is less than that via
node C, so node B is a better candidate node than node C. In the COMPASS [6]
routing method, it selects the neighbor that its direction to the sender is the
closest to the direction from the sender to the destination. It often brings more
hops to the destination node than the other protocols, so it also cannot ensure
the efficient energy consumption.

284 L. Yuan et al.

4 Energy-Aware Routing Protocol Based on Effective
Transmission

4.1 Candidate Selection

The sender node compares each element in the FCS(Vi) by the Decisive En-
ergy Factor (DEF) and chooses the node with the least value as the optimal
forwarding node.

If the sender node has sent its query and receives no reply after a certain
period, it means that no candidate is available according to the constraint of ET.
Our protocol will automatically adopt an adaptive selection adjustment method.
The sender node initiates another query for the forwarding candidates with a
looser constraint that only requires the candidates are closer to the destination
node. After receiving the replies from the candidates, the sender node compares
each candidate’s selection function and indicates the node with the least value
as the forwarding node.

4.2 Protocol Description

The sender node Vi (beginning from the source node S) broadcasts its own
coordinates together with the coordinates of the source node and the sink node.
Each receiver candidate Vj determines whether to join the routing path selection
based on its residual energy and the comparison results of SVj vs SVi, VjD vs
ViD. Only if the residual energy is above the threshold and SVj > SVi, VjD <
ViD, will Vj compute the Decisive Energy Factor (DEF) and send it back to its
sender node Vi.

Fig. 2. Protocol implementation flow chart

An Energy-Aware Position-Based Routing Strategy 285

After receiving the replies from the candidates, the sender node Vi compares
each DEF and selects the candidate with the least value as its forwarding node.
Then the sender node Vi sends the decision to that node. If the sender node has
not received any reply for a certain period, it will initiate another query with
the constraint that the candidate nodes are closer to the sink compared with the
sender node.

The process lasts until the forwarding candidate is the sink node. Then the
sink node sends the information of the path establishment to the source node
along the routing path adversely. After receiving this success information, the
source node S can now send useful packets to the sink node. Figure 2 is the
implementation flow chart.

5 Simulation Results

In this section, we evaluate the performance of our proposed routing protocol in
the ns-2 simulator. The sensing area is 200m x 200m and the radio range is 30m
for each node. The initial energy of each node is 2J. The simulation will start
from 1s and stop at 30s. Each packet size is 36 bytes. The interval time among
each packet is 1s. We evaluate the following performance metrics:

– Energy consumption during the transmission.
– Success link ratio.

We denote our proposed solution as ET protocol, and we will evaluate the
performance by comparing ET with SPEED, GRS, MFR, COMPASS.

5.1 Energy Consumption

In the simulation, we calculate the energy consumption of all the nodes in the
routing path during the transmission per 4 seconds and get the results shown in
Figure 3. In the figure, we can find that the energy consumption in ET protocol is
least and COMPASS costs most energy. Because COMPASS selects the neighbor
that its direction to the sender is the closest to the direction from the sender to
the destination, it needs more hops to the destination node and need more energy
consumption for the propagation. In our simulation, there are only 9 hops from
the source node to the destination node in ET protocol, but 11 hops are existed
in COMPASS protocol. The figure also shows SPEED protocol consumes more
energy than ET protocol. This can explain that SPEED protocol can get higher
transmission rate at the cost of energy consumption at some time comparing
with ET protocol.

In order to illustrate the energy consumption statistically, we randomly gener-
ate 30 network topologies based on the above environmental settings and calcu-
late the whole energy consumption in the routing path at the time of 30 seconds
for every topology with each protocol. Then we compute the mean energy con-
sumption for all the topologies for each protocol. Figure 4 shows the simulation
result. The figure shows that the mean energy of ET protocol is the least one

286 L. Yuan et al.

0

0.2

0.4

0.6

0.8

1

2 6 10 14 18 22 26 30

Time (sec)

E
ne

rg
y

co
ns

um
pt

io
n

(J
) ET

SPEED
MFR
GRS
COMPASS

Fig. 3. Energy consumption during the transmission

Fig. 4. Mean energy consumption with different topologies

and COMPASS costs most mean energy consumption. The energy consumption
in SPEED protocol is a little higher than that in GRS protocol and MFR proto-
col. It is ET protocol has considered energy metric and other protocols have not
carefully considered energy metric that ET protocol becomes a more efficient
transmission scheme for the energy consumption.

5.2 Success Link Ratio

We change the number of nodes and evaluate the probability that the source node
can successfully find a route to the destination node in each routing protocol.
When selecting a certain number of nodes, we test each routing protocol in 50
different topologies and calculate how many times the source node can find a
route to the destination node. Figure 5 shows the simulation results.

The figure indicates that the success link ratio for each protocol has small
differences with the others. When the number is under 150, ET’s link ratio is a
few lower than the others. This is because the selection area in the ET protocol is
smaller than those in the other protocols. But in the densely distributed network,
ET can get almost the same success link ratio with the others, as illustrated in

An Energy-Aware Position-Based Routing Strategy 287

0

20

40

60

80

100

90 120 150 180 240 300

Number of nodes

L
in

k
su

cc
es

s
ra

tio
 (

%
)

ET
SPEED
MFR
GRS
COMPASS

Fig. 5. Success link ratio at different number of nodes

the figure when the number of nodes is above 150. And it is the smaller selection
area that makes ET protocol more accurate and more efficient to find a routing
path.

6 Conclusions

Many excellent protocols have been developed for ad hoc networks. However, sen-
sor networks have additional requirements that were not specifically addressed.
Energy efficiency is one of those important issues. The most existing position-
based routing protocols have not considered energy consumption carefully. This
paper proposed an effective energy-aware position-based routing protocol in sen-
sor networks. The novel concept of ET is introduced for the forwarding candidate
selection. The simulation results indicate that the proposed routing protocol can
get low energy consumption when comparing with some other routing protocols.
Moreover, it can also achieve about the same success link ratio after providing
effective transmission.

References

1. John A. Stankovic, Tarek F. Abdelzaher, Chenyang Lu, Lui Sha, and Jennifer C.
Hou, Real-Time Communication and Coordination in Embedded Sensor Networks,
Proceedings of the IEEE, Vol.91, No.7, July 2003, pp: 1002-1022.

2. Jamal N. Al-karaki, Ahmed E. Kamal, Routing techniques in wireless sensor net-
works: a survey, Wireless Communications, IEEE [see also IEEE Personal Commu-
nications], Volume: 11, Issue: 6, Dec. 2004, pp. 6-28.

3. Tian He, J.A. Stankovic, Chenyang Lu, T. Abdelzaher, SPEED: a stateless protocol
for real-time communication in sensor networks, Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems, 19-22 May 2003, pp. 46-55.

4. G.G. Finn, Routing and Addressing Problem in Large Metropolitan-Scale Internet-
works, ISI res. Rep ISU/RF-87-180, Mar 1987.

288 L. Yuan et al.

5. H. Takagi. L. Kleinrock, Optimal Transmission Ranges for Randomly Distributed
Packet Radio Terminals, IEEE Transactions on Communications, Vol. 32, no. 3,
1984, pp. 246-257.

6. E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks, Pro-
ceedings of the 11th Canadian Conference on Computational Geometry. Vancouver,
Canada, August 1999.

7. Wook Choi, Sajal K. Das, and Kalyan Basu, Angle-based dynamic path construction
for route load balancing in wireless sensor networks, Wireless Communications and
Networking Conference, 2004 IEEE, Volume: 4, 21-25 March 2004, pp. 2474-2479.

8. W.B.Heinzelman, A.P.Chandrakasan, H.Balakrishnan, An application-specific pro-
tocol architecture for Wireless Microsensor Networks, IEEE Tran. On Wireless Com-
munications, Vol. 1, No. 4, Oct 2002, pp. 660-670.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 289 – 298, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Introduction of Grid Computing Application Projects
at the NASA Earth Science Technology Office*

Kai-Dee Chu1, Liping Di2, and Peter Thornton3

1 Global Science & Technology, Inc.,
NASA ESTO Technology Integration Manager

2 Laboratory for Advanced Information Technology and Standards (LAITS),
George Mason University

3 National Center for Atmospheric Research (NCAR)

Abstract. In 2003, NASA Earth Science Technology Office (ESTO) awarded
funding for 20 new investigations in information systems technology
development under the Advanced Information Systems Technology (AIST)
Program. Two of the selected proposals specifically used Grid computing
technology in their Earth science applications:

(1) Integration of OGC and Grid Technologies for Earth science modeling and
applications
The Open Geospatial Consortium (OGC) web service technologies are deve-
loped to provide interoperable access and services of geospatial data while the
Grid technology is developed for sharing data, storage, and computational
powers of high-end computing facilities within a virtual organization. The built-
in OGC geospatial services include subsetting, resampling, georectification,
reprojection, reformatting, and visualization. The technology integration will
make Grid technology geospatially enabled and compatible with OGC standards
and, at the same time, make OGC technology Grid enabled.

(2) Grid-BGC: A Grid-computing architecture for terrestrial biogeochemical
modeling
The objective of the Grid-BGC project creates an end-to-end technological
solution for high-end Earth system modeling that will reduce the costs and risks
associated with research on the global carbon cycle and its coupling to climate.
The system can provide a robust end-to-end processing environment that
permits computation at the supercomputer level and addresses the associated
demands for massive on-line and near-line input and output data streams.

1 Integration of OGC and Grid Technologies for Earth Science
Modeling and Applications

1.1 Project Description

Open Geospatial Consortium (OGC) is an international organization promoting the
interoperability and sharing of geospatial resources and services in the distributed

* These projects are currently funded by NASA Earth Science Technology Office (ESTO),

Advanced Information Systems Technology (AIST) Program.

290 K.-D. Chu, L. Di, and P. Thornton

environment through the development of volunteer-based implementation specifi-
cations. OGC specifications are widely used by geospatial communities for sharing
data and resources and are becoming ISO standards. The recently developed OGC
web-services specifications allow seamless access to geospatial data in a distributed
environment, regardless of the format, projection, resolution, and the archive location.
The fundamental ones include Web Coverage Services (WCS), Web Feature Services
(WFS), Web Map Services (WMS), and Web Registries Services (WRS). They form
the foundation for OGC web-based interoperable data access.

The OGC technology allows users to specify the requirements for the data they
want. An OGC compliant server has to preprocess the data on-demand based on
users’ requirements and then returns the data back to users in the form specified by
users. At the end, users get the data that exactly match their requirements in both the
contents and the structure (e.g., format, projection, spatial and temporal coverage,
etc). This will significantly reduce the time needed for users to acquire and preprocess
the data before they can be used in models or analysis packages.

The Laboratory for Advanced Information Technology and Standards (LAITS) of
George Mason University has developed NASA Hierarchical Data Format for Earth
Observing System (HDF-EOS) Web Geographic Information System Software Suite
(NWGISS) to test OGC interfaces in NASA’s data environment. It is the only OGC
compliant servers and client system in the world that works with all generic HDF-
EOS files. Funded by ESTO, OGC, and the Earth Science Data and Information
System Project (ESDISP), NWGISS provides interoperable, personalized, on-demand
data access and services (IPODAS) to Earth Observing Systems Data and Information
System (EOSDIS) data with built-in georectification, reprojection, subsetting,
resampling, reformatting, and visualization functions. Currently, NWGISS consists of
five components: a Map Server, a Coverage Server, a Catalog Server, a multi-protocol
geoinformation client (MPGC), and a Toolbox. The map server serves HDF-EOS data
as maps to any OGC-compliant map clients. The coverage server allows clients to
access multi-dimensional data at user specified geographic location, parameters,
projection, and formats. The catalog server provides the catalog search capabilities to
catalog clients. MPGC enables users to search WRS server and to access data served
by OGC web coverage, map, and feature servers. It also provides a set of data
manipulation, processing, and analysis functions at user's desktop.

The main work of this project is to integrate Grid and OGC technologies. Based on
the preliminary analysis of the two technologies and the EOSDIS data environment,
the integration took place between the backend of the NWGISS OGC servers and
front-end of data Grid services. The key is to make Grid-managed data accessible
through NWGISS OGC servers.

Figure 1 shows the architecture of the integrated system. The first phase is the
initial integration, which includes the setup of the development environment,
preliminary design of the integration, and implementation of WCS access to Grid-
managed data. The second phase is the data naming and location transparency, which
includes investigating the use of Data Grid and Replica Services (metadata
catalogues, replication location management, reliable file transfer services, and

 Introduction of Grid Computing Application Projects 291

Fig. 1. Integrated Architecture of Geospatially-Enabled OGC-Compatible Data Grid

network caches) to provide naming and location independence for data used by
NWGISS and revising NWGISS to invoke such Grid services. The approach to
investigating the Data Grid and Replica Services will be to configure a Data Grid
testbed. This will be followed by the integration of NWGISS data catalogs into a data
Grid catalog and the investigation of naming approaches, followed by interfacing
NWGISS with data generators and Data Grid Replica Location service.

The third phase is the virtual dataset research and development. Virtual datasets are
those the Grid knows how to produce on-demand, but not produced (materialized)
yet. The concept of virtual datasets is being implemented in the high-energy physics
Grid project, but is not tested anywhere in Earth science. This project has
implemented the Virtual Data services (materialized data catalog, virtual data catalog,
abstract planner, concrete planner) to provide the on-the-fly data transformation
services needed by NWGISS.

1.2 Project Accomplishments

In order to show the real power of Grid technology for use in Earth science modeling
and application, the project has successfully built a creditable, realistic Grid virtual
organization as the project testbed among members of the project team and
Committee on Earth Observation Satellites (CEOS). The virtual organization
(VO) testbed includes 7 machines with realistic NASA data environment and large
amount of data. Figure 2 shows the structure of virtual organization at the end of May
2005.

The flagship computer in the VO is LAITS’ Apple Cluster server. The machine is
hosted at the network laboratory of NASA Earth Science Data and Information
System Project (ESDISP) in NASA Goddard Space Flight Center (GSFC). The server
at Lawrence Livermore National Laboratory (LLNL) is used as the gateway between
the Earth System Grid (ESG) project and this project.

292 K.-D. Chu, L. Di, and P. Thornton

Fig. 2. Structure of Virtual Organization

Fig. 3. Portal and Service Interface to intelligent Grid Service Mediator (iGSM)

An intelligent Grid Service Mediator (iGSM) was implemented to mediate the
resources in a Grid to fulfill the geodata request from WCS and WMS portals. The
iGSM was enhanced to work with Globus Replica Optimization Service
(ROS),Monitoring and Discovery Service (MDS), and Data Transfer Services (DTS)
for best utilization of the Grid resources. Figure 3 shows the services that iGSM
works with. In the figure, the ROS, MDS and DTS are Globus services. The GWMS,
GWCS and GCSW are the Grid-enabled geospatial services developed by this project.
And the WCS and WMS are the portals developed by this project.

 Introduction of Grid Computing Application Projects 293

1.3 Integrated Grid-Enabled OGC Applications

With the development of Grid-enabled geospatial services components, we are ready
to establish a geospatial data grid at our testbed that can provide on-demand
geospatial data services through OGC interfaces. Figure 4 shows how the geospatial
grid fulfills a data request from OGC client. The scenario is based on the access pattern
that an OGC client first searches the data in Grid and then retrieves the data. The
following paragraphs explain the request and response sequences labeled in the figure.

Fig. 4. A Data Request Scenario with the Geospatial Grid

(1) The OGC client issues a search request to CSW portal to find if the data the client
wants exist in the Grid.

(2) The CSW portal propagates the request to GCWS at LAITS and ESG data
catalog. Those catalogs will return with the logical names of the matched datasets
as well as proper metadata to the portal. The portal then integrates the results
from individual catalog services and returns the result to OGC client.

(3) Based on the search result, the OGC client formulates a WCS data retrieval
request for retrieving a dataset from the Grid. The request is then sent to the
default WCS portal, in our case, the LAITS WCS portal.

(4) The portal then sends the whole request to iGSM to mange the retrieval.
(5) iGSM sends the logical name to ROS for resolving the physical name and

location of the requested dataset.
(6) ROS sent the logical name to RLS to find a list of physical file name and service

ID for the datasets.

294 K.-D. Chu, L. Di, and P. Thornton

(7) With the physical name and service ID, ROS then query MDS to find the best
available server. Then ROS returns an optimized Physical File Name Information
(PFNInfo) object to iGSM. Each PFNInfo contains a physical file name, a
GridWCS service ID, and the host where the data file located. The service ID
could be either a valid or NULL ID.

(8) If the ID is a valid ID, iGSM sends a request to the GCSW for corresponding
GridWCS/WMS URL to the service ID. If the ID is NULL, iGSM sends a
request to GCSW for finding an available GWCS(s) /GWMS(s) which accepts
data from other node in the Grid. Once such a GWCS(s) is found, iGSM then
requests a ROS (Replica and Optimized Service) for selecting the best
GridWCS/WMS among the resources returned from the GCSW and requests a
DTS (Data Transfer Service) for transferring the data to the selected system.

(9) iGSM sends the data retrieval request to the corresponding GWCS for data
retrieval.

As a result, the OGC client users are able to retrieve data products on demand as
was available from the original OGC architecture. The users do not know or feel the
underlying Grid layer that enhances and enriches the services.

2 Grid-BGC: A Grid-Computing Architecture for Terrestrial
Biogeochemical Modeling

2.1 Project Description

The objective of this project is to create an end-to-end technological solution for high-
end Earth system modeling that will reduce the costs and risks associated with
research on the global carbon cycle and its coupling to climate. The completed
system bridges gaps in process and scale between the remote sensing observations
that form the foundation of NASA’s Earth Science Strategic Vision for carbon cycle
research, and the global coupled climate-carbon cycle model predictions that form the
culmination of that Strategic Vision. This project takes advantage of recent
developments in Grid technologies to reduce the costs of this research by providing an
integrated software system that links remote computational, storage, analysis, and
visualization hardware components, reducing the need for on-site access to expensive
hardware.

The completed system also helps achieve NASA Earth Science strategic goals in
global carbon cycle research by making it practical to link remote sensing
observations to global coupled climate-carbon cycle simulations through a
hierarchical interaction with a high-resolution regional model of terrestrial biogeo-
chemical cycles. The high-resolution model predicts many of the same quantities as
the coarse-resolution global coupled models, so acts as a useful conduit for passing
process-level understanding to the global scale through focused model-model
evaluations.

The Grid-BGC system consists of a single user-oriented software framework that
integrates the following five technology components:

 Introduction of Grid Computing Application Projects 295

(1) A data ingest and interpolation engine that acquires ground-based observations of
surface weather as its lowest-level input data and produces high-resolution
gridded outputs of surface weather fields.

(2) A state-of-the-art model of terrestrial carbon, water, and nitrogen cycles that
acquires gridded surface weather fields from the interpolation engine, performs a
configurable sequence of simulations, and produces a high-volume multi-
dimensional gridded output dataset. Model code and documentation is on-line at
http://www.cgd.ucar.edu/tss/staff/thornton/rnd.html

(3) A post-processing engine that acquires and summarizes the high-resolution
biogeochemical model output, evaluates the model results against operational in-
situ and remote-sensing observations, and performs spatial scaling analyses
against global coupled climate system model outputs.

(4) A visualization engine that acquires analyzed or summarized output from the
post-processing engine and produces static and dynamic visualizations to assist
the user in assessing experimental results, developing new experiments, and
effectively conveying high-volume high-resolution model output and model
evaluation information to a broad scientific audience.

(5) A mass storage system with high-speed connection to the computational engines.
See description of the National Center for Atmospheric Research (NCAR) Mass
Storage System (MSS) on-line at http://www.scd.ucar.edu/main/mss.html

Over the past several years, since the development of the interpolation and carbon
cycle components of the proposed system, the development team has received a
growing number of requests for assistance in implementing large gridded simulations
employing these components. Because of the lack of a software framework that
integrates these components and addresses the parallel computational requirements
for these large simulations, it was impossible to respond positively to more than one
or two such requests per year. NCAR undertook the development of the prototype
system to demonstrate that there was a viable technological solution that would
permit the efficient implementation of large simulations with a low start-up cost in
terms of time and hardware expense. In the course of this exercise a more
comprehensive vision was formed for an end-to-end software framework to facilitate
the development, implementation, and evaluation of high-resolution carbon cycle
simulations requiring supercomputer levels of parallel computation, which is the
system we have developed under the current NASA project. The architectural design
block diagram can be seen at Figure 5.

2.2 Project Accomplishments

The list below expands on the project overview, providing a description of the project
accomplishments including reference to particular technology components that will be
deployed:

(1) Use emerging Grid-Compute technologies to provide a research-quality platform
for terrestrial carbon cycle modeling.

(2) Provide a Web Portal user interface to organize the complicated workflow and
data object dependencies that are typical of very large gridded ecosystem model
implementations.

296 K.-D. Chu, L. Di, and P. Thornton

Fig. 5. Grid-BGC Current Architecture Design Diagram

(3) Connect Portal-based simulation definition and control with automated job
execution on remote supercomputer platforms, eliminating direct user interaction
with the remote computational resources.

(4) Provide automated data streaming for very large model input and output datasets
between the Portal, remote computational resources, and a remote mass storage
facility.

(5) Provide robust analysis and visualization tools through the Portal.
(6) Demonstrate end-to-end functionality with a research-quality application (U.S. 1

km gridded simulations, targeting application to the North American Carbon
Program).

(7) Focus on the needs of real researchers, through multiple iterations of platform
development and beta-testing.

Most of the developed services are applicable to other application domains and can
be reused in future systems that address those domains. We have demonstrated this
capability by re-tasking the current back-end grid service components to run the
Parallel Ocean Program (POP), developed by DOE at the Los Alamos National
Laboratory and a component of NCAR’s Community Climate System Model
(CCSM). An example of the application of Grid-BGC is shown in Figure 6. This
project satisfies the pressing need for a research-quality software infrastructure to
support simulations of terrestrial biogeochemistry over large domains at high spatial
resolution.

2.3 Science Relevance of Grid-BGC

Our system will help to answer two of the fundamental questions defining the NASA
Earth Science Mission: “How well can we predict future changes in the Earth
system?” and “How do ecosystems respond to and affect global environmental change
and the global carbon cycle?”. The Earth Science Strategic Vision for 2003 to 2025

 Introduction of Grid Computing Application Projects 297

Fig. 6. An example of the typical simulation domain targeted by the project, showing
schematically the information flow from the Daymet model processing that produces gridded
surface weather fields, to the Biome-BGC model processing that ingests these fields and
produces estimates of the state and flux variables for carbon, nitrogen, and water cycles.

calls for the research community to “develop and test models to bring diverse
observations to bear on the fundamental Earth Science questions”, and later to
“develop a collaborative synthetic environment to facilitate understanding and enable
remote use of models and results.” If our project is a success, we will have made
substantial progress toward both of these goals. Our vision for this technology is to
bring the modeling capabilities for regional terrestrial carbon cycle science up to the
level of technical readiness that already exists for large remote-sensing data
distribution systems and global coupled climate-carbon simulation systems. This
addresses a critical gap in scales between the observations available for evaluation of
carbon cycle simulations and the current simulation platforms. The technology
developed under this project will significantly provide an evaluation framework for
the terrestrial component of carbon cycle research at the scales appropriate to the
remote sensing technology planned through 2010.

3 Lessons Learned

A surprising amount of our time has been spent on basic network administration and
security due to network performance and firewall restrictions. A dedicated domain
expert and the point of contact for each virtual organization is essential to the success
of the project. Maintaining configuration management across independent agencies
and centers is difficult but extremely important. Each tool/software upgrade should
be carefully planned and executed in order to minimize service disruptions. Listen
carefully to the concerns of the end users, and communicate frequently among the
collaborators so that a healthy feedback loop can be formed to ensure the success of
the project.

298 K.-D. Chu, L. Di, and P. Thornton

4 Table of Acronyms
y

Acronym Elaboration Acronym Elaboration
BGC Biogeochemical IPG NASA Information Power Grid
CA Grid Certificates and

Authentications
ISO International Organization for

Standardization
CCSM Community Climate System Model LAITS Laboratory for Advanced Information

Technology and Standards
CEOS Committee on Earth Observation

Satellites
LLNL Lawrence Livermore National

Laboratory
CSS Computational Sciences Section MCS Grid Globus Metadata Catalog System
CSW OGC Catalog Service for Web MDS Grid Monitoring and Discovery

Service
DAAC Distributed Active Archive Center MODIS MODerate-resolution Image

Spectrometer
DTS Grid Data Transfer Service MSS Mass Storage System
EOS Earth Observing System NASA National Aeronautics and Space

Administration
EOSDIS EOS data and information system NCAR National Center for Atmospheric

Research
ESDISP NASA Earth Science Data and

Information System Project
POP Parallel Ocean Program

ESG Earth System Grid of Department of
Energy

PFNInfo Physical File Name Information

ESTO Earth Science Technology Office RLS Grid Replica Location Service
GRAM Grid Resources Allocation and

Management
ROS Grid Replica Optimization Service

GSFC NASA Goddard Space Flight Center SAN Storage Area Network
GCSW Grid-enabled OGC Catalog Service

for Web
SCD Scientific Computing Division

GWCS Grid-enabled OGC Web Coverage
Service

OGC Open Geospatial Consortium

GWMS Grid-enabled OGC Web Map
Service

UCAR University Corporation for
Atmospheric Research

HDF Hierarchical Data Format VO Grid Virtual Organization
HDF-
EOS

EOS profile of HDF WCS OGC Web Coverage Service

iGSM Intelligent Grid Service Mediator WMS OGC Web Map Service

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 299 – 307, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Message-Passing Overhead on NCHC
Formosa PC Cluster

Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang, and Shou-Cheng Tcheng

National Center For High-Performance Computing

Abstract. The communication plays a role in the overall system performance.
The characterization of the communication overhead is very important to
estimate the global performance of parallel applications and to detect possible
bottlenecks. In this work, we evaluate and model the performance of the
message-passing libraries on NCHC Formosa PC Cluster, a large cluster system
with dual processor nodes and connected by Gigabits Ethernet networks. Our aim
is to fairly characterize the communication primitives using general models and
performance metrics. We use the formulae to estimate the communication time
of a real application program for molecular dynamics simulation. We hope that it
is able to provide some useful information for performance prediction and
scientific computing.

1 Introduction

The improvement of the microprocessor and network has been so rapid for the last
many years that has enabled PC clusters to compete with conventional supercomputers.
In fact many powerful supercomputers currently in use are made of microprocessors
and which usually are even a generation behind the fastest processors used in PCs.
Furthermore, the availability of low-cost and fast interconnection network allows many
research groups to put together commodity off-the-shelf PCs to build parallel
high-performance computers. Having the advantage of delivering high-performance at
low-cost, PC clusters are becoming one of the most important platforms for HPC [1-5].
 Message passing plays a crucial role in distributed computation. The overheads
incurred with message passing can severely limit the performance on these
applications. Without knowing these overheads, users cannot make informed
code-optimizing decisions, such as the tradeoffs between higher parallelism and
increased communication overheads [6].
 Xu and Hwang [6] have already proposed communication overhead models for
machines like IBM SP2, Cray T3D, and Intel Paragon. Likewise, Prieto et al. [7]
proposed models for Cray T3E and SGI Origin 2000, Touriño and Doallo [8] for
Fujitsu AP3000 platform, and Gunawan and Cai [9] for Myrinet-based cluster system.
Yet, there has been no formulation for clusters with Gigabit Ethernet so far.

NCHC Formosa PC Cluster [10] is a high-performance, cost-effective parallel
computing system dedicated to serve a diverse group of researchers for computational

300 C.-Y. Chou et al.

science applications. The system consists of 150 dual-Xeon PCs (i.e., 300 Intel Xeon
processors) connected by a private subnet with 1000 Mbits/s Gigabits Ethernet. It has a
theoretical peak speed of 1680 Gflops/s with the Linpack performance score being 997
Gflops/s, the best score of Taiwan on the 22nd Top500 List [11].
 We will establish the formulae of point-to-point, broadcast, and reduce message
passing on Formosa PC Cluster, and estimate the communication time of a real
application program for molecular dynamics simulation by using the formulae.
 Our aim is to estimate communication overheads with simple expressions, which can
help application developers to design or migrate parallel programs more efficiently.
 The rest of the paper is organized as follows. The communication model and
measurement methodology is in section 2. In section 3 we present the results of some
commonly used MPI functions. A case study is evaluated in section 4. Some
concluding remarks are made in section 5.

2 Communication Model and Measurement Methodology

Table 1 lists the variables used in the communication models in this Section.

Table 1. Definition of the variables

Variable Definition or Meaning
t the communication time in microseconds
m Message size in bytes
t0 the latency (or startup time) in microseconds
r the asymptotic bandwidth in MB/s
n the number of processors

2.1 Hockney’s Model

Hockney [9, 12] has proposed a model to characterize the communication time (in
microseconds) for a point-to-point communication [13]. The model is described as:

∞
+=

r

m
t)m(t 0 , where m is the transferred message size in bytes, r is the asymptotic

bandwidth in MB/s, which is defined as the maximal bandwidth achievable when the
message length approaches infinity, and t0 is the latency (or startup time).

2.2 Xu and Hwang’s Model

The Hockney’s model in the prior section is only for point-to-point communication.
The communication time is only dependent on message size. For collective
communication, Xu and Hwang [6] developed a generalized communication model

based on Hockney’s model: () () ()nr

m
ntn,mt

∞
+= 0 , where n is the number of

 Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 301

processors, the communication time is a function of n and m now, and both the latency
and the asymptotic bandwidth are also functions of n.

2.3 Gunawan and Cai’s Model

Gunawan and Cai [9] divides the transferred messages into two groups, then fit the
model of communication overhead in Myrinet environment, respectively. The above
models in Sections 2.1 and 2.2, respectively, are rewritten as follows.

>+

≤+
=

∞
p

p
p

mm,
r

m
t

mm,
r

m
t

)m(t

0

0

 and ()
() ()

() () >+

≤+
=

∞
p

p
p

mm,
nr

m
nt

mm,
nr

m
nt

n,mt

0

0

,

where rp is the peak bandwidth achieved at the message size m = mp. The model
suggests that there should be two ranges for the performance metrics. One for the
message size m mp where the message still fits the cache size and another for the
message size m > mp where the cache no longer can hold the message in one operation.

2.4 Measurement Methodology

In our experiment, we measured the MPI communication overhead likely as follows.

While (Static Check is O.K) {
 Barrier synchronization;
 for (i=0; i < ITERS+5; i++) {
 if (i==5) get start_time;
 MPI_communication;
 }
 get end_time;
 local_time=(end_time- start_time)/ ITERS;
 communication_time = maximum reduce(local_times);
 compute statics;
}

 Our test bed is composed of eight dedicated nodes (16 processors). Because our
system consists of dual processor nodes only, we use 2, 4, 6, 8, 10, 12, 14, and 16
processors for measuring sample data. The only exception is the pingpong case where
we use one processor of each two dedicated nodes to pass message.
 After five iterations for startup, we repeat one thousand times of the tested MPI
functions, and then calculate the mean of these iterations. The data is called a “sample”.
In the paper, we have taken one thousand samples. Harmonic mean [14] was used since
it gets rid of outliers better than the arithmetic mean [5,9]. Moreover, we repeated the
measurement until the standard error of the mean was within 10% of the mean with
95% confidence level [14].

302 C.-Y. Chou et al.

 In our work, we used the Intel compiler 8.0 with option “-O3”. And the LAM 7.0.6
[15] is adopted as the MPI library.

3 Results

3.1 Point to Point (Hockney’s Model)

The results of the well-known ping-pong method [6] are clearly shown in Table 2.
The detail description of the standard error is in [14]. From the table, we show that the
throughput of the system is about 90.14 MB/sec, near the peak performance of
1000Mbits Ethernet. The projection function of the Hockney’s model is

 t(m) = 51.8 + 0.011 m. (1)

Table 2. Pingpong results on NCHC Formosa PC Cluster

Message length Bandwidth
(bytes) (MB/s)

1 0.020±0.0000
2 0.038±0.0013
4 0.070±0.0000
8 0.141±0.0010

16 0.285±0.0017
32 0.560±0.0052
64 1.106±0.0067

128 2.132±0.0291
256 4.043±0.0151
512 7.145±0.0201

1024 11.580±0.0319
2048 18.970±0.0158
4096 30.554±0.0317
8192 48.859±0.0422

16384 65.020±0.0767
32768 75.108±0.0413
65536 84.145±0.0696

131072 78.655±0.0811
262144 83.702±0.0286
524288 87.104±0.0190

1048576 88.516±0.1199
2097152 87.644±1.7322
4194304 89.642±0.1073
8388608 89.678±0.2283

16777216 89.974±0.0986
33554432 90.001±0.0134
67108864 88.685±1.2288

134217728 90.045±0.0226
268435456 90.141±0.0966

 Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 303

0
1000000
2000000
3000000
4000000

0 2 8 32 12
8

51
2

20
48

81
92

32
76

8

13
10

72

52
42

88

20
97

15
2

83
88

60
8

33
55

44
32

1.3
4E

+08

Message length (bytes)

M
ic

ro
se

co
nd

s

Measured time

projected time

Fig. 1. Measured versus projected times for point-to-point communication

 Figure 1 is the comparative analysis of projection function and measured data. The
projected and measured values nearly coincide with each other.

3.2 MPI_BCAST

Figure 2 is the throughput of the MPI_BCAST on 16 processors. We observe that the
maximum occurred at message length=32KB, and the highest value for the second
curve at message length=16MB.

0
5

10
15
20
25
30
35

1 8 64 512 4K 32K 256K 2M 16M 128M
Message length(bytes)

T
hr

ou
gh

pu
t(

M
B

/S
)

Fig. 2. The throughput of MPI_BCAST on 16 processors

Therefore, we extend the Gunawan & Cai’s model as

()

<+

≤<+

≤+

=

∞
mm,

)n(r

m
)n(t

mmm,
)n(r

m
)n(t

mm,
)n(r

m
nt

m)t(n,

q

qp
q

p
p

0

0

0

.

304 C.-Y. Chou et al.

After curve fitting, the MPI_BCAST overhead model on the system is

[]
[]
[] <−+−

≤<−+−

≤−+−

=

m,m.)nln(..)nln(.

m,m.)nln(..)nln(.

m,m.)nln(..)nln(.

m)t(n,
24

2415

15

200850019308163315481

2200310015208163315481

200570013708163315481

 (2)

where n is the number of processors and m is the size of message in byte.
 Figure 3 shows the communication time of MPI_BCAST where the transferred
message size varies from 16Kbytes to 256Kbytes. Four curves are plotted: our model,
Xu & Hwang’s model, Gunawan & Cai’s model and by measurement. Our model
appears to be closer to the measurement than the other models .

Fig. 3. The Time of MPI_BCAST on 16 processors

3.3 MPI_REDUCE

Figure 4 demonstrates the bandwidth of MPI_ REDUCE with MPI_SUM operation
(float point) using 16 processors. From figure 4, we observe that the curve may be fitted
by using Gunawan & Cai’s model accurately. Then we obtain the projection function of
MPI_REDUCE in the following formulae.

<+

≤+
=

m,m..

m,m..
m)t(2,

6

6

2004201190

2002501190
 ,

(3)

[]
[] <−++

≤−++
=

m,m.)nln(..)nln(.

m,m.)nln(..)nln(.
m)t(n,

13

13

20046001430123000140

20109001410123000140
 for n > 2

where n is the number of processors and m is the size of message in byte.

 Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 305

0

5

10

15

20

25

30

35

40

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Lengths (bytes)

B
an

dw
id

th
 (

B
M

/s
)

Fig. 4. The throughput of MPI_REDUCE on 16 processors

0

5000

10000

15000

20000

2 4 6 8 10 12 14 16

Number of Processors

M
ic

ro
se

co
nd

s

Estimated

Measured

Fig. 5. The Time of transferring 512 KB Message by MPI_REDUCE

 Figure 5 shows the communication time of MPI_REDUCE while transferring 512 KB
message in various numbers of processors by projection function and by measurement.
The two curves nearly coincide.

4 Case Study: Molecular Dynamics Simulation

The program Modyn is a representative benchmark in computational chemistry domain,
which simulates molecular dynamics. It can efficiently simulates the molecular
dynamics of Lennard-Jones atoms [16].

306 C.-Y. Chou et al.

 The program must perform MPI_ALLREDUCE of 750,008 bytes message in one
stage. The MPI_ALLREDUCE is equal to one MPI_BCAST plus one MPI_REDUCE,
i.e., Eq.(2) and Eq.(3).
 For the sake of discussion, we define the error of the estimated time as the following
formula.

 Error = (Measured Time - Estimated Time) / Measured Time (4)

The experimentally measured time and the estimated time by Eq.(2) and Eq.(3) on
various number of processors are listed in Table 4. The error is about 7%.

Table 4. The Measured and Estimated Time of Modyn (in sec.)

Number of Procs Measured Time Estimated Time Error(%)
8 43560 40338 7

16 59837 55731 7
32 76780 71123 7
64 93437 86516 7

5 Conclusion

We present the formulae of point-to-point, broadcast, and reduce message passing on
Formosa PC Cluster, a dual-processor shared-memory PC Cluster connected together by
Gigabits Ethernet. The times predicted by the projection functions of Eqs. (1) through (3)
are pretty close to the times by measurement. The three stages model of MPI_BCAST in
Eq. (2) is more accurate than the other models mentioned in Section 3.2.

Appling the formulae to estimate the communication time of Modyn, the error is
about 7%. We hope that it is able to provide some useful information for performance
prediction and scientific computing.

References

1. Sterling, T., Becker, D., Savarese, D., et al.: BEOWULF: A Parallel Workstation for
Scientific Computation. Proc. Of the 1995 International Conf. On Parallel Processing
(1995)

2. Sterling, T., Savarese,D., Becker, D., et al.: Communication Overhead for Space Science
Applications on the Beowulf Parallel Workstation. Proc. of 4th IEEE Symposium on High
Performance Distributed Computing (1995)

3. Reschke, C., Sterling T. and Ridge, D.: A Design Study of Alternative Network Topologies
for the Beowulf Parallel Workstation. Proceedings of the 5th IEEE Symposium on High
Performance and Distributed Computing (1996)

4. Ridge, D., Becker, D. and Merkey, P.: Beowulf: Harnessing the Power of Parallelism in a
Pile-of-PCs. Proceedings of IEEE Aerospace (1997)

5. Pfister G. F.: In Search of Clusters. Prentice-Hall, Inc. (1998)

 Modeling Message-Passing Overhead on NCHC Formosa PC Cluster 307

6. Xu, Z. and Hwang, K.: Modeling Communication Overhead: MPI and MPL Performance on
the IBM SP2. IEEE Parallel & Distributed Technology 4(1) (1996) 9-23

7. Prieto, M., Espadas, D., Llorente, I. M. and Tirado, F.: Message Passing Evaluation and
Analysis on Cray T3E and SGI Origin 2000 Systems. In 5th Int’l Euro-Par Conference 1685
(1999) 173-182

8. Touriño, J. and Doallo, R.: Characterization of Message-Passing Overhead on the AP3000
Multicomputer. International Conference on Parallel Processing (2001)

9. Gunawan, T. and Cai, W.: Performance Analysis of a Myrinet-Based Cluster. Cluster
Computing 6 (2003) 229-313

10. NCHC Formosa PC Cluster Home Page, http://formosa.nchc.org.tw
11. Top 500 List, http://www.top500.org
12. Hockney, R. W.: Performance Parameters and benchmarking of supercomputers, Parallel

Computing 17 (1991) 1111-1130
13. Hockney, R. W.: The Communication Challenge for MPP: Intel Paragon and Meiko CS-2.

Parallel Computing 20 (1994) 389-398
14. Burns, G.., Daoud, R. and Vaigl, J.: LAM:An Open Cluster Environment for MPI.

Proceedings of Supercomputing Symposium'94 (1994) 379-386
15. Lichten, W.: Data and Error Analysis. Prentice Hall (1998)
16. Huang, Kuo-Chan, Chang, His-Ya, Shen, Cherng-Yeu, Chou, Chau-Yi, Tcheng,

Shou-Cheng. :Benchmarking and Performance Evaluation of NCHC PC Cluster. High
Performance Computing in the Asia-Pacific Region (200)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 308 – 313, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluation of the Device Driver Availability in
Dawning4000A

Yuanxia You 1,2, Dan Meng 1, Gang Xue 3, and Jie Ma 1

1 National Research Center for Intelligent Computer Systems,
Institute of Computing Technology, Chinese Academy of Sciences,

Beijing 100080, P.R. China
2 Graduate University of the Chinese Academy of Sciences, Beijing 100039, P.R. China

3 Shanghai Supercomputer Center, Shanghai 201203, P.R. China
yyx@ncic.ac.cn

Abstract. Device drivers were claimed to be the most error prone in kernel
source. A lot of error tolerance or error prevention approaches have been de-
veloped or suggested after this claim. But after analyzing the event log and
maintenance record of Dawning4000A for three month, we find that device
driver errors are not the most crucial crash causes in this previous TOP10 su-
percomputer. We believe device driver errors need developing and debugging
efforts, rather than tolerance. We also suggest drivers to achieve better tolerance
to device errors, especially on storage device.

1 Introduction

Large-scale Linux clusters are widely deployed in recent years. As node quantity be-
comes larger, components becomes more complex, node error and failure turns out to
be more and more crucial to the availability and serviceability of the entire cluster. On
the other hand, node MTBF of Dawning4000A (D4KA) has reached 200,000 hours,
and the inherent redundant node of cluster provide the best fault tolerant infrastructure.
For years people believe that the node failures are easier to be caused by software than
hardware. Among all the software components in a commercial cluster, system soft-
ware is the most likely to cause node failure, especially for the OS [1][2][3].
 Static scan and analyse on OpenBSD and Linux kernel source codes show that the
device drivers have the highest error rates than all other kernel modules [4]. Some
people studied how these source code errors impact the kernel [5] [8], and others tried
to reduce or tolerate their impacts [6]. Therefore, device driver errors and their be-
haviors are one of the emphases during our research on the node error and failure of
D4KA.

This research used the event log and maintenance records of D4KA from Jul. 6,
2005 to Oct. 6 2005. The device drivers in D4KA can be classified into three cata-
logues: i) storage related, including HBA card and SCSI disk drivers, ii) network re-
lated, including Myrinet card driver and firmware, Gigabits Ethernet and Megabits
Ethernet card drivers, iii) management and control related, such as KVM card driver.

 Evaluation of the Device Driver Availability in Dawning4000A 309

After carefully inspection and classification, we find that Myrinet card driver and
firmware are the only drivers that have ever fallen into error context on D4KA. Only
Myrinet related utilities have happened oopses among all drivers, but these oopses are
not regular and routinely.

Why device drivers’ errors are noisy in source code, but quiet in production runtime?
We believe the reasons are as following:

• D4KA’s light weighted kernel eliminated useless but possibly faulty drivers
• Matured runtime eliminated high error rate drivers
• Developers paid more attention on important and widely used devices, such as SCSI

HBA.

Section 4 describes the detail of reboot analyses of D4KA, and demonstrates those
reboots that were caused by driver errors; section 5 compares static kernel error rate
with the reboot causes of D4KA, and shows the gap between them; section 6 evaluate
the efficiency of fault isolation on driver errors based on both static results and pro-
ductive reboot analyses.

2 Related Works

[4] is a milestone research on kernel error analyse. Their authors implemented uni-
formed trace on the entire kernel sources upon different versions based on identified
kernel error patterns. They concluded that device drivers have the highest error rate
among the whole kernel. After that, several further researches evaluated the possibility
to isolate and tolerate a faulty driver in a running kernel [6]. Others examined the be-
havior of the kernel when driver or similar error happens [5]. Some people even pro-
posed user space drivers to provide a less sensitive kernel infrastructure [9]. All these
works imply that the quality of driver in open source operating systems is difficult to
improve as quickly and well as core functions and modules of kernel.

On the contrary, OSDL supplies driver-hardening guidance to decrease bug quantity
and improve fault tolerance in drivers [7]. But this guidance is too rigid and compli-
cated for developers to follow.

3 Approach

D4KA has 512 computing nodes, 16 storage nodes, and 4 management nodes. There
are mainly four connections in D4KA: Myrinet, Gigabits Ethernet, SAN, and Megabits
Ethernet. Megabyte Ethernet is a management connection, which we used to collecting
event log from every computing nodes and storage nodes to management nodes.

The event logs used in the research are collected through UDP based network syslog
on dedicated connections to dedicated log collecting nodes, together with maintenance
and analysis records. Linux kernel has limited network event messages. Besides, SCSI
errors are only transferred over this network connection; no SCSI command errors will
be recorded on node’s local disk. These measures can prevent domino effect when error
happens on either NIC or SCSI device and (or) driver.

310 Y. You et al.

4 Node Crash Analyse in D4KA

Node crash is the extreme result of kernel error. As is pointed out by [5], Linux kernel is
most sensitive to four major errors: NULL pointer, illegal kernel paging request, inva-
lid operation code, and general protection failure. These crashes are always followed by
node reboots before the node can be used again. We examined reboot in D4KA to get
ideas on how node crashes.

The methods to catalog these reboots include:

• Collecting every possible reboot causes from the log.
• Evaluating the gravity priority of each cause. Among the causes discovered, network

core lockup has the highest priority, and Myrinet firmware failure the lowest.
• Classifying each reboot to each cause according to the highest priority messages

before reboot.

Figure 1 shows the reboot statistics in D4KA.

Fig. 1. Reboot statistics in D4KA

From Figure 1 we confirmed that hardware is really an unimportant cause for node
reboot. Only SCSI disks and some other minor hardware have ever crashed the node.
Maintenance reboot are different. Most of maintenance reboots are not after crash.

Next we analyzed software caused node crash, resulting in Figure 2:
Memory error, like NULL pointer, is only considered when it is the first error after

node startup. Thus memory based error propagation will not disturb to find the original
cause. From Figure 2, we can conclude that:

 Evaluation of the Device Driver Availability in Dawning4000A 311

• The software caused node crash in D4KA is limited to several causes.
• A single driver conflict between Myrinet and nVidia leads to the largest portion of

software caused node crash, almost 56%.
• Myrinet driver and firmware errors contribute to more than 70% of node crash.
• All the other node crashes have no relationship with any device driver error.
• Transient hardware errors can propagate to IO system and then lead to permanent

data error and file system crash (see the last line in Figure 2).

Fig. 2. Software caused node crashes in D4KA

5 Comparison with Static Research

Static analyses show that device driver has significant errors or bugs. More than 90% of
Block, Free and Intr errors and more than 70% of Lock Null and Var errors are from
device drivers [4]. This is a milestone research on open source OS kernel errors. Al-
though this is totally true for source code, no one has validated it in productive
environment.

Even in source code, driver error distribution is still different from the coarse grain
data in [4]. Following Figure 3 is a simple driver quantity and error rate statistics based
on Linux kernel bugzilla for version 2.4:

Figure 3 implies an important fact: error rate is unbalanced inside device drivers.
Mature or widely used device, like SCSI disk & HBA card, and network interface card,
usually got more effort from their developers and testers. They also got more assistance

312 Y. You et al.

Fig. 3. Driver code quantity (MB) and error rate (errors/MB)

from users to achieve high code quality. From Figure 3 we can see that the main device
used in D4KA, including SCSI, network, PCI, etc. often has relatively lower driver
error rate.

Myrinet and nVidia confliction is a well-know caveat in GM driver. These two
drivers are correct when running individually, and this can also be easily avoided by not
running gm_board_info in some situation. This runtime error cannot be scanned by the
compiler in [4]. Except the confliction mentioned above is excluded, GM firmware
error is the only case of device driver error in D4KA, and it leads to 20 OS crash.

 From this comparison, we can claim that in large scale Linux cluster as Dawn-
ing4000A, device driver error rate is not higher than other part of the kernel, except
specific drivers for custom device.

6 Evaluation the Efficiency of Error Isolation

Some researches tend to tolerate driver errors during runtime, that is, isolating the kernel
from faulty drivers. These driver can be isolated in either kernel [6] or user space [9]. The
isolation can catch error modification and access of fragile shared memory. When errors
are activated and propagated to the isolation border, isolation can help to kill the drivers
and prevent the kernel from crash.

This passive protection results in unavoidable slow down. Furthermore, it protects
only the kernel, neither driver nor application. For large-scale cluster systems for

 Evaluation of the Device Driver Availability in Dawning4000A 313

advanced scientific applications, slow down and kernel oriented (not node oriented)
protection are all unacceptable. However, these are what must to be paid for tolerating a
driver which has a much higher error rate than other parts of the kernel. The worst thing
happens when several kinds of OS crashes, such as hardware address conflicts, memory
full error, allocation error, ext3 error propagation, and SCSI disk error propagation,
which happened in D4KA, are very difficult to be tolerated only by current isolation
and stop methods.

On the contrary, from section 4 and 5, we know that after eliminating buggy drivers
from kernel, testing in production environment, and updating to newer versions,
driver’s error rate can be reduced to a comparable low level as other parts of the kernel.

The trick here is to balance the cost between development and production [10]. For
private OS like Windows, driver vendors usually have no chance to trace into kernel
code to improve driver quality. Desktop user would rather fail one or more applications
than crash the Windows OS and restart. For mature clusters as D4KA, more efforts
should be paid not on tolerate a faulty driver, but on tolerating a reliable SCSI disk to
prevent error data propagation from memory onto disk.

7 Conclusions

This paper analyzed the reboot and crash cases in one of the largest commercial Linux
cluster, Dawning4000A, and tried to evaluate the device driver errors and their impact
on node failure. Compared with previous researches on OS errors, we concluded that
device driver error is not the largest node crash cause of D4KA, compared with static
scan result. In D4KA, high error rate drivers have been eliminated in construction and
test period. We suggested improving the error propagation prevention mechanism in
device drivers as SCSI.

References

1. J.Gray, High-Availability Computer Systems, IEEE Computer, Sep. 1991
2. J.Gray, A Census of Tandem System Availability Between 1985 and 1990, Technical Re-

port, 1990
3. J.Xu, Z.Kalbarczyk, etc, Networked Windows NT System Field Failure Data Analysis,

Proceedings of the 1999 Pacific Rim International Symposium on Dependable Computing.
4. A.Chou, J.Yang, etc, An Empirical Study of Operating Systems Errors, SOSP 2001
5. W.Gu, Z.Kalbarczyk, Characterization of Linux Kernel Behavior under Errors, DSN 2003
6. M.M. Swift, B.N. Bershad, Improving the Reliability of Commodity Operating Systems.
7. Device Driver Hardening Design Specification, Intel Corp. IBM Corp 2002
8. A.Albinet, J.Arlat, etc, Characterization of the Impact of Faulty Drivers on the Robustness

of the Linux Kernel, DSN`2004
9. Peter Chubb, Get More Device Drivers out of the Kernel, OLS 2004

10. D.S.Bai, W.Y. Yun, Optimum Number of Errors Corrected before Releasing a Software
System, IEEE Trans. On Reliability, Vol 37, Issue 1, 1988

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 314 – 323, 2006.
© Springer-Verlag Berlin Heidelberg 2006

HyMPI – A MPI Implementation for Heterogeneous
High Performance Systems

Franciso Isidro Massetto*, Augusto Mendes Gomes Junior**,
and Liria Matsumoto Sato

Politechnic School – University of São Paulo – São Paulo, Brazil
{francisco.massetto, augusto.gomes, liria.sato}@poli.usp.br

Abstract. This paper presents the HyMPI, a runtime system to integrate several
MPI implementations, used to develop Heterogeneous High Performance Ap-
plications. This means that a single image system can be composed by mono
and multiprocessor nodes running several Operating Systems and MPI imple-
mentations, as well as, heterogeneous clusters as nodes of the system. HyMPI
supports blocking and non-blocking point-to-point communication and collec-
tive communication primitive in order to increase the range of High Perform-
ance Applications that can use it and to keep compatibility with MPI Standard.

1 Introduction

Since MPI[1] became thoroughly used in the development of applications of high per-
formance, among them, clusters and computational grids, several researches involving
these subjects began to appear.

MPI is considered an interface standard. This way, there are several implementa-
tions, each one with your own characteristic, portability and platform. However, one
of the largest limitations of the MPI is the integration of different implementations.
This challenge has motivated the development of researches, some of them with real
results that allow executing applications that can make use of several MPI implemen-
tations in a clear way.

This work presents the HyMPI – Hybrid MPI [2], a set of MPI primitives that al-
low the integration of heterogeneous environment. It means that, through the HyMPI
is possible to integrate, in a single system, monoprocessors and multiprocessors ma-
chines, besides computers clusters. This integration allows that different machines
that execute different Operating Systems and have different MPI implementations in-
stalled can communicate to each other and to heterogeneous clusters in a transparent
way.

Thus, with the use of HyMPI, it is possible to create a high performance system
formed by monoprocessor nodes, SMP machines, homogeneous and heterogeneous
clusters.

This article is structured as follows: in section 2 we present the works related to
HyMPI, it means, implementations that support integration of several implementations.

* Professor at Centro Universitário UNIFIEO and Anhembi Morumbi University.
** Professor at Anhembi Morumbi University.

 HyMPI – A MPI Implementation for Heterogeneous High Performance Systems 315

In section 3, it is presented the structure and architecture of HyMPI, as well as the
communication primitives supported and the communication protocol. Section 4 illus-
trates some tests and results reached with HyMPI. Finally in section 5, we show the
conclusions and present some future works.

2 Related Work

The researches effort to integrate several MPI implementations, as to execute in clus-
ters environment as in grids, has produced results, among them are IMPI [3], PVMPI
[4], MPICH-G2 [5], PACX-MPI [6], STAMPI [7] and MetaMPI [8].

IMPI is a standard that defines rules and aspects of interoperability among dif-
ferent MPI implementations. LAM-MPI [9] implements this pattern, including the
daemon impid, responsible for the communication among the nodes of different
implementations.

In IMPI, there is a global nomination among the processes, that is, if there is a set
of n processes executing with implementation A (ranks from 0 to n-1) and m proc-
esses executing with implementation B (ranks from 0 to m-1), we will have processes
with rank between 0 and m+n-1. The IMPI architecture can be seen through Figure 1.

Fig. 1. IMPI Architecture

In this figure, we can notice two clients. Client 0 has 2 hosts executing a MPI im-
plementation and Client 1 has 1 host executing another MPI implementation. The
communication among the hosts of Client 1 is accomplished through MPI messages.
For a process of Client 0 to communicate with a process of Client 1, an intermediate
process is made necessary. This process, called server is responsible for interoperabil-
ity among the clients. A message of a process in Client 0 is sent to the server process
that forwards it to the process of Client 1.

The messages among clients of different MPI implementations pass, obligatorily,
through the server. Besides the message forwarding, authentication protocols, service
negotiation and data security among the clients.

316 F.I. Massetto, A.M. Gomes Junior, and L.M. Sato

PACX-MPI also has a global numbering schema accessible for all the process,
however, PACX-MPI implements interoperability among “pseudo-mpi” processes. It
means, for each different MPI implementation, the process of rank 0 and 1 are
responsible, respectively, for sending and receiving messages of process of other im-
plementations. This communication is made via TCP, where the process 0 from im-
plementation A connects itself to process 1 from implementation B and vice-versa. As
well as in IMPI, there is a local numbering (for each implementation) and a global
numbering (including all implementations), as can be seen in Figure 2.

Fig. 2. PACX-MPI Communication model

In this figure, there are two MPPs (Massive Parallel Processors), each one running a
MPI implementation. It can be noticed that the processes represent by circles are local
numbering of each MPI implementation and the process represent by squares are the
ones of global numbering, unassuming the processes 0 and 1 of each implementation.

This way, if process 3 (global) needs to send a message to process 5 (global), the
message is sent to process 0 (local to MPP1) via MPI. The process 0 of MPP1 sends,
via TCP/IP the message to process 1 (local to MPP2) that forwards it to process 5
(global).

MPICH-G2 is a MPI implementation, based on MPICH implementation of Argone
Lab, for Grids environments, which uses services from Globus Toolkit 3 [10].
MPICH-G2 can be used in two distinct scenarios: in the first scenario there is a cluster
of workstations with nodes executing different operating systems and/or MPI imple-
mentations. The second scenario illustrates a set of MPPs (Massive Parallel Proces-
sors) dispersed through a WAN that can be integrated to increase performance.

This way, MPICH-G2 creates a mesh of connections among the several processes
to make possible the communication, as shows Figure 3. For a MPI application uses
the MPICH-G2 resources, it is necessary that some services of Globus Toolkit’s infra-
structure are installed and available, in the workstations and in MPP.

Finally, PVMPI has a hybrid communication model, where MPI is used for intra-
cluster communication and PVM [11] for inter-cluster communication. This way,
PVM processes work as a “bridge” among several MPI implementations.

 HyMPI – A MPI Implementation for Heterogeneous High Performance Systems 317

Fig. 3. MPICH-G2 Architecture

3 HyMPI – Hybrid MPI

Hybrid MPI [2] is an execution time system that aims to integrate nodes that execute
different operating systems and MPI implementations. Besides, it possible to integrate
computer clusters as nodes of this system.

The term “hybrid” was used to describe HyMPI, because HyMPI can be used in an
environment with mono and multiprocessor nodes. In case of monoprocessor nodes, it
can integrate nodes executing different operating systems and MPI implementations.
Among the multiprocessor nodes, HyMPI allows using a computer cluster, where the
nodes of this cluster also can execute different operating systems and different MPI
implementations.

The communication strategy in HyMPI is defined taking into account the existent
types of nodes. It means that are created mesh of connections among the nodes that
have different MPI implementations and/or Operating Systems. In case of a node be a
cluster, there is a process in the front-end machine, that we will call GATEWAY, re-
sponsible for the forwarding of messages for the others nodes that compose the cluster.

This way, all the nodes will create connections amongst them and with the
GATEWAY process to communicate with the nodes belonging to the cluster.

3.1 System Architecture

To exemplify the HyMPI architecture, let us take as example a system formed by: a
SMP machine with 4 processors, a Linux operating system and LAM-MPI (A). A ma-
chine SMP with 4 processors also, Windows Operating System and MPI-Pro (B) and,
finally, a heterogeneous cluster with 16 nodes, 8 of them with Windows and MPICH
library and the other 8 nodes with Linux and MPICH library (C).

Each MPI implementation has a MPI_COMM_WORLD communicator that identi-
fies its processes from 0 to n-1. Supposing that there is, in this case, a process for each
processor, we would have 4 distinct process numbering: from 0 to 3 in systems A and
B and twice from 0 to 7 in system C, due to different implementations, as illustrates
Figure 4.

318 F.I. Massetto, A.M. Gomes Junior, and L.M. Sato

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

4 5

6 7

4 5

6 7

MPI_COMM_WORLD

A

MPI_COMM_WORLD

B

 C and D

System A: SMP Machine (4 processors)
running Linux and LAM-MPI
System B: SMP Machine (4 processors)
running Windows and MPICH
Systems C and D: Cluster composed by
Linux and Windows nodes running,
respectively, MPICH and MPI-Pro

MPI_COMM_WORLD MPI_COMM_WORLD

Fig. 4. Different Systems running combinations of Operating Systems and MPI implementations

Considering the heterogeneity of the environment, we would have 4 different proc-
esses numberings, taking into account the MPI implementation in each one of the en-
vironments. HyMPI uses the models adopted in IMPI and PACXMPI creating a
global numbering for all processes. In this scenario and, considering a process for
each processor, we would have a process numbering from 0 to 23.

The communication among several processes in HyMPI is accomplished creating a
communication mesh among all the processes. However, for the nodes inside of a
cluster, there is the need of a message to be forwarded through the cluster front-end
machine. It means that there is a process in the cluster front-end machine, called
GATEWAY, responsible for forwarding the messages inside and out of the cluster.

Fig. 5. Global processes numbering using HyMPI

 HyMPI – A MPI Implementation for Heterogeneous High Performance Systems 319

This way, all the nodes that are not part of the cluster should maintain connections
with the GATEWAY process, as well as the nodes that are part of the cluster, as
shows Figure 5.

In this figure, we can notice that the nodes that are not part of the cluster, but exe-
cute different Operating Systems and MPI implementations create a mesh of connec-
tions, amongst themselves and also with the GATEWAY process, located in the
cluster font-end machine. As the cluster of Figure 5 is also composed of heterogene-
ous nodes, communication meshes are created among these nodes and also with the
GATEWAY process. In that way, every message that enters or leaves the cluster,
obligatorily pass through the GATEWAY process.

3.2 Architecture of An Application That Uses HyMPI

As said previously, HyMPI is a set of libraries of execution time that must be con-
nected to the MPI application. An advantage of this model is that HyMPI maintain the
compatibility with the MPI interface, avoiding rewriting the code. On the other hand,
the application should be recompiled and re-linked with the libraries. Figure 6 shows
the architecture of a HyMPI application.

Fig. 6. Architecture of an Application that uses HyMPI

As it can be noticed in the figure, the communication among the processes of same
implementation is done through a MPI native interface (vendor MPI) and the whole
communication among the nodes of different Operating Systems and/or MPI imple-
mentations is accomplished through the Sockets TCP/IP API.

HyMPI offers a set of primitives in ANSI C that includes:

− Initialization and finalization of the environment
− Blocking and Non-Blocking Point-to-Point Communication
− Collective Communication

Besides, some utility and environment control functions were developed, aiming to
offer larger resources in the development of MPI applications.

 HyMPI – A MPI Implementation for Heterogeneous High Performance Systems 321

3.3.3 Collective Communication
HyMPI follows the same collective sending specification defined in IMPI. A two
phase’s protocol is used, where there are a global and a local phase. Figure 7 shows
the operation of the MPI_Bcast primitive.

Supposing that the process of rank “0” (global) wants to broadcast a message. In
the first phase of the protocol (global phase), it sends a message to all the processes of
rank 0 of each implementation (called local root).

This sending can be made directly (through the point-to-point channel for proc-
esses in a same sub-network) or through the gateway (for processes in different sub-
networks).

After all the local root nodes receive their respective copies of the message, they
are responsible for doing the Broadcast among their pairs of same implementation.
This second phase is called local phase.

4 Development and Tests

In the test phase, some parallel algorithms were implemented to test the communica-
tion viability in HyMPI. The environment of tests included systems composed of ho-
mogeneous and heterogeneous workstations and systems composed of workstations
and a heterogeneous cluster. In this developing stage, versions of Windows-
compatible and Linux-compatible libraries were implemented, intending to extend for
a larger variety of operating systems. The tested system is composed by two SMP
machines, each one running a different operating System (Windows and Linux) and
different MPI implementations (MPIPro and MPICH, respectively) and a heterogene-
ous cluster, composed by eight nodes, where four of them are running Windows and
MPICH and the other four nodes running Linux and LAM-MPI. The gateway ma-
chine is running Windows.

Among the developed algorithms, stands out the HEAT2D [12], based on a simpli-
fied two-dimensional heat equation domain decomposition. An array contains cells
that indicate heat in a metal foil. The boundaries are held at zero throughout the simu-
lation. During the time-stepping, an array containing two domains is used; these do-
mains alternate between old data and new data.

This parallel version uses a master-slave approach, where the grid is decomposed
by the master process and then it is distributed in lines for the slaves. To each instant
of time the slave processes should change the data of their borders with their
neighbors, because the effective temperature of each point of the grid depends on the
values of the instant of previous time, added of their neighbors' values. When the task
is completed by the slave, it returns its results to the master process.

In this algorithm, point-to-point primitives (MPI_Send e MPI_Recv) are used to
communicate the slaves with their neighbors and the MPI_Barrier primitive is used to
synchronize all the slaves with the master process.

Another algorithm is a parallel version of MergeSort [13], that also uses a master-
slave approach for distribution and accomplishment of tasks and makes use of point-
to-point and collective primitives for tasks distribution from the master. Finally, a
Matrix Multiplication algorithm with point-to-point primitives was also used.

Table 1 shows some execution times obtained with both algorithms.

322 F.I. Massetto, A.M. Gomes Junior, and L.M. Sato

Table 1. Execution times (in seconds)

Algorithm Test A Test B Test C Test D
Heat2D 70.187 66.231 72.514 80.749
MergeSort 15.880 13.983 16.003 20.830
Matrix Multi-
plication
(1000x1000)

11.008 8.503 11.632 13.065

Matrix Multi-
plication
(2000x2000)

66.019 57.688 62.850 72.140

The Test A is a homogeneous system, composed by nodes with Linux and LAM-
MPI. Test B is another homogeneous system composed by nodes with Windows and
MPI-PRO. Test C is a heterogeneous cluster only with nodes monoprocessor running
Linux with LAM and Windows with MPICH. Finally Test D is a heterogeneous sys-
tem, composed by workstations running Windows with MPICH, workstations running
Linux and LAM and a heterogeneous cluster, with nodes running Windows and MPI-
Pro and Linux with MPICH.

As seen in Table 1, Test D has greater execution times because most of messages
between slaves must go through Gateway process, and it becomes a bottleneck.

5 Conclusions and Future Work

This paper presented HyMPI, a MPI-compatible message-passing interface that al-
lows integration, in a single system, several SMP nodes, each one running a different
Operating System and/or MPI implementation. Besides that, it’s possible to have, as a
node, homogeneous and heterogeneous clusters (i.e., clusters with nodes running dif-
ferent OS and MPI implementations).

Comparing qualitatively HyMPI with other implementations, can be noticed some
differences and similarities. Similarities are related to the process numbering, as see-
ing in MPICH-G2, PACX-MPI and IMPI Standard. The more significant difference
among HyMPI and the other implementations is the capability to integrate SMP ma-
chines, homogeneous and heterogeneous clusters as nodes of the system. To accom-
plish this feature, HyMPI combines different strategies, which are present in MPICH-
G2, PACX-MPI and IMPI, i.e., creating meshes of connections among process
running different OS and MPI implementations, and having a process to forward mes-
sages between nodes inside and outside clusters. The gateway process, considering
clusters features, is a bottleneck for the communication.

The quantitative analysis of the obtained results shows that HyMPI is viable, be-
cause communication among different nodes was possible, considering point-to-point
and collective communication. However more detailed comparative analysis between
HyMPI and the other implementations will be performed. Besides that, other MPI
primitives will be implemented in order to increase the compatibility between HyMPI
and the MPI standard.

 HyMPI – A MPI Implementation for Heterogeneous High Performance Systems 323

References

1. SNIR M., GROPP W., “MPI the Complete Reference”. The MIT Press (1998).
2. MASSETTO, F. I., SATO, L. M., GOMES, A. M., “HMPI – Hybrid MPI”. 14th IEEE In-

ternational Symposium on High Performance Distributed Computing, 2005.
3. GEORGE, W., HAGEDORN, J., DEVANEY, J.: “IMPI: Making MPI Interoperable”.

Journal of Research of the National Institute of Standards and Technology. Vol 105.
(2000).

4. FAGG, G., DONGARRA, J., GEIST, A., “Heterogeneous MPI Application Interoperation
and Process management under PVMPI”, Recent Advances in Parallel Virtual Machine
and Message Passing Interface', (1997).

5. KARONIS, N., TOONEN, B., FOSTER, I.: “MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface”. Journal of Parallel and Distributed Computing (JPDC),
Vol. 63, No. 5, pp. 551-563 (2003).

6. GABRIEL E., RESCH M., RUHLE R.. “Implementing MPI with optimized algorithms for
metacomputing”. In Message Passing Interface Developer’s and Users Conference (1999).

7. IMAMURA, T., et al. “An architecture of Stampi: MPI library on a cluster of parallel
computers”. In Recent Advances in Parallel Virutal Machine and Message Passing Inter-
face, vol 1908 of Lecture Notes In Computer Science, (2000)

8. POEPPE, M, SCHUCH, S., BEMMERL, T.: “A Message Passing Interface Library for In-
homogeneous Coupled Clusters”. Proceedings of ACM/IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2003), Workshop for Communication Archi-
tecture in Clusters (2003)

9. LAM Team. LAM/MPI Parallel Computing, MPI General Information. Avaliable at
http://www.lam-mpi.org/mpi/

10. The Globus Project. Available at http://www.globus.org
11. GEIST A., BEGUELIN, A., “PVM Parallel Virtual Machine – A Users’ guide and tutorial

for networked parallel computing”. The MIT Press (1994).
12. BARNEY, B. Lecture notes. Available at http://carbon.cudenver.edu/csprojects/

csc5809F99/ mpi_examples/ 2d_heat_equation.html
13. JACKSON, B. Lecture Notes. Available at http://carbon.cudenver.edu/csprojects/

csc5809F99/mpi_examples/merge_sort.html

Performance Improvement by Data Management

Layer in a Grid RPC System

Yoshiaki Aida, Yoshihiro Nakajima, Mitsuhisa Sato,
Tetsuya Sakurai, Daisuke Takahashi, and Taisuke Boku

Department of System and Information Engineering, University of Tsukuba,
Tennodai 1-1-1, Tsukuba-shi, Ibaraki 305-8577, Japan

{aida, ynaka}@hpcs.cs.tsukuba.ac.jp,
{msato, sakurai, daisuke, taisuke}@cs.tsukuba.ac.jp

Abstract. A grid RPC system provides a useful and intuitive program-
ming interface for master-worker type applications in a grid environment.
In many grid applications, such as parameter search programs, both mas-
ter and workers are often required to have a large amount of common
data. Since in the RPC model the data must be transferred from the
master directly to each worker, the master is sometimes a bottleneck,
resulting in poor performance. In order to improve the performance in
such cases, we propose a model to decouple the data transfer by a data
management layer from the RPC programming. We have designed and
implemented a prototype data transfer layer called OmniStorage to Om-
niRPC, which is a grid RPC system for parallel programming in a grid
environment. This allows efficient data transmission of a large amount
of data by placing intermediate relay servers, taking the network topol-
ogy into account, to route the communication and cache the common
data in the server. We have evaluated the performance of the proposed
system by using synthetic workloads and a real grid application. The re-
sults show that OmniStorage can improve the performance of OmniRPC
applications compared to the case of using only OmniRPC.

1 Introduction

Recent advances in wide-area networking technology and infrastructure have made
it possible to construct large-scale, high-performance distributed computing envi-
ronments, or computational grids, that provide dependable, consistent and perva-
sive access to enormous computational resources. Grid technology enables
integration of the computing resources in the wide-area network and the shar-
ing of huge amounts of data distributed in several places. In order to make use
of computing resources in a grid environment, the RPC-style system is partic-
ularly useful in that it provides an easy-to-use, intuitive programming interface
that allows users of the grid system to easily make grid-enabled applications. Sev-
eral systems adopt Grid RPC as a basic model of computation, including Ninf[9],
NetSolve[2] and CORBA[5]. We are currently developing a grid RPC system called
OmniRPC[6][7] for parallel programming in cluster and grid environments.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 324–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Improvement by Data Management Layer 325

Grid RPC provides an effective programming model for typical grid applica-
tions, such as parametric search programs and task parallel programs. In these
programs, a grid RPC program is composed of a master that performs remote
procedure calls in parallel and several workers that execute the procedures called
by the master in remote nodes. In many cases, programs are required to share
a large amount of data among the workers. For instance, in some parametric
search applications, the workers often have the same common data, and then re-
ceive different parameters from the master to execute different computations at
remote nodes in parallel. In the RPC model, communication occurs only between
the master and a worker when the master issues the remote procedure call and
receives the results from the invoked remote procedure. Since the master sends
data to every worker as arguments of remote procedure calls, the master may
become a bottleneck when the the data size is large. Furthermore, if an RPC
system does not support data persistence in workers, which cannot hold any
data between calls, the master must send the same data at every call.

In this paper, we propose a programming model to decouple the data trans-
mission from the RPC model to allow the data to be transferred efficiently
according to the usage of data and the network topology. In particular, we focus
on efficient data transfer from the master to the workers, which often is re-
quired in many typical grid applications. We have designed and implemented a
prototype data transfer layer for the OmniRPC grid RPC system called OmniS-
torage. OmniStorage can improve the data transfer by arranging intermediate
servers that relay data at appropriate nodes between the master and worker in a
network. This allows data transfer routing that takes the network topology into
account. The data can be cached in an intermediate relay server located between
the master and worker where the master calls a number of procedures with the
same data. For example, a typical computing resource in a grid environment is
a cluster of PCs. By setting a relay server at the master node of the cluster, a
data may be cached in the master node so that the data can be shared by a fast
network inside the cluster.

The OmniRPC provides a partial data persistence facility called “automatic-
initializable remote module” to hold only data given by an initialize function of
the remote executable module. This allows multiple transmission of the same
initial data to be avoided. However, the data must be sent directly from the
master to each worker when the remote module is invoked. If the initial data is
large, the master may be a bottleneck. Furthermore, since the remote modules
are invoked on demand, the invocation of workers is sometimes delayed, resulting
in poor scalability. Decoupling data transmission by OmniStorage from RPC
calls can make the invocations of remote modules faster.

Beck, et al.[1] proposed a general framework to combine NetSolve and IBP for
the use of storage in grid RPC programming. Del-Fabbro, et al.[4] presented a
data management scheme in their grid RPC system, DIET. While the DIET data
management is designed on top of the DIET infrastructure, we have designed
the data transfer layer as a different layer from OmniRPC, focusing on the data
transfer from the master to the workers. Our contributions are as follows:

326 Y. Aida et al.

– We propose a model to decouple the data transmission from the RPC for typ-
ical grid applications, which are required to have a large amount of common
data.

– We have designed OmniStorage as a prototype data transfer layer for Om-
niRPC and have evaluated the performance by synthetic workloads and a
real grid application in our grid testbed. Our application is a master-worker
parallel eigenvalue computation, which requires only one minute per job with
50 MB of initial data.

– The performance improvement by using OmniStorage is shown by comparing
the results of tests conducted with and without OmniStorage.

The next section presents an overview of OmniRPC. Section 3 presents the
proposed model that decouples the RPC layer into RPC invocation and data
transfer. Section 4 describes the implementation of the newly developed Om-
niStorage. The performance of OmniStorage is evaluated in Section 5. Section 6
describes previous works related to the present study. Finally, Section 7 presents
our conclusions and future works.

2 Background: A Grid RPC System OmniRPC

OmniRPC is Grid RPC programming middleware that exploits computing re-
sources that are geographically distributed with an intuitive programming inter-
face. The OmniRPC system inherits Ninf’s APIs[8]. One of the target execution
platforms of OmniRPC is a cluster-of-clusters, in other words, OmniRPC han-
dles multiple clusters as a virtualized cluster. OmniRPC supports the parallel
master/worker programming model, so the user can use asynchronous call APIs
in order to create a parallel program. OmniRPC also provides both simple pro-
cedure call APIs and APIs with data persistence. Simple procedure call APIs do
not specify any hosts, and the system automatically allocates idle nodes for the
procedure call. APIs with data persistence allows the worker to hold the state
between different calls so that multiple data transmissions of the same data are
avoided. Although data persistence allows efficient execution, the master has to
manage the location of the remote node.

OmniRPC provides data persistence through the “automatic-initializable re-
mote module” facility to hold only data given by an initialize function of the
remote executable module. Any remote procedure in the module can use the
initial data by a simple procedure call API once the module is invoked with
the initialize function. This allows both flexible allocation of remote nodes and
efficient execution by data persistence.

OmniRPC can multiplex the communication between the client process and
remote worker processes in order to enable the users to exploit clusters composed
by private address and to use thousands of remote hosts because the number of
connections in the client program is reduced.

Figure 1 shows an overview of OmniRPC. In this figure, the master is calling
the calculation node of the cluster by multiplexed connection. When the client
program is started, OmniRPC’s agent is invoked on the host specified in the host

Performance Improvement by Data Management Layer 327

agent

rexrex rex

Client

jones.tsukuba.ac.jp

hpc-serv.hpcc.jp

hpc1 hpc2 hpc3

Agent invocation

communicationNetwork

Fig. 1. OmniRPC Overview

configuration file of OmniRPC. Next, when the client program calls a remote
procedure, the agent runs the remote execution program at calculation nodes.
In the execution of an OmniRPC application, the executable module containing
the remote procedures are invoked on demand when the procedure is first called.

3 Decoupling Data Transfer from the RPC Model

In this section, we present a programming model to decouple the data transmis-
sion from the RPC model.

We have designed a prototype data transfer layer called OmniStorage to allow
the data to be transferred efficiently according to the usage of data and the
network topology.

3.1 RPC Parallel Programming with Data Transfer Layer:
OmniStorage

In the simple RPC model, communication occurs only between the master
and a worker when the master issues the remote procedure call and receives
the results from the invoked remote procedure. Even if the data sent to each
worker is the same, the master sends the data to the worker through one-to-one
communications.

Figure 2 shows a simple parallel program using OmniRPC asynchronous calls
for a master-worker parallel program.

When the size of the data is large, the master may become a bottleneck.
To solve the problem, we decouple the transmission of data from the RPC
model, and make use of the layer to transfer the common data. OmniStorage
is a data transfer layer for OmniRPC. Using OmniStorage, the master regis-
ters common data on this layer beforehand, after the workers receive the data
from this layer. Figure 3 shows an example using OmniStorage’s API. The mas-
ter calls “OmstPutData()” before asynchronous calls to the remote procedures to

328 Y. Aida et al.

/* master program */
int main(){

...

for(i = 0; i < n; i++){
req[i]=OmniRpcCallAsync("MyProcedure", i,

data, results);
}
OmniRpcWaitAll(n, req);
...

}

/* worker’s IDL */
Define MyProcedure(int IN parameter,

IN data[], OUT results[]){

/* Program in C */
...

}

Fig. 2. A sample program using only Om-
niRPC asynchronous calls

/* master program */
int main(){

...
OmstPutData("MyData",
data, OMST_INTEGER * DATALEN);

for(i = 0; i < n; i++){
req[i]=OmniRpcCallAsync("MyProcedure", i);

}
OmniRpcWaitAll(n, req);
...

}

/* worker’s IDL */
Define MyProcedure(int IN parameter){

OmstGetData("MyData",
data, OMST_INTEGER * DATALEN);

/* Program in C */
...

}

Fig. 3. A sample program using the API
of OmniStorage

register the data, and then the workers can call “OmstGetData()” to retrieve
the data before calculation. To identify data, the master and worker access data
by a unique name ”MyData” along with its size. OmniStorage also provides APIs
that transfer a file by its directory path.

Compared to the case of using only the RPC shown in Figure 2, OmniStorage
can improve the data transfer by arranging intermediate servers that relay data
at appropriate nodes. For example, if the workers are nodes in a PC cluster,
OmniStorage can optimize communication by setting the relay server at the
master node of the cluster. Once the data is transferred and cached in the server
through a wide area network, the data is then transferred to the worker nodes
using the fast network of the PC cluster. Since the master may send the data
only once, the master will no longer be a bottleneck.

The APIs of OmniStorage are summarized as follows:

– int OmstPutData(const char *dataname, const void *data, int datasize);
OmstPutData() puts the data indicated by “data” into the cache at the host
wh

– int OmstPutFile(const char *dataname, const char *path);
OmstPutFile() puts the data into the cache. The source of the data is not
the m

– int OmstGetData(const char *dataname, void *data, int datasize);
OmstGetData() retrieves the data from OmniStorage system and writes data
into t

– int OmstGetFile(const char *dataname, const char *path);
OmstPutFile() retrieves the data from the OmniStorage system and writes
the dat

Performance Improvement by Data Management Layer 329

OmniRPC invocation
Data transfer

Execution time
Idle

Never used !

Fig. 4. Problem with a large amount of initial data in OmniRPC. This figure shows
a timing chart for the case of a parallel program executed by OmniRPC on eight
calculation nodes. This application has 16 jobs. As shown, if the initialization takes a
long time, the chart will become sparse.

3.2 Problem of Applications Requiring a Large Amount of Initial
Data

In parallel applications such as parametric search, the input data needed by a
remote program can be separated into two parts: the initial data and parame-
ters. While the initial data is the same for every worker and is often large, the
parameters are small.

To support such a application, the OmniRPC has a facility for transferring
initial data when invoking a remote program. This facility enables the reuse of
the initial data at other RPCs, removing multiple transmission of the same data.
In the current implementation of OmniRPC, the workers are invoked on demand
when the actual calls are performed so that its invocation process is serialized.
When the amount of initial data is large, it takes longer to invoke all of the
remote programs as the number of workers increases. This sometimes limits the
scalability of OmniRPC programs. Figure 4 shows a typical situation that occurs
in sucases. By decoupling the data transfer for a large amount of initial data by
using OmniStorage, we can reduce the time to invoke all workers.

4 Implementation of OmniStorage

In this section, we describe the implementation of OmniStorage.
Figure 5 shows that dataflow in OmniStorage. There are tree kinds of com-

ponents, as follows:

– The node denoted “C” is an OmniRPC client host that submits jobs to
workers.

– The node denoted “W” is a worker host that executes a job for a called
procedure. The node denoted “R” is a relay host that relays data transfer
between client host and worker host.

When a PC cluster is used for a pool of workers, it is useful for the relay host
to be set up at the master node of a PC cluster. In OmniStorage, the connection

330 Y. Aida et al.

W
W

W

W

R

C

W
W

WW

RW
C : Client host
R : Relay host

 : Worker host

Cluster A

Data requestData transfer

Cluster B

: Cache

Fig. 5. Dataflow in OmniStorage

Worker
Process

Cache

Omst-server Client
Program

Omst-api

Cache

Omst-server

Omst-api

(1)

(2)

(3)

(4)

(6)

(7)

(5)

Worker host Client host

Cache

Omst-server

(6)

(6)

(7)

(7)(8)

Relay host

(9)

Data

Request

OmniRPC
Invocation

Fig. 6. Behavior of OmniStorage

to each host forms a tree topology without any cycle. Data is transferred from
the root, and all hosts can cache received data.

Figure 6 illustrates the behavior of OmniStorage system. Hereinafter, the
number enclosed with parentheses corresponds to the number in this figure. In
addition, ”Omst-server” and ”Omst-api” indicate OmniStorage’s server process
and its API, respectively.

(1) The client program registers data to the cache in master hosts by Omst-api.
(OmstPutData)

(2) The remote program is invoked by OmniRPC. (OmniRpcCallAsync)
(3) The invoked remote program checks whether the requested data is in the

local cache. If the data is not found, Omst-api sends a request for the data
to the local Omst-server.

(4) The Omst-server receives the request from Omst-api, and requests the data
from the Omst-server at an upstream relay host.

(5) The Omst-server in the upstream relay host checks if the requested data is
in the local cache. If the data is not found, the Omst-server again requests
the data from the Omst-server at its upstream client host.

(6) The Omst-server at the client host retrieves the data from the local cache
and sends it to the relay host. The data is stored in the cache of the relay
host.

(7) The Omst-server at the relay host retrieves the data from the local cache,
and sends it back to the worker host. The data is stored in the cache of
worker host.

(8) The Omst-server sends a response to the Omst-api.
(9) The Omst-api reads the data from local cache and stores it in memory.

A series of operations from (1) to (9) are executed when no data is found in
either the worker host or the relay host. If the data already exists in the cache
of worker host, it executes from (3) to (9). On the other hand, if the data exists
in the cache of the relay host, it executes from (5) to (7). As a result, a job
executed first in a worker executes all steps from (1) to (9) because none of the
remote hosts have data at the beginning, except the client host. However, the

Performance Improvement by Data Management Layer 331

job that uses the same existing data uses the cache on the way to the client host.
In particular, when the same worker executes the second job, Omst-api can read
the local cache directly. In this case, the OmniStorage system is not accessed.

5 Performance Evaluation

5.1 Experimental Setting

For the experiment, we used two PC clusters connected by different networks.
In addition, we used two hosts as clients: cTsukuba and cTitech. Those host
nodes are located at the University of Tsukuba and at the Tokyo Institute of
Technology, respectively. Table 1 shows the experimental setup. Figure 7 shows
the network bandwidth between hosts and clusters.

Table 1. Machine configurations in the grid testbed

Site Cluster Name Machine Memory Network Nodes

HPCC.JP Dennis Dual Xeon 2.4 GHz 1 GB 1 Gb Ethernet 16
Univ. of Tsukuba Kaede Dual Xeon 3.2 GHz 2 GB 1 Gb Ethernet 64

691.0

295.0

78.3

[Mb/s]

cTitech cTsukuba

Kaede

Dennis

Fig. 7. Network bandwidth

5.2 Basic Performance

We measured the basic performance and characteristics of OmniStorage using
a synthetic program that models an RPC application with OmniRPC’s data
transmission mechanism. This program sends a certain amount of initial data
from master to worker processes. We changed initial data size and the execution
time per RPC, which are simulated by sleep system call.

We compared the performance of two versions of model program: “OmniRPC
+ OmniStorage” and “OmniRPC only”. “OmniRPC + OmniStorage” used Om-
niStorage to transfer initial data, and “OmniRPC only” transferred initial data
by using OmniRpcModuleInit.

We varied the size of transferred data as 1, 16, 128, 512 and 1,024 MB and
the execution time of one RPC as 5, 60 and 300 seconds, respectively. A total
of 32 RPCs were to be performed, and 16 calculation nodes were used with an
OmniRPC agent process at each cluster. We used “cTitech” and “Dennis” for
the client host and the cluster, respectively.

332 Y. Aida et al.

Fig. 8. Performance for an execution time
of 5 seconds

Fig. 9. Performance for an execution time
of 60 seconds

Fig. 10. Performance for an execution time of 300 seconds

Figures 8, 9 and 10 show the execution time and speed up ratio based on
the time for using only OmniRPC with the same configuration. OmniStorage
can reduce the execution time for all data sizes, especially in the case of 1,024
MB data transmission. The larger the data transmission, the greater the im-
provement by OmniStorage. The execution time increases rapidly by using only
OmniRPC when the data size exceeds 512 MB.

5.3 Master-Worker Parallel Eigenvalue Solver

We examined the scalability of OmniStorage with respect to the number of cal-
culation nodes using master-worker parallel eigenvalue solver program[11]. This
program is used to solve large-scale eigenvalue problems in parallel by solving
the equation that corresponds to a point on the circumference in the complex
space. In this experiment, we compared the performance of multiple clusters and
a single cluster. We used the data set in which the degree of parallelism is 80 for
both cases. The number of the eigenvalue computation worker to 80.

First, we evaluated the scalability in only the Kaede cluster acceding to the
number of nodes used. Figure 11 shows the execution time and speed up ratio
based on the execution time in one node on the Kaede cluster. We found that
OmniStorage improved the performance up to 32 nodes. On the other hand,
there were limited improvements in the performance of the application beyond
16 nodes when only OmniRPC is used without OmniStorage. This is because the

Performance Improvement by Data Management Layer 333

Fig. 11. Execution time and speed up of par-
allel eigenvalue calculation program

Fig. 12. Comparison of execution
time of parallel eigenvalue calculation
program by number of clusters

execution time of the eigenvalue calculation job changes widely and the degree
of parallelism of the data-set that was used is limited to 80.

Next, we examined the performance of OmniStorage at two clusters. We used
both cTsukuba and Kaede. Figure 12 shows the execution time of the program
using two clusters. The speed-up when using only OmniRPC remains approxi-
mately 1.06 times when only the Kaede cluster is used. However, the speed-up
when OmniStorage is used is 1.58 times that when only the Kaede cluster is
used. We found that OmniStorage improves the performance when using multi-
ple clusters.

6 Related Works

NetSolve[2] can treat persistent data by using two components of Distributed
Storage Infrastructure (DSI) and RequestSequencing in the process in which
RPC is called. DSI manages the arrangement of the data that the program on
the callee side uses and makes the data transfer from the client program to the
worker program efficient by using the cache.

IBP[1] is middleware for large-scale data transfer in grid applications that pro-
vides users with sharing of storage resources and allows client processes to ma-
nipulate the state of data by using several APIs, such as IBP allocate, IBP store
and IBP load. The greatest difference between IBP and OmniStorage is the de-
gree of allowance for data management by client process. In IBP, users should
consider the data location during programming. In contrast, transferring and
managing data is done automatically by OmniStorage.

DIET[4] manages the persistent data by using the data identifier. If data is
sent from the client once, then the Agent can manage thereafter and the data
is used on the callee side. The management of data has been achieved by using
two components: a Logical Data Manager and a Physical Data Manager. The
Logical Data Manager manages data identifier information on an Agent mounted
with CORBA. The Physical Data Manager manages actual data. This system is

334 Y. Aida et al.

developed for a program constructed with a directed acyclic graph and has not
yet been applied to real applications.

7 Conclusion and Future Work

In the present paper, we have proposed a model to decouple the data transfer by
a data management layer from the RPC programming for sharing larges amounts
of common data. We designed and implemented a prototype data management
layer, OmniStorage, that transfers common initial data according to the network
configuration. We found that OmniStorage achieved efficient initial data transfer
to workers and that using OmniStorage together OmniRPC can improve the
performance of applications with large-scale initial data transfer. Moreover, we
showed that several computer resources on the wide-area network can be used
as scalable when OmniStorage accompanies the transmission of large-scale data
in the programming model of master/worker type applications.

The current design of OmniStorage focuses on only the distribution of data
from master to worker. We will extend this to include a function to collect the
data of the calculation results. For example, an application such as Phylogenetic
Analysis by Maximum Likelihood (PAML) programs needs to collect very large
result data. At the same time, we will employ an efficient lookup mechanism such
as a distributed hash table (DHT) for the data storage in large scale environment.

Since the data management layer can be replaced with the same OmniStorage
APIs, we will exploit the possibility of using Bittorrent[3] or Gfarm[10] as the
data transfer layer.

References

1. Alessandro Bassi, Micah Beck, Terry Moore, James S. Plank, Martin Swany, Rich
Wolski, and Graham Fagg. The internet backplane protocol: a study in resource
sharing. Future Gener. Comput. Syst., 19(4):551–562, 2003.

2. H. Casanova and J. Dongarra. Netsolve: A network server for solving computational
science problems, 1996.

3. B. Cohen. Incentives build robustness in bittorrent, 2003.
4. Bruno Del-Fabbro, David Laiymani, Jean-Marc Nicod, and Laurent Philippe. Data

management in grid applications providers. In DFMA ’05: Proceedings of the First
International Conference on Distributed Frameworks for Multimedia Applications
(DFMA’05), pages 315–322, 2005.

5. Object Management group. http;//www.omg.org.
6. Mitsuhisa Sato, Taisuke Boku, and Daisuke Takahashi. OmniRPC:grid RPC sys-

tem for parallel programming in grid environment. IPSJ Transactions on Com-
puting System, Vol. 44(No. SIG11 (ACS 3)):34–45, 2003.

7. Yoshihiro Nakajima, Mitsuhisa Sato, Taisuke Boku, Daisuke Takahashi, and Hi-
toshi Gotoh. Performance evaluation of omnirpc in a grid environment. In SAINT-
W ’04: Proceedings of the 2004 Symposium on Applications and the Internet-
Workshops (SAINT 2004 Workshops), page 658, 2004.

8. Ninf Project. http://ninf.apgrid.org/.

Performance Improvement by Data Management Layer 335

9. M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi.
Ninf: A network based information library for global world-wide computing infras-
tructure, 1997.

10. Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, Noriyuki Soda, and Satoshi
Sekiguchi. Grid datafarm architecture for petascale data intensive computing. In
CCGRID ’02: Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, page 102, Washington, DC, USA, 2002. IEEE
Computer Society.

11. Tetsuya Sakurai, Hiroto Tadano, Kentaro Hayakawa, Mitsuhisa Sato, Daisuke
Takahashi, Umpei Nagashima, Yuichi Inatomi, Hiroaki Umeda, and Toshio Watan-
abe. A master-worker type parallel method for large-scale eigenvalue problems.
IPSJ Transactions on Computing System, Vol. 46(No. SIG7):1–8, 2005.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 336 – 345, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Effective Dynamic Replica Maintenance Algorithm
for the Grid Environment

Rashedur M. Rahman1, Ken Barker1, and Reda Alhajj1,2

1 Department of Computer Science, University of Calgary, Calgary, AB, Canada
2 Department of Computer Science, Global University, Beirut, Lebanon

{rahmanm, barker, alhajj}@cpsc.ucalgary.ca

Abstract. Replication in Data Grid reduces access latency and bandwidth con-
sumption by creating multiple data copies. One of the challenges in data repli-
cation is to select the candidate sites where replicas should be placed, which is
known as the allocation problem. One performance metric to determine the best
place to host replicas is select for optimum average response time. We use the
p-median model for the replica placement problem. The p-median model has
been exploited in urban planning to find locations where new facilities should
be built. In our problem, the p-median model finds the locations of p candidate
sites to place a replica that optimize the aggregated response time. Motivated by
the fact that the Grid environment is highly dynamic, we propose a dynamic
replica maintenance algorithm that re-allocates replicas to new candidate sites
when a performance metric degrades significantly. Simulation results demon-
strate that the dynamic maintenance algorithm with static placement decisions
performs best in dynamic environments like Data Grids.

1 Introduction

The term “Grid” is derived from an analogy to the electrical power supplier in the
sense that it has pervasive access to power and can draw any resources from the dis-
tributed resource pool. Thus, a household draws electricity from power sockets irre-
spective of their physical location and the location of access points [9]. Foster et al. [8]
define the Grid concept as “coordinated resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations”. Grid computing accommodates very
diverse resource types including storage devices, CPU power, files, special cases of
devices such as sensors, radio telescopes, satellite receivers, and others. These re-
sources may be distributed across many organizations among different geographical
locations. Large scientific initiatives such as global climate change, high energy phys-
ics, and computational genomics require large data collections which are now being
crated in various locations. Data replication is critical as Data Grids are developed to
permit data sharing across many organizations in geographically disperse locations
[13]. The general idea of replication is to store copies of data in different locations so
that data can be easily recovered if one copy at one location is lost or unavailable.
Moreover, if data can be kept close to users via replication, data access performance
can be improved dramatically. Replication facilitates load balancing and improves

 Effective Dynamic Replica Maintenance Algorithm for the Grid Environment 337

reliability by creating multiple data copies. However, the files in the Grid are large
(i.e., 500MB-1GB) so replication to every site is infeasible. One of the challenges is
to locate the candidate sites for replica placement. One approach is to place replica at
sites that optimize aggregated response time. Response time is calculated by multiply-
ing the number of requests at site i with the distance between the nearest replication
site to the requester. The sum of the response times for all sites constitute the aggre-
gated response time. We will use the terms total response time and aggregated re-
sponse time interchangeably throughout this research. We propose a p-median model
[10] that finds the locations of p candidate sites to place a replica that will minimize
the aggregated response time. However, the optimization problem is NP-hard so a
large network requires an unacceptable computation time without directing to the
optimal solution [5]. Therefore, heuristics are needed that can generate optimal/near-
optimal solutions for the p-median model. The Lagrangean Relaxation technique is
one popular heuristic technique because it provides bounds on the objective function.
Lagrangean technique solves the p-median model by locating p candidate sites to
place replicas optimally. The Grid environment is highly dynamic where user requests
and network latency vary constantly. Candidate sites that hold replicas currently may
not be the best sites to fetch replicas subsequently. Thus, we propose a dynamic
replica maintenance algorithm that first finds the optimal/near-optimal cumulative
aggregated response time for certain K periods by allowing relocation with a positive
transportation cost, and then compare it with current cumulative aggregated response
time. The current response time is calculated by adding aggregated response time for
K periods assuming that replicas are placed at sites that provide the optimal value
using p-median at period K=1. The relocation decision is then made based on the
comparison, i.e., if the difference is greater than an allowable threshold.

The rest of the paper is organized as follows. Section 2 presents related work. Op-
timal static replica placement strategy is discussed in Section 3. Dynamic replica
maintenance strategy is presented in Section 4. The simulation model is described in
Section 5. Section 6 evaluates and compares the replication strategies. Section 7 con-
cludes and indicates possible future research directions.

2 Related Work

Kavitha et al. [11] propose a strategy for creating replicas automatically in a generic
decentralized peer-to-peer network. The goal of their model is to maintain replica
availability with some probabilistic measure. Ranganathan and Foster [13] discuss
various replication strategies for a hierarchical DataGrid architecture. They test six
different replication strategies. Kavitha et al. [12] develop a family of job scheduling
and replication algorithms and use simulation studies to evaluate them. Three differ-
ent replica placement algorithms are considered and combined with four scheduling
strategies. They show that when there is no replication, simple local scheduling per-
forms best. However, when a replication is used scheduling jobs to sites containing
the required data is better. The key lesson for our study is that dynamic replication
reduces hotspots created by popular data and enables load sharing. OptorSim [1] is a
simulator developed as a part of European DataGrid project to carry out different

338 R.M. Rahman, K. Barker, and R. Alhajj

replication and scheduling algorithms. The simulator uses an economic model in
which sites buy and sell files using an auction mechanism.

Several research efforts [1, 12, 13] only consider user requests for replica place-
ment and ignore network latencies. However, network bandwidth plays a vital role in
large file transfers. Substantial transfer time is saved if we place file replicas at
neighboring sites with limited bandwidth but high request rates. Earlier work [14]
shows that considering both the current network state and file requests produce better
results than file requests times alone. The replication algorithm selects one site per
iteration to host replica by optimizing risk or utility indexes. In this research we ex-
tend our earlier work to account for spiky request patterns by locating p candidate
sites simultaneously rather than one site per iteration. Besides, we propose a dynamic
replica maintenance algorithm to relocate replicas to new sites if performance metric
degrades significantly.

3 Static Replica Placement Algorithm

Our objective is to find the p best candidate (replication) sites such that the total re-
sponse time for all of the requesting sites is minimized. The identified problem is
closely analogous to the p-median model [10] used extensively for facility location
problems in urban planning. In the following sections we formally restate the model
and provide a heuristic based approach that leads to optimal/near-optimal solution for
our replica placement problem.

3.1 P-Median Model

The p-median model is formulated with the following equations:

Minimize
= =

n

i
ij

n

j
iji ydh

1 1

 (1)

Subject to px
n

j
j =

=1

 (2)

,1
1

=
=

n

j
ijy ni ,.....,1= (3)

,0≤− jij xy ni ,.....,1= nj ,.....,1= (4)

(),1,0∈jx nj ,.....,1= (5)

(),1,0∈ijy nj ,.....,1= ; ni ,.....,1= (6)

=
otherwise 0

 siten replicatio toallocated is site requesting if 1 ji
yij

 (7)

The objective function (1) minimizes the request-weighted distance between each
requesting site and the nearest replication site. Constraint (2) states that ex-
actly p sites are to be located to place the replica. Constraint (3) states that each
requesting site should be allocated exactly one replication site from which it can fetch
the replica. Constraint (4) states that requests at site i can only be assigned at replica-
tion site j if a replica is placed at site j. Constraints (5-6) are general integrity

 Effective Dynamic Replica Maintenance Algorithm for the Grid Environment 339

constraints. Here, hi represents requests at site i. For a small network and small value
of p, any of the well-known algorithms such as branch and bound [5] can be used to
solve the p-median problem optimally. For a large number of constraints and vari-
ables, the problem is classified as NP-Hard [5]; hence, should be solved heuristically.

3.2 Lagrangean Relaxation: A Heuristic Approach

A major benefit of the Lagrangean heuristic [6] over other heuristic approaches is that
it gives both upper and lower bounds for the objective function. Thus, it provides a
range in which the optimal value of the solution lies. The basic idea is to relax some
constraints of the original model and add those constraints, multiplied by Lagrange
multiplier to the objective function. We then try to solve the relaxed problem opti-
mally. The model uses a search technique to find a set of values for Lagrange multi-
pliers that lead to a solution of the problem that satisfies the relaxed constraints. If the
lower and upper bound of the solution coincide, we have found the optimal solution;
otherwise, we can iterate or search for the best Lagrange multipliers until the gap
between the upper and lower bound is acceptably narrow.

3.2.1 Lower Bound Calculation
If we relax constraint (3) and add this one into objective function, the relaxed problem
can be stated as Equations (8-9).

Minimize
= =

n

i

n

j

ijiji ydh

1 1

+
= =

−
n

i

n

i

iji y

1 1

1λ (8)

()
= = =

+−=
n

i

n

j

n

i

iijiiji ydh

1 1 1

λλ (9)

The other constraints (2, 4-7) remain the same as in the p-median problem. To
minimize the objective function in (9), we would like to set yij=1 if its coefficient
() 0<− iijidh λ , and yij=0 otherwise. To set the value of yij, i.e., yij=1, the corresponding

xj’s value should be 1 (by Constraint 4). However, Constraint (2) states that we can
choose at most p replica sites for which xj=1. Therefore, we have to rank the values

of Vj, where Vj is defined by ()
=

−=
n

i

iijij dhV

1

,0min λ . Find the p smallest values of Vj that

have the largest impact on the objective function. Set the corresponding xj=1. Then set
yij=1, if xj=1 and () 0<− iijidh λ , otherwise set yij=0. Calculate the lower bound of the

solution (ZLB) by finding the objective function from Constraint (9), which includes yij
which is set to 1.

3.2.2 Upper Bound Calculation
Recall that in the relaxed problem we relax Constraint (2) which states that each re-
questing site must be assigned to a replication site is eased. The objective function
value found by the lower bound program ignores this constraint. Therefore, this con-
straint may remain unsatisfied, which leads to an infeasible solution to the original
problem. We must find an upper bound (ZUB) of the objective function by assigning
each requesting site to the nearest replication site. The replication sites are found from
the lower bound calculation, i.e., the sites for which the corresponding xj=1.

340 R.M. Rahman, K. Barker, and R. Alhajj

3.2.3 Multiplier Adjustment
The Lagrange Multipliers are updated by the following steps:

1. Define subgradients t
iG for the relaxed constraint in the current iteration by:

() niyG t
ij

t
i ,...,1 1

n

1j

=−=
=

.

2. Define a step size
()

()
=

−=
n

i

t
i

t
LB

t
UBt

G

ZZ
T

1

2

π
where π is initially set to 2. If there is

not much improvement after a certain number of iterations, π is replaced by
2

π .

3. With this step size, the values of iλ are updated by the following relationship:

() niGT t
i

nn
i

t
i ,...,1;,0max1 =+=+ λλ

The algorithm terminates either after a specified number of iterations or if the value
of π becomes sufficiently small. More discussion about this Lagrangean relaxation
technique and its application to p-median problem can be found elsewhere [4, 5].

4 Dynamic Maintainability of Static Placement

The Lagrangean relaxation technique assures the optimal or near-optimal solution
based on the user requests and network characteristics for the current period. How-
ever, the candidate sites that hold replicas currently may not be the best sites to fetch
replica if the user requests and network latency changes. Therefore, relocation should
to be considered if the performance is to be maintained. But, it is costly. To determine
the performance degradation occurring in last K time periods, we must determine the
optimal cumulative average response time for K time periods if reallocation is permit-
ted while accounting for transfer costs. Fortunately, the solution of this aspect of the
problem also finds the replica placement needed to achieve an optimal/near optimal
cumulative average response time. Wesolowsky and Truscott [16] analyze a multi-
period facility location-allocation problem that allows facilities to move. They
propose a dynamic model that minimizes three factors, (1) distributing cost, (2) con-
struction and removal cost for a given time period, and (3) determining possible facil-
ity allocation to achieve the optimal/near-optimal cumulative cost.

Minimize
= = = ==

+
K

k

k
j

n

i

K

k

N

j

k
j

k
ij

n

j

k
ij

k
i acydh

1 1 2 11

 (10)

Subject to px

kn

j
j =

=1

 for k=1.,2...,K (11)

,1
1

=
=

kn

j
ijy ni ,.....,1= ; k=1,2,...,K (12)

,0≤− k
j

k
ij xy ni ,.....,1= ; nj ,.....,1= ; k=1,2,...,K (13)

 Effective Dynamic Replica Maintenance Algorithm for the Grid Environment 341

(),1,0∈k
jx nj ,.....,1= ; k=1,2,...,K (14)

(),1,0∈k
ijy nj ,.....,1= ; ni ,.....,1= ; k=1,2,...,K (15)

=
otherwise 0

 periodat siten replicatio toallocated is site requesting if 1 kji
y k

ij

 (16)

=
otherwise 0

k periodin siteat relocated is replica a if 1 j
a k

j
 (17)

kj

c k
j

 periodat node tositen replicationearest from file

 theofcost on ansportati t the= (18)

Performance monitoring in Data Grid is often done by a meta-scheduler or re-

source broker. To remove a file from a site’s local storage, the resource broker must
send a message; a small overhead message to initiate the much larger file transfer. We
will also ignore the cost of removing a file from local storage. We use their dynamic
model [16] to find the optimal cumulative total response time for K periods.

Equations (10-16) are the multi-period versions of (1-7), respectively. Constraint
(17) ensures that we can consider the reallocation cost if a replica is relocated on that
site. Wesolowsky et al. [16] use dynamic programming to solve the mathematical
model optimally for a small network size and limited number of periods. For a large
network and large value of K, the dynamic programming generates huge state spaces
and stages. Therefore, the authors suggest heuristics to generate good solutions.
 We can use the Lagrangean relaxation technique to generate the optimal or near-
optimal solutions to the dynamic model. Once achieved, we compare this result with
the current one. The current result is calculated by adding total response time for K
periods assuming that replicas are placed to the sites that gave the optimal value for
the p-median problem at period K=1. We must then decide if relocation is appropri-
ate. Table 1 presents 4 cases to consider when to determine if relocation should occur,
and it also identifies a candidate target. For simplicity, we consider 2-median problem
and 3 time periods for the dynamic model. We compare the current result (CR) with
optimal result (OR) and check whether the difference is more than the allowable
threshold (T). For example, the solution found by the p-median problem at period
K=1 suggests that the replica should be placed at Site A and Site B. We must analyze
the performance of this placement decision based on three consecutive periods: the
first period when the static optimal decision was made and the next two periods.

Table 1. Replica Reallocation Decision

Case (CR–OR)>T Period 1 Period 2 Period 3 Decision
1 No A, B A, B A, B No Relocation
2 No A, B A, B C, D Relocate at C, D
3 Yes X, Y X, Y X,Y Relocate at X, Y
4 Yes P, Q R, S M, N Re-optimize by p- median with aver-age requests

and average bandwidth for last 3 periods

In Case 1, we find that the optimal solution complies with our early decision so

replicas are placed correctly. In Case 2, we find an optimal solution which suggests
that replica should be placed at Site A and Site B for time period 1 and 2. But to get

342 R.M. Rahman, K. Barker, and R. Alhajj

the optimal value, we should consider relocation to Sites C and D for time period 3.
So, we can relocate at C and D at the end of time period 3. In Case 3, we found that
site (X, Y) is giving the optimal cumulative response time suggesting that Site (X,Y)
shows consistent performance since the last three periods; even we consider the relo-
cation cost, i.e., transportation time of a file to sites X, Y from the best candidates
(which are currently A and B). Moreover, the difference between current and optimal
solutions is above the prescribed threshold. Case 4 addresses a random situation
where we are not able to find a set of sites that perform satisfactory throughout the
last three time periods. Moreover, the tolerance level is above the threshold, so we
must consider relocation. Unfortunately, the sites must now be found by solving the
p-median problem that takes average request and average network latency as parame-
ters. The averages are calculated by averaging the request and latency for the last
three time periods.

5 Simulation

Replica placement algorithms must be tested thoroughly before deploying them in real
Data Grid environments. One way to achieve a realistic evaluation of the various
strategies is through simulation that carefully reflects real Data Grids. On a Data Grid,
different jobs are submitted from various sites. Mean job execution time is a good
measure of effectiveness of the replication strategies. Jobs in the Data Grid request a
number of files. If the file is at a local site, response time is assumed to be zero; other-
wise the file must be transferred from the nearest replication site. Thus, job execution
time incorporates the response time required to transport a file. The best replication
strategy minimizes the mean job execution time and minimizes the average response
time. Our replica placement algorithms are evaluated with a simulator written in Java.
The simulation generates random background traffic and grid data requests.

S15

S16

S11

S13

S12

S9

S2 S0 S8

S1

S7

S6

S5

S4

S10

S14

S3

2.5 G 2.5 G 10 G 155 M

2.5 G
622 M

155 M

2.5 G

10 G

10 G

2.5 G

10 G

155 M

1 G

10 G

10 G

10 G 45 M

155 M45 M

10 M

S17

RAL Imperial
College

Nordu
Grid

NIKHEF

CERNLyon

Milano

Torino

Catania

Bologna

Padova

Fig. 1. The EU Data Grid and their associated network geometry

 Effective Dynamic Replica Maintenance Algorithm for the Grid Environment 343

The study of our replica placement algorithms is carried out using a model of the
EU Data Grid Testbed 1 [1] sites and their associated network geometry. Site 0 is the
CERN (European Organization for Nuclear Research) location. Initially all master
files are distributed to CERN. A master file contains the original copy of some data
samples and cannot be deleted. Each circle in Figure 1 represents a testbed site and a
star represents a router. Each link between two sites shows the available network
bandwidth. The network bandwidth is expressed in Mbits/sec (M) or Gbits/sec (G).
We include the storage capacity at each router, i.e., intermediate nodes. The interme-
diate nodes have higher storage capacity than the testbed sites, but smaller capacity
than CERN. Placing data at intermediate nodes moves it closer, and hence more ac-
cessible to testbed sites. File requests are generated from the testbed sites.

Our program’s input is from two configuration files. One file describes the network
topology, i.e., links between different sites, available network bandwidth between
sites, and the size of disk storage of each site. The second configuration file contains
information about the number of requests generated by each testbed site and the cur-
rent network load. Network load is varied to test the impact on our replication algo-
rithm. We consider low, medium and heavy traffic. File requests may either follow
uniform distribution or normal distribution. We set three maximum values for uni-
form file requests where each testbed site can generate requests that are uniformly
distributed with a maximum of 10, 30, or 50. We also consider ten random normal
requests with different mean and variance. The testbed site that generates each of
those random requests is chosen arbitrarily. We consider uniform and normal re-
quests with diverse variances to analyze how well the replication algorithms perform
when there is no correlation among previous requests, i.e., they are totally random.

6 Simulation Results

Each site records the time taken for each file requested to be transferred to it. This
time record forms the basis to compare various replication strategies. We compare our
replication algorithm with respect to average response time. Response time is the time
that elapses from a request for a file until it receives the complete file. The average of
all response times for the length of the simulation is calculated. The best replication
strategy will have lowest response time. Each file is 100 MB in size. After some
initial runs, we place a replica at sites that will optimize either one of the objectives,
i.e., the request objective, static p-median, and dynamic p-median. Best_Client strat-
egy considers the request objective. After six (K=6) time periods, we consider reloca-
tion. For simplicity, we set the Threshold to zero (T=0), i.e., we consider relocation
when we can find an optimum aggregated response for the last six periods better than
the current accumulated response time. We test our algorithm for p=5. We calculate
the average response time for future requests in different network load by assuming
the replicas are now at the candidate sites.

We accumulate the average response time for the next sixty runs to analyze the
performance of the replica placement algorithms. We also vary the network load with
other background traffic to see its impact on the replication algorithm. The results of
accumulated average response time (in seconds) are shown in Table 2; they show that

344 R.M. Rahman, K. Barker, and R. Alhajj

Table 2. Average response time for different models, network loads, user requests (p=5)

Traffic Request Best_Client Static P-Median Dynamic P-Median
Low Uniform (10) 2883 896 714
Medium Uniform (10) 8765 1669 1368
High Uniform (10) 9906 2975 1737
Low Uniform (30) 8216 2734 1753
Medium Uniform (30) 17140 4205 3310
High Uniform (30) 25189 7862 5320
Low Uniform (50) 15483 3434 3184
Medium Uniform (50) 25115 7243 6054
High Uniform (50) 28649 12585 6798
Low Normal 40970 7925 7076
Medium Normal 86454 16381 11714
High Normal 57585 16547 12232

the response time increases with increasing requests. There is a strong correlation
between response time and user requests as one would expect. We have highest aver-
age response time in peak period. We include the dynamic traffic condition and
random requests to see the impact on the dynamic model. The dynamic model that
considers the relocation shows significant performance improvement compared to
static and best-client model in different background traffic conditions as well when
user requests vary randomly (uniform random), or the future requests are normally
distributed and centered on previous requests. We can get a significant performance
improvement with dynamic model if the previous best paths become congested be-
cause of high background traffic or if current user requests vary significantly.

The simulation was carried out on a Pentium 4 processor 2GHz with 512 MB
RAM. With current network size, the computational time is only 10 seconds on aver-
age to reach a solution using static or dynamic p-median model.

7 Conclusions

We consider a p-median model for the replica placement problem. The model finds
the locations of p candidate sites to place replica that will minimize the aggregated
response time. Due to the dynamic nature of the Grid, the placement decision may not
be optimal for subsequent periods. Therefore, we need to decide about relocation.
However, relocation needs transportation cost for transferring the file to the relocated
sites. We propose a dynamic replica maintenance algorithm that suggest for a reloca-
tion of candidate sites by considering the relocation cost. The decision of relocation is
made when the performance metric degrades significantly in last K time periods. We
validate our model by using a model of the EU Data Grid testbed 1 sites and their
associated network geometry. However, we need to decide on the value of p for our
p-median problem that gives a satisfactory response time to the requesting sites.
Moreover, the term Threshold (T) needs to be calculated before using the dynamic
maintenance algorithm. Its value should not be too small or too large. One choice is to
use a value that changes proportionally based on average response time of each time
period.

 Effective Dynamic Replica Maintenance Algorithm for the Grid Environment 345

References

1. Bell W., et al., OptorSim- A Grid Simulator for Studying Dynamic Data Replication
Strategies. Journal of High Performance Computing Applications, 17(4), 2003.

2. Buyya R., Abramson D., and Giddy J., Nimrod/G: An Architecture of a Resource Man-
agement and Scheduling System in a Global Computational Grid, Proc. of HPC Asia,
pp.283-289, Beijing, China, 2000.

3. Chervenak A., et al., The Data Grid: To wards and Architecture for the Distributed Man-
agement and Analysis of Large Scientific Data Sets. Journal of Network and Computer
Applications, 23(3), pp.187-200, 2000.

4. Daskin M.S., Network and Discrete Location Models: Algorithms and Applications, John
Wiley & Sons, 1995.

5. Drezner Z., and Hamacher H. W., Facility Location Applications and Theory, Springer
Verlag, Berlin, Germany, 2002.

6. Fisher M.L., The Lagrangian relaxation method for solving integer programming prob-
lems, Management Science, 27, 1-18.

7. Foster I., Internet Computing and the Emerging Grid, Nature Web Matters, 2000.
8. Foster, I., Kesselman C., Tuecke S., The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. J. Supercomputer Applications, 5(3), 2001.
9. Foster I. and Kesselman C., The Grid: Blueprint for a New Computing Infrastructure.

10. Hakami S., Optimum location of switching centers and the absolute centers and medians
of a graph, Operations Research, 12, 450-459.

11. Kavitha R., Iamnitchi A. and Foster I., Improving Data Availability through Dynamic
Model Driven Replication in Large Peer-to-Peer Communities. Proc. of Global and Peer-
to-Peer Computing on Large Scale Distributed Systems Workshop, Berlin, 2002.

12. Kavitha R., and Foster I., Decoupling Computation and Data Scheduling in Distributed
Data-Intensive Applications. Proceedings of IEEE International Symposium on High Per-
formance Distributed Computing Edinburgh, Scotland, July 2002

13. Kavitha R., and Foster I., Design and Evaluation of Replication Strategies for a High Per-
formance Data Grid, in Computing and High Energy and Nuclear Physics 2001.

14. Rahman R. M., Barker K. and Alhajj R., Replica Placement on Data Grid: Considering
Utility and Risk. Proc. of IEEE Intrn’l Conf. on Coding and Computing, 2005.

15. Toregas C., et al., The location of emergency service facilities, Operations Research, 19,
1363-1373.

16. Wesolowsky G.O. and Truscott W.G., The multiperiod location-allocation problem with
relocation of facilities. Management Science, 22, Sept., 1975.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 346 – 359, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Lightweight Cyclic Reference Counting Algorithm*

Chin-Yang Lin and Ting-Wei Hou

Department of Engineering Science, National Cheng Kung University,
No. 1, Ta-Hsueh Rd., Tainan 701, Taiwan

{chinyang, hou}@nc.es.ncku.edu.tw

Abstract. This paper focuses on a major weakness of reference counting tech-
nique - the lack of collecting cyclic garbage. Most reference counted systems
handle this problem by either invoking a global mark-sweep collector occasion-
ally, or incorporating a local ("partial") tracing collector that considers only the
cycle candidates (objects) but needs several traces on them. This paper proposes
a "lightweight" cycle detector, which is based on the partial tracing approach
but collects garbage cycles in a simpler and more efficient way. Key to the al-
gorithm is the removal of multiple traces on the cycle candidates - It effectively
reclaims garbage cycles in only one trace. We have evaluated the algorithm in
the Jikes Research Virtual Machine, where a set of benchmark programs from
SPECjvm98 were applied. The experiments demonstrate the efficiency and
practicability of the lightweight cycle detector, compared to a modern cycle de-
tector that requires multiple traces on objects.

1 Introduction

Reference counting [7] is intuitive for garbage collection. It has several advantages
[11], such as simplicity in implementation, allowing immediate reuse of objects, and
good locality of reference. Particularly, the work of reference counting is interleaved
with the running program’s execution (mutations). Such an incremental property
makes it easy to maintain the responsiveness (i.e. shorter pauses) and thus suitable for
highly interactive systems. Unlike tracing-based method [19], the overhead of refer-
ence counting is proportional to the work on object mutations, and it works well re-
gardless of heap size as it need not traverse all of the objects in the heap.

Reference counting has two main problems: (1) Run-time overhead of tracking
pointers and (2) memory leaks. First, reference counting tracks pointers by continu-
ously monitoring mutations (e.g. increment, decrement and zero-check). Deleting a
pointer to an object may introduce numerous updates on reference counts (i.e. recur-
sive freeing), which depends on the size of the sub-graph below the deleted pointer.
The cost can thus be expensive and unbounded. A widely used solution to this prob-
lem is the deferred reference counting [9]. Its main idea is to avoid examining heavily
mutated references immediately, such as stack variables and registers. Instead, they
are only examined periodically. Only references from heap objects are counted im-
mediately, and references from local variables are ignored. Since most of the

* This research was supported by the National Science Council of R.O.C. under contract NSC

92-2213-E-006-045.

 A Lightweight Cyclic Reference Counting Algorithm 347

references are likely to be from local variables, the cost of maintaining reference
counts is greatly reduced. Such a deferral (or lazy) concept are also adopted in several
modern RC algorithms [3, 2, 13, 5] which have different buffering strategies and all
reduce the overhead of tracking pointers significantly.

The second problem (memory leaks) often refers to the inability to reclaim cyclic
structures (i.e. reference counts never become zero in a garbage cycle). Since memory
leaks may occur when the mutator generates large garbage cycles, it is generally con-
sidered the greatest drawback of reference counting and a major reason why many
prior systems give up reference counting.

Since McBeth [18] noticed the inability of reference counting to collect garbage cy-
cles, two main techniques for cycle collection have been proposed. One approach [8] is
to invoke a "global" mark-sweep collector infrequently, in which, the garbage cycles
are reclaimed in the sweep phase since they will not be visited in the mark phase. This
may have tough time with large heap as it needs to trace the entire heap. The alterna-
tive is to incorporate a local ("partial") tracing collector that considers only the cycle
candidates (i.e. the local sub-graphs suspected to contain cyclic garbage) [6, 17] and
thus has a major benefit in that it often takes a smaller sub-graph as input. However, it
traces objects multiple times (normally three times per object) for finding dead cycles.
This can also introduce a significant delay because objects may be traced again and
again. Even so, we would remind that the increasing memory trend will make the "par-
tial" tracing approach more attractive. Since Christopher [6] introduced the original
partial tracing scheme, several works related to it, either for uni-processor or for multi-
processor, have been proposed in the literature [17, 15, 10, 16, 14, 3, 2, 20].

On the other hand, reference counting may also become the preferred method for
garbage collection as soon as the heap grows larger. Such a perception has been no-
ticed in recent state-of-the-art works [3, 2, 20], and actually it is a major motivation
for this paper. We believe that reference counting will become more attractive in the
future, which would hinge on how the garbage cycles can be handled efficiently.

This paper proposes a "lightweight" cycle detector, which is based on the partial
tracing approach but detects cycles in a simpler and more efficient way. Specially, we
present a novel and practical idea that a garbage cycle can be reclaimed as soon as the
sub-graph containing the cycle is detected as garbage, where the sub-graph is an ob-
ject graph rooted at a candidate cycle root (i.e. an object whose count is decremented
to a nonzero value). That is, we can consider the entire sub-graph, instead of individ-
ual cycles, as the basic unit of cycle collection. According to this idea, we propose a
new algorithm to handle the cycle problem, which is lightweight since it takes only
one traversal of the sub-graphs. Compared to those algorithms based on [17, 15] that
walks sub-graphs in multiple rounds, we reduce the complexity from 3O(n) to O(n),
where n is the size of the considered object graph. Additionally, the quadratic com-
plexity of those algorithms (noticed in [3, 2]) will not appear in our algorithm. In
practice, we have evaluated the algorithm in the Jikes Research Virtual Machine [1],
where a set of benchmark programs from SPECjvm98 [21] were applied. The experi-
ments show that the lightweight cycle collector is practical in use and able to reclaim
garbage cycles of large programs efficiently.

The rest of the paper is organized as follows. Section 2 describes the background,
basic terminology and definitions. Section 3 presents the algorithm in detail. Section 4

348 C.-Y. Lin and T.-W. Hou

contains a proof of correctness. Section 5 is our experiments and is followed by our
conclusions.

2 Background

This section presents the basic terminology and definitions used in this paper and
reviewing the cyclic reference counting algorithms to which this paper is relevant.

A directed graph is used to model the reachability, where the objects and refer-
ences involved are considered to form a graph, with the objects being the nodes and
the references being the edges. The terms "edge", "pointer" and "reference" are inter-
changeable, and the same goes for "object" and "node". In this paper, a strongly con-
nected component (SCC) in the graph is used to represent a cyclic structure. A
strongly connected component is a maximal set of objects in the graph such that every
pair of objects are mutually reachable (i.e. there is a path from each object to the
other). A SCC is trivial if it contains a single object without self loops. Any directed
graph can be decomposed into a number of individual SCCs.

Garbage is objects that are unreachable from any of the system roots. For a SCC,
we call the edges in the sub-graph induced by the SCC internal pointers and the edges
from outside external pointers. A SCC is called a garbage cycle if there are no exter-
nal pointers to it, since any external pointer may make the SCC reachable from some
objects in use (or system roots).

Since any garbage cycle can only be generated on deleting a pointer, a typical algo-
rithm [17] performs the local search starting from any object whose reference count is
just decremented to a nonzero value. Since a starting object may be the first encoun-
tered member of a garbage cycle, it is called a candidate root (of a garbage cycle),
written CR. The local search for cycle detection involves several depth-first searches
(DFS) over the sub-graph below a CR. First, the sub-graph is traversed, in which each
visited object is marked as potential garbage, and the reference counts due to internal
pointers are subtracted. Second, each marked object with nonzero count is unmarked,
and the reference counts of the object and its transitive closure are restored. Finally,
the objects still marked are deemed garbage and are then reclaimed.

Lins [15] improved it by performing the local search lazily, in which a special
buffer called Roots is used for queuing each CR and then CRs in Roots are batch
processed for cycle collection when the buffer overflows, CPU is idle or memory is
exhausted, etc. Many unimportant CRs are filtered out and thus the redundant local
searches are largely reduced.

More recently, Bacon et al. [3, 2] improved Lins' algorithm [15] by performing the
tracing of all candidates simultaneously, in which, the entire transitive closure of
Roots is considered as a whole and the number of traced objects is thus bounded.
This algorithm was also extended to a concurrent cycle collection algorithm. In [20],
the sliding views technique [13] was incorporated into Bacon and Rajan's previous
work [3], which decreases the redundant cost of tracing again by reducing the number
of CRs significantly. All these cycle collection algorithms are called partial tracing
algorithms since they only consider the cycle candidates instead of the entire heap.
Such a local tracing scheme is also known as trial deletion.

 A Lightweight Cyclic Reference Counting Algorithm 349

3 The Algorithm

This section describes the proposed algorithm, which is based on the partial tracing
scheme and takes the same computation graph as the trial deletion algorithms. The
main difference with trial deletion is that the new algorithm has a new scheme for
collecting cycles, which is based on a novel hypothesis that a garbage cycle can be
reclaimed as soon as the sub-graph containing the cycle is detected as garbage, where
the sub-graph is an object graph rooted at a candidate root (CR). We call it a light-
weight cycle detector because of two key benefits: (1) it takes only one traversal over
the computation graph, which results in better efficiency; and (2) it is linear in the size
of the sub-graphs traced, avoiding the worst case of Lins' algorithm [15] (i.e. the
quadratic complexity noticed in [3, 2]).

3.1 The Computation Graph

To manage the sub-graphs that may include garbage cycles, the new algorithm uses a
similar strategy to [15, 3] - all the CRs are placed into a buffer, denoted Roots; peri-
odically, CRs in Roots are batch processed for cycle collection.

A collection cycle is defined as a single complete execution of the lightweight cy-
cle collector (starting at a specific trigger point for processing CRs in Roots). The
entire work of a collection cycle is divided into n work units, where n is the number
of (live) CRs in Roots and each work unit is a single execution of a cycle detection
procedure starting from a CR in Roots. The ith work unit is written Wi, and the sub-
graph traced (considered) during Wi is denoted Gi. It is assumed that each CR can only
be queued once per collection cycle (i.e. no duplicate CRs in Roots).

According to these definitions, the lightweight cycle collector performs each work
unit, say Wi, in a collection cycle in two steps. First, the collector performs a local
search on Gi, in which, each object traced (entered) is marked and the number of
external pointers to Gi is computed. In the second step, the collector reclaims Gi if the
number of external pointers is zero (i.e. Gi is unreachable). We next present how a
local search is performed on Gi, followed by a pseudocode explanation.

3.2 The Traversal Procedure

A main idea of the lightweight cycle collector is to consider a single sub-graph, in-
stead of individual cycles, as the basic unit of cycle collection. Let G be the sub-graph
considered for cycle collection in a work unit, and SCC1, ..., SCCn be the SCCs
contained in G. During the collection, the lightweight collector reclaims G only if
SCC1, ..., SCCn are all detected to be unreachable (dead). That is, the reclamation of a
dead SCC in G could be delayed until every SCC in G is dead. Under this concept, G
is considered for collection as a whole, and thus it will no longer matter how many
cycles are contained in G and which of these cycles are dead.

In our work, G contains garbage cycles and is eligible for collection only if G has
no incoming edges from outside (i.e. there exists no external pointer coming from
objects outside of G). Let Pi and Pe be, respectively, the number of internal pointers
and external pointers for G. Then we have R = Pi + Pe, where

350 C.-Y. Lin and T.-W. Hou

R =
GinS

SRC

)(.

This equation is trivial since each object's reference count is only contributed by
pointers that are either internal or external. Based on this, we examine whether G is
referenced by external pointers (i.e. compute Pe) according to the following two
facts: (1) the collector can gather the reference count of each object in G through a
single traversal over G, which helps to compute R; (2) each (internal) pointer coming
from any of the objects in G must be traced during a traversal over G, which helps to
count Pi. That is, after a single traversal over G, R and Pi would be computed,
and so Pe is available. Then, G is considered garbage and eligible for reclamation if
Pe = 0.

3.3 Pseudocode and Explanation

The pseudocode of the lightweight algorithm is shown in Fig. 1, where we only present
the key procedures of the lightweight cycle collector. Assume that the input is the
computation graph defined in section 3.1 and a global buffer for queuing candidate
roots called Roots. For each object S, apart from the reference count, denoted RC(S),
S also contains an ID field, written ID(S), which is used for labeling objects in the
same sub-graph considered in a work unit. For a given work unit Wi that is just been
finished, each object in Gi must be labeled by the same ID, where the ID is maintained
in an increasing number. Additionally, the collector keeps the last used ID that has
been applied in the previous collection cycle for the current collection cycle, which is
for distinguishing objects that are not labeled in the current collection cycle. The algo-
rithm makes use of two global variables, CurID and PreMaxID, for managing this
information. More precisely, for a given object S at any time (See Lemma 1):

− ID(S) = 0 => S has never been labeled in any collection cycle.
− 0 < ID(S) PreMaxID => S has been labeled in a previous collection cycle.
− ID(S) > PreMaxID => S has been labeled in the current collection cycle.

In addition to assisting the graph traversal, the labeling mechanism also helps in

efficiency, in which, it prevents the same object from being considered (traced) more
than once per collection cycle, and therefore the problem of repeated traversals over
objects mentioned in [3] is avoided. Actually, the complexity of the lightweight
algorithm is linear in the size of the computation graph. It requires O(N + E) worst-
case time for collection, where N is the number of nodes (objects) and E is the number
of edges (pointers) in the graph. Furthermore, compared to those algorithms based on
[17, 15] that walks sub-graphs in multiple rounds, the lightweight algorithm only
walks sub-graphs in one round and thus results in much better efficiency. In [22], it
takes one round to walk sub-graphs, gathering some dependency information. A
filtering procedure is then performed for discovering garbage cycles. However, the
filtering procedure may result in a performance bottleneck (O(n3) in the worst case).

We now describe the details of the pseudocode. Triggering a collection cycle is to
invoke the procedure CollectCycles, which tries to process CRs in Roots. For

 A Lightweight Cyclic Reference Counting Algorithm 351

Fig. 1. The Lightweight Cycle Collection Algorithm

every CR that will be considered for processing, it must be alive and have never been
labeled in the current collection cycle (avoiding revisiting objects per collection cy-
cle). That is, ID(CR) must fall in the range from 0 to PreMaxID (i.e. the last-used ID
in the previous collection cycle). Each CR processed means that a work unit has been
finished, which consumes an ID number and involves two procedures: DoTraver-
sal, which performs a local search for detecting garbage cycles; and Col-
lectGarbage, which actually reclaims garbage objects (if available). Finally,
PreMaxID is updated for the next collection cycle.

The procedures DoTraversal and Traverse collaborate to do a local search
for a given work unit, aimed at traversing the sub-graph below a CR with a DFS,
where only the objects that have "not" been labeled in the current collection cycle will

CollectCycles()
1. for each live object S in Roots
2. remove S from Roots;
3. if(ID(S) PreMaxID)
4. DoTraversal(S);
5. CollectGarbage();
6. CurID := CurID + 1;
7. PreMaxID := CurID - 1;

DoTraversal(S: Object)
1. empty CycleCandidates;
2. ID(S) := CurID;
3. Pe := RC(S);
4. append S to CycleCandidates;
5. Traverse(S);

Traverse(S: Object)
1. for T in children(S)
2. if(ID(T) PreMaxID)
3. ID(T) := CurID;
4. Pe := Pe + RC(T);
5. Pe := Pe - 1; /* finding an internal edge */
6. append T to CycleCandidates;
7. Traverse(T);
8. else
9. if(ID(T) = CurID)
10. Pe := Pe - 1; /* finding an internal edge */

CollectGarbage()
1. if(Pe = 0)
2. for S in CycleCandidates
3. ReclaimObject(S);

ReclaimObject(S: Object)
1. for T in children(S) such that S is alive
2. if(ID(T) CurID)
3. Decrement(T);
4. Free(S);

352 C.-Y. Lin and T.-W. Hou

be labeled (or relabeled if it has already been labeled in a previous collection cycle)
by a new ID (i.e. CurID). During the traversal, the number of external pointers to the
sub-graph (i.e. Pe) is computed as follows. The variable Pe (initially 0) is increased
by the reference count of an object that is labeled in the current work unit and is de-
creased by one upon finding an internal pointer. The former is trivial. The latter must
be done by exactly counting the number of edges (pointers) to those objects associ-
ated with the same ID (i.e. CurID), which can be seen from Traverse.

In addition, all the objects labeled in the same work unit are regarded as cycle can-
didates and will be put into a buffer called CycleCandidates. This buffer is used
for queuing the references of "potential" garbage objects considered in a work unit
and is emptied per work unit. Once the sub-graph considered in the work unit is de-
tected to be garbage (i.e. Pe = 0), all the objects in CycleCandidates can be
collected directly (i.e. the work done in the procedure CollectGarbage). Finally,
the procedure ReclaimObject is responsible for reclaiming each dead object in
CycleCandidates. Normally, before a dead object S can be actually freed, the
reference counts due to the pointers out of S should be decremented. Specially, since
all the dead objects are in CycleCandidates and the decrements of reference
counts due to the internal pointers are redundant, ReclaimObject only consider
the decrements of reference counts due to the external pointers. It can be seen from
ReclaimObject that a pointer is considered for decrement only when it points to
an object whose ID is “not” CurID.

4 Proof of Correctness

A cycle collector is safe if every object collected is indeed garbage; complete if it even-
tually collects all garbage cycles. We first prove the safety of the proposed algorithm.
Then, we describe the case that a garbage cycle may not be reclaimed immediately by
the algorithm, which would affect the completeness of the algorithm in theory. We next
introduce a method for improving the completeness, which makes the lightweight
algorithm fully complete. Finally, we present the proof of completeness.

4.1 Safety: Correctness Proof

Lemma 1. Let S be an object considered in a given collection cycle. If ID(S) Pre-
MaxID, S must have never been labeled in the current collection cycle.

Proof. The hypothesis implies either that S has not been labeled (i.e. ID(S) = 0) or that
S has been labeled with an ID smaller than PreMaxID. The former case is trivial. In
the latter case, whether S was labeled in the current collection cycle depends on how
PreMaxID is managed in the algorithm. Also, the only place to update PreMaxID
is at the end of a collection cycle (at line 7 of CollectCycles), which indicates,
for any collection cycle, PreMaxID represents the last ID used in the previous col-
lection cycle. Suppose S was labeled in the current collection cycle. ID(S) must be
greater than PreMaxID, contradicting the hypothesis. Thus, the lemma is proved.

 A Lightweight Cyclic Reference Counting Algorithm 353

Lemma 2. Let R be a live candidate root. When DoTraversal(R) finishes, R and
the objects that are reachable from R but have never been labeled in the current col-
lection cycle must be labeled with the same ID number.

Proof. During the execution of DoTraversal(R), R is first labeled with a new ID
number (i.e. CurID) at line 2 of DoTraversal. Then, for each object T reachable
from R, it may be labeled with the same ID through Traverse. Also, T is labeled
with CurID only if ID(T) PreMaxID, at line(2-3) of Traverse. By Lemma 1, T
must have never been labeled in the current collection cycle. The lemma is proved.

Lemma 3. Let R be a live candidate root and G be the sub-graph induced by the
objects labeled during the execution of DoTraversal(R). If Pe = 0, G must be
garbage.

Proof. By Lemma 2, all the objects in G must be labeled with the same ID. During the
execution of DoTraversal(R), Pe is initially 0 and is computed in two aspects.
First, for every object S in G, RC(S) is accumulated to Pe, at line 3 of DoTraver-
sal and line 4 of Traverse. Second, when visiting an edge in G (i.e. an internal
pointer), Pe is decreased by one. At line 5 of Traverse, an internal pointer is found
since the object the pointer points to is labeled with CurID (i.e. the object must be
contained in G). At line (8-10) of Traverse, an internal pointer is counted
only when the pointer points to an object whose ID is CurID. That is because, by
Lemma 2, such a pointer must be contained in G. In this case (line (8-10) of Trav-
erse), if the object pointed to has an ID larger than PreMaxID and smaller than
CurID, the object must have already been considered in the current collection cycle
(before R is taken). That is, the object has been labeled in a previous work unit of the
current collection cycle. By Lemma 2, such an object is not contained in G and so the
pointer is also not covered in G. Consequently, when DoTraversal(R) finishes, Pe
means the difference between the sum of the in-degree of the objects in G and the
total number of edges in G. The hypothesis (Pe = 0) implies there exists no (external)
pointer coming from objects outside of G. Clearly, G is fully unreachable and must be
garbage.

Theorem 1 (Safety). Only garbage objects are collected by the algorithm.

Proof. For each collection cycle (i.e. CollectCycles), CollectGarbage is the
only place to reclaim objects, which is always performed after an invocation of
DoTraversal. By Lemma 2, the objects labeled during the execution of
DoTraversal are assigned the same ID, in which, those objects are also added to
CycleCandidates, at line 4 of DoTraversal and line 6 of Traverse. More-
over, Lemma 3 indicates that Pe is available when DoTraversal finishes, and
those objects in CycleCandidates must be garbage if Pe = 0. At line (1-3) of
CollectGarbage, every object in CycleCandidates will be reclaimed (by
ReclaimObject) only if Pe = 0. Thus, the theorem is proved.

354 C.-Y. Lin and T.-W. Hou

4.2 Completeness: Correctness Proof

In theory, there exists a case that a garbage cycle may not be reclaimed immediately.
Let G be a sub-graph rooted at a candidate root R that is considered for cycle collec-
tion. Suppose G is composed of two SCCs (cycles), SCCi and SCCj, where SCCi is
dead and is rooted at R (i.e. there must be a directed path from SCCi to SCCj.). In this
case, SCCi is collected only if SCCj is dead. If SCCj is alive, SCCi will not be col-
lected in the current work unit, since the algorithm only computes Pe for G and so
SCCj results in Pe > 0. That is, the reclamation of a dead SCC (garbage cycle) may be
postponed to a subsequent collection cycle if there is a live SCC reachable from the
dead SCC. In theory, such a case may cause some garbage cycles to remain in heap
for a long time and even not reclaimed eventually. The completeness is thus affected.
In section 5, our experiments show that the lightweight algorithm does not suffer from
this problem and is practical in use.

Actually, this problem has been improved by our design of making the algorithm
linear, in which, sub-graphs considered in different work units are processed inde-
pendently and so a dead sub-graph can be reclaimed immediately without being inter-
fered with by other sub-graphs. To further complement the lack of the completeness,
we present an intuitive way to incorporate a backup cycle collector, defined as
follows.

Definition 1. A backup cycle collector incorporated into the lightweight cycle collec-
tor is a cycle collector such that

(1) It is based on the partial tracing scheme.
(2) It can collect garbage cycles existing in a sub-graph considered for collection.
(3) It only considers the candidate roots not collected by the lightweight collector.
(4) It is triggered on demand.

The first statement indicates the backup cycle collector performs search locally. The
second one implies that it must be complete, which aims at handling the case that
some garbage cycles may not be reclaimed by the lightweight cycle collector immedi-
ately. In the third statement, the backup cycle collector is confined to the cases that
the lightweight cycle collector fails. In the implementation, another buffer would be
used for storing the candidate roots that are not timely collected by the lightweight
cycle collector (i.e. the case of Pe 0). Finally, the backup cycle collector should be
timely triggered when the lightweight cycle collector can not reclaim garbage cycles
effectively. In the implementation, the backup cycle collector can be simply triggered
as the memory is still low after a limited number of collection cycles, in which, Col-
lectCycles will determine whether to switch to the backup cycle collector.

Theorem 2(Completeness). All garbage cycles are eventually collected by the light-
weight cycle collector that is complemented by a backup cycle collector defined in
Definition 1.

Proof. The lightweight algorithm uses the same computation graph as other trial dele-
tion algorithms. All potential garbage cycles are thus considered for collection. Let G
be a sub-graph rooted at a candidate root R that is considered for cycle collection, and

 A Lightweight Cyclic Reference Counting Algorithm 355

SCC1, …, SCCn be the SCCs (or cycles) contained in G such that there is a path from
SCCi to SCCj, if i < j. The base case is n = 1, where G forms a single SCC (cycle). If
the SCC is dead (a garbage cycle), there must be no pointers from outside of G. Thus,
when DoTraversal(R) finishes, Pe must be zero and so the SCC is immediately
reclaimed by CollectGarbage. Actually, this is the case that the lightweight cycle
collector is complete itself in theory (i.e. without any backup cycle collector).

In case of n 1, suppose SCCk is garbage. It is easy to see that for every 1 i < k,
SCCi must also be garbage (since SCCk is reachable from SCCi). In this case, SCCk
can be reclaimed only if, for every k < j n, SCCj is unreachable from outside of G.
That is because a reachable SCCj can introduce an external pointer, which leads to Pe

 0. Hence, if there exists a live SCCj, SCCk can not be reclaimed immediately, and R
will be added to a buffer, by Definition 1. Let BackupRoots be the buffer. SCCk
may be reclaimed in a subsequent collection cycle; otherwise, it will be reclaimed by
the timely triggered backup cycle collector, where the candidate roots in Back-
upRoots will be considered for cycle collection. Consequently, all garbage cycles
are eventually collected by the algorithm. The theorem is proved.

5 Experiments

We have performed experiments to evaluate the effectiveness of our cycle collection
algorithm in comparison with the "synchronous" trial deletion algorithm from Bacon
and Rajan [3]. The compared algorithm is a recent state-of-the-art cycle collector and
has already been implemented in the Jikes Research Virtual Machine (Jikes RVM), an
open-source Java virtual machine developed by IBM Watson Research Center [1].
The lightweight cycle collector was implemented in the Jikes RVM without using any
backup cycle collector defined in Definition 1. (In the rest of this section, the term
"trial deletion" refers to the compared algorithm unless otherwise indicated.)

5.1 Experimental Platform and Benchmarks

Our experiments used the version 2.3.1 of Jikes RVM along with the memory man-
agement toolkit JMTk (now MMTk [4]), which were executed on the platform: 2.0
GHz AMD Athlon, and 1GB of physical memory running Linux 2.4.20.

To better concentrate on the comparison of the cycle collection, we implemented
the lightweight cycle collector in Jikes RVM by simply replacing the cycle detection
code of the trial deletion implementation [3] with all the relevant strategies unmodi-
fied, such as how Roots are maintained and when to trigger a garbage collection or a
cycle detection. We added a single word to the object header for the ID field per ob-
ject and built RVM using the baseline compiler and a reference counting implementa-
tion based on the work from Yossi Levanoni and Erez Petrank [12].

We used eight benchmarks from SPECjvm98 [21], which were run at the default
size of 100. We ran each of the benchmarks in RVM without specifying further com-
mand-line arguments, except for the options of defining available heap sizes. Addi-
tionally, each of the experiments was run 5 times and the average is reported.

356 C.-Y. Lin and T.-W. Hou

5.2 Results and Discussion

We compare the cycle collection time between the lightweight (LW) algorithm and the
synchronous trial deletion (TD) algorithm [3]. To better show the practicality of LW,
the benchmarks were run on varying heap size, from tight to relaxed condition. Most of
the benchmarks can be run in a reasonable range between 30MB and 120MB.The only
exception is the benchmark _213_javac, which is unable to run to completion until the
maximum heap size of 84MB as LW is used; and the same goes for TD, where the
required heap size is 78MB. Such a situation has already been reported in [5]. Bacon et
al. [2] have also noticed the performance problem with _213_javac - it produces lots of
garbage cycles and so requires a large amount of cycle collection work. That is why we
measured it in another range from 90MB to 180MB.

Fig. 2 presents the results, in which, the time reflects only the work for triggered
cycle detection, and the cycle collection time ratio of LW to TD is reported (The
lower the ratio, the better LW performs compared to TD). Table 1 further shows the
number of triggered cycle detection for each running of the benchmarks, including the
maximum and average number of triggered cycle detection. It can be seen that no
cycle detection is triggered for the benchmarks _222_mpegaudio and _228_jack.
They are thus are not presented in Fig. 2. In fact, our execution of _228_jack shows
that the average number of triggered garbage collection is 17 and 16, respectively for
LW and TD. However, there is no cycle detection triggered within the execution of
those garbage collections. As for _222_mpegaudio, it has a relatively small allocation
[2], and thus the garbage collection is almost not necessary with the current heap
settings.

C
yc

le
 c

ol
le

ct
io

n
tim

e
ra

tio
 :

LW
/T

D

C
yc

le
 c

ol
le

ct
io

n
tim

e
ra

tio
 :

LW
/T

D

Fig. 2. Cycle collection time ratio: LW/TD

Except for _222_mpegaudio and _228_jack, Fig. 2 exhibits the effectiveness of our
cycle collection algorithm in several aspects. The first exciting result is that, like TD,
LW can execute each of the benchmarks to completion at the acceptable memory
settings. This is especially meaningful for _201_compress and _213_javac [2, 5].
Unlike _213_javac that creates lots of garbage cycles, _201_compress only creates a

 A Lightweight Cyclic Reference Counting Algorithm 357

Table 1. The number of triggered cycle detection

201 202 205 209 213 222 227 228
max avg. max avg. max avg. max avg. max avg. max avg. max avg. max avg.

LW 8 8 8 3.4 1 1 1 1 10 4.4 - - 1 1 - -
TD 8 8 7 2.7 1 1 1 1 8 4.1 - - 1 1 - -

number of garbage cycles. However, those cycles lead to many huge objects and so it
runs out of memory if the garbage cycles can not be timely collected. Our experi-
ments show that LW can improve the cost of the cycle collection about 56% and 47%
on average, respectively, for 201_compress and _213_javac.

Recall that LW, in theory, may cause some garbage cycles to remain in heap for a
long time, and this implementation of LW has not really incorporated any backup cycle
collector defined in Definition 1 (since this lets us have more attention on the effec-
tiveness of our new idea). Once the difficult case happens frequently, LW would re-
quire more space due to the garbage cycles that can not be reclaimed immediately,
which may thus introduce more cycle detection triggers. The experiments show that the
theoretical problem does not really affect the practicality of LW, even if no backup
cycle collector is used. In Table 1, the number of triggered cycle detection between
LW and TD is very close, also implicitly demonstrating the effectiveness of LW.

In Fig. 2, LW indeed outperforms TD in each of the six cases. However, the sur-
prising results for _205_raytrace, _209_db and _227_mtrt do not exactly expose the
efficiency, since the cycle detection is triggered only once. To get better understand-
ing of this, we did the experiments again for these three benchmarks as well as
_222_mpegaudio and _228_jack, in which, the cycle detection is permanently turned
on (i.e., let each triggered garbage collection always perform the cycle detection).

The results are respectively presented in Fig. 3 and Table 2. The number of triggers
increases for most of the benchmarks, except for _222_mpegaudio. On average, LW
is up to 63% faster (_209_db) and at least 12% faster (_227_mtrt) than TD. Though
LW still outperforms in this experiment, in practice, permanently turning on the cycle

Fig. 3. Cycle collection time ratio: LW/TD (with enforced cycle detection)

358 C.-Y. Lin and T.-W. Hou

Table 2. The number of triggered cycle detection (with enforced cycle detection)

detection would not be a good idea for LW, since LW may cause more overhead if the
difficult case occurs frequently. The garbage cycles not reclaimed immediately may
thus be considered repeatedly. In Fig. 3, the results for _227_mtrt and _205_raytrace
show that the benefit of LW degrades gradually as the heap size increases. In fact, the
cycle collection cost of these two benchmarks tends to be down for both LW and TD
as the heap size increases, while the trend for LW is relatively low (not presented
here). A potential reason is that some garbage cycles may not be collected for a long
time and be reconsidered repeatedly. Though this is not a frequent case in our experi-
ments, it also gives us a motivation to consider using a backup cycle collector.

Over all, the experiments demonstrate that the lightweight cycle collector is practi-
cal and able to reclaim garbage cycles of real programs efficiently, which also con-
firms our new hypothesis - a garbage cycle can be reclaimed as soon as the sub-graph
containing the cycle is detected as garbage.

6 Conclusions

Key to this work is a novel hypothesis that a garbage cycle can be reclaimed as soon
as the sub-graph containing the cycle is detected as garbage, where the sub-graph is
an object graph considered for cycle collection. We developed a lightweight synchro-
nous cycle collector, which performs search locally and handles the cycle problem by
walking graph only once, thus reducing the complexity from 3O(n) to O(n).

We have implemented the lightweight cycle collector in the Jikes RVM for effec-
tiveness evaluation, where eight SPECjvm98 benchmarks were used. The experiments
show the effectiveness of the new algorithm, compared to a modern trial deletion
algorithm. Particularly, the theoretical problem that a garbage cycle may not be
reclaimed immediately does not really affect the practicality. In addition, we have
presented the detailed pseudocode and a proof of correctness of the new algorithm.

References

1. Alpern, B., et al.: Implementing Jalape˜no in Java. In OOPSLA’99 Conference Proceed-
ings:Object-Oriented Programming Systems, Languages, and Applications (Denver, Colo-
rado, Oct. 1999). SIGPLAN Notices, 34, 10, (1999) 314–324.

2. Bacon, D.F., Attanasio, C.R., Lee, H.B., Rajan, V.T., and Smith, S.: Java without the cof-
fee breaks: A nonintrusive multiprocessor garbage collector. In Proceedings of SIGPLAN
2001 Conference on Programming Languages Design and Implementation, ACM
SIGPLAN Notices, Snowbird, Utah, June 2001.

205 209 222 227 228
max avg. max avg. max avg. max avg. max avg.

LW 13 10.7 13 9.6 2 2 17 11.4 62 20.2
TD 15 11.2 12 8.9 2 2 18 12 35 16.3

 A Lightweight Cyclic Reference Counting Algorithm 359

3. Bacon, D.F., and Rajan, V.T.: Concurrent cycle collection in reference counted systems. In
Proceedings of 15th European Conference on Object-Oriented Programming, ECOOP
2001, Budapest, Hungary, June 18-22, vol. 2072 of Lecture Notes in Computer Science,
Springer-Verlag, (2001) 207-235.

4. Blackburn, S.M., Cheng, P., and McKinley, K.S.: Oil and water? High performance gar-
bage collection in Java with MMTk. In International Conference on Software Engineering,
2004.

5. Blackburn, S.M., and McKinley, K.S.: Ulterior reference counting: Fast garbage collection
without a long wait. In ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, Anaheim, CA, (2003) 244-358.

6. Christopher, T.W.: Reference count garbage collection. Software Practice and Experience,
14 (6) (1984) 503-507.

7. Collins, G.E.: A method for overlapping and erasure of lists. Commun. ACM 3, 12 (1960)
655-657.

8. Detreville, J.: Experience with concurrent garbage collectors for Modula-2+. Tech. Rep.
64, DEC Systems Research Center, Palo Alto, California, 1990.

9. Deutsch, L.P., and Bobrow, D.G.: An efficient incremental automatic garbage collector.
Commun. ACM, 19, 9 (1976) 522-526.

10. Jones, R.E., and Lins, R.D.: Cyclic weighted reference counting without delay. In-
PARLE’93 Parallel Architectures and Languages Europe, A. Bode, M. Reeve, and G.
Wolf, Eds., vol. 694 of Lecture Notes in Computer Science, Springer-Verlag, (1993) 712–
715.

11. Jones, R.E., and Lins, R.D.: Garbage Collection. John Wiley and Sons, 1996.
12. Levanoni, Y., and Petrank, E.: A scalable reference counting garbage collector. Technical

Report CS-0967, Technion - Israel Institute of Technology, Haifa, Israel, Nov. 1999.
13. Levanoni, Y., and Petrank, E.: An on-the-fly reference counting garbage collector for Java.

In ACM Conference Proceedings on Object-Oriented Programming Systems, Languages,
and Applications, Tampa, FL, (2001) 367-380.

14. Lins, R.D.: An efficient algorithm for cyclic reference counting. Inf. Process. Lett. 83,
(2002) 145-150.

15. Lins, R.D.: Cyclic reference counting with lazy mark-scan. Inf. Process. Lett. 44, 4 (1992)
215-220.

16. Lins, R.D.: Generational cyclic reference counting. Inf. Process. Lett. 46, 1 (1993) 19-20.
17. Martinez, A.D., Wachenchauzer, R., and Lins, R.D.: Cyclic reference counting with local

mark-scan. Inf. Process. Lett. 34, 1 (1990) 31-35.
18. McBeth, J.H.: On the reference counter method. Commun. ACM 6, 9 (1963) 575.
19. McCarthy, J.: Recursive functions of symbolic expressions and their computation by ma-

chine. Commun. ACM 3, (1960) 184-195.
20. Paz, H., Petrank, E., Bacon, D.F., Rajan, V.T., and Kolodner, E.K.: An efficient on-the-fly

cycle collection. In Proceedings of the 14th International Conference on Compiler Con-
struction, Edinburgh. Springer-Verlag, April 2005.

21. S. P. E. Corporation: Specjvm98 documentation. March 1999.
22. Ye, X., and Keane, J.: Collecting cyclic garbage in distributed systems. In International

Symposium on Parallel Architectures, Algorithms and Networks, Taipei, Taiwan, 1997.

Distributed Garbage Collection for Mobile Actor

Systems: The Pseudo Root Approach

Wei-Jen Wang and Carlos A. Varela

Department of Computer Science,
Rensselaer Polytechnic Institute,

Troy, NY 12180, USA
{wangw5, cvarela}@cs.rpi.edu
http://www.cs.rpi.edu/wwc/

Abstract. Automatic distributed garbage collection (GC) gives abstrac-
tion to grid application development, promoting code quality and improv-
ing resource management. Unreachability of active objects or actors from
the root set is not a sufficient condition to collect actor garbage, mak-
ing passive object GC algorithms unsafe when directly used on actor sys-
tems. In practical actor languages, all actors have references to the root
set since they can interact with users, e.g., through standard input or out-
put streams. Based on this observation, we introduce pseudo roots: a dy-
namic set of actors that can be viewed as the root set. Pseudo roots use
protected (undeletable) references to ensure that no actors are erroneously
collected even with messages in transit. Following this idea, we introduce a
new direction of actor GC, and demonstrate it by developing a distributed
GC framework. The framework can thus be used for automatic life time
management of mobile reactive processes with unordered asynchronous
communication.

1 Introduction

Large applications running on the grid, or on the internet, require runtime recon-
figurability for better performance, e.g., relocating application sub-components
to improve locality without affecting the semantics of the distributed system.
A runtime reconfigurable distributed system can be easily defined by the actor
model of computation [2, 8]. The actor model provides a unit of encapsulation
for a thread of control along with internal state. An actor is either unblocked or
blocked. It is unblocked if it is processing a message or has messages in its mes-
sage box, and it is blocked otherwise. Communication between actors is purely
asynchronous: non-blocking and non-First-In-First-Out (non-FIFO). However,
communication is guaranteed: all messages are eventually and fairly delivered.
In response to an incoming message, an actor can use its thread of control to
modify its encapsulated internal state, send messages to other actors, create
actors, or migrate to another host.

Many programming languages have partial or total support for actor seman-
tics, such as SALSA, ABCL, THAL, Erlang, E, and Nomadic Pict. Some li-
braries also support actor creation and use in object-oriented languages, such as

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 360–372, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Garbage Collection for Mobile Actor Systems 361

the Actor Foundry for Java, Broadway for C++, and Actalk for Smalltalk. In
designing these languages or systems, memory reuse becomes an important issue
to support dynamic data structures — such as linked lists. Automatic garbage
collection is the key to enable memory reuse and to reduce programmers’ efforts
on their error-prone manual memory management.

The problem of distributed garbage collection (GC) is difficult because of: 1)
information distribution, 2) lack of a global clock, 3) concurrent activities, and
4) possible failures of the network or computing nodes. These factors complicate
detection of a consistent global state of a distributed system. Comparing to
object-oriented systems, a pure actor system demands automatic GC as well,
even more, because of its distributed, mobile, and resource-consuming nature.
Actor GC is traditionally considered as a harder problem than passive object
GC because of two additional difficulties to overcome:

1. Simply following the references from the root set of actors does not work
in the actor GC model. Figure 1 explains the difference between the actor
garbage collection model and the passive object GC model.

2. Unordered asynchronous message delivery complicates the actor garbage
collection problem. Most existing algorithms cannot tolerate out-of-order
messages.

Blocked ActorRoot Actor Unblocked Actor Reference

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

1 2 3 4

5 6 7

Passive Object Reference Graph

8

9

8

9

Live Actor Live Object

Fig. 1. Actor 3, 4, and 8 are live because they can potentially send messages to the
root. Object 3, 4, and 8 are garbage because they are not reachable from the root.

Previous distributed GC algorithms (including actor GC algorithms) rely on
First-In-First-Out (FIFO) communication which simplifies detection of a con-
sistent global state. A distributed object GC algorithm either adopts: 1) a
lightweight reference counting/listing approach which cannot collect distributed
mutually referenced data structures (cycles), 2) a trace-based approach
which requires a consistent state of a distributed system, or 3) a hybrid
approach [1].

In actor-oriented programming languages, an actor must be able to access
resources which are encapsulated in service actors. To access a resource, an actor
requires a reference to it. This implies that actors keep persistent references to
some special service actors — such as the file system service and the standard
output service. Furthermore, an actor can explicitly create references to public
services. For instance, an actor can dynamically convert a string into a reference

362 W.-J. Wang and C.A. Varela

to communicate with a service actor, analogous to accessing a web service by a
web browser using a URL.

Actor mobility is another new challenge to overcome. The concept of in-transit
actors complicates the design of actor communication — locality of actors can
change, which means even simulated FIFO communication with message rede-
livery is impractical, or at least limits concurrency by unnecessarily waiting for
message redelivery. FIFO communication is an assumption of existing distributed
GC algorithms. For instance, distributed reference counting algorithms demand
FIFO communication to ensure that a reference-deletion system message does
not precede any application messages.

This research differs from previous actor GC models by introducing: 1) asyn-
chronous, unordered message delivery of both application messages and system
messages, 2) resource access rights, and 3) actor mobility.

The remainder of the paper is organized as follows: In Section 2 we give
the definition of garbage in actor systems. In Section 3 we propose the pseudo
root approach — a mobile actor garbage collection model for distributed actor-
oriented programming languages. In Section 4 we present an implementation
of the proposed actor GC model. In Section 5 we briefly describe a concur-
rent, snapshot-based global actor garbage collector to collect distributed cyclic
garbage. In Section 6 we show experimental results. In Section 7 we discuss
related work. Section 8 contains concluding remarks and future work.

2 Garbage in Actor Systems

The definition of actor garbage comes from the idea of whether an actor is
doing meaningful computation. Meaningful computation is defined as having
the ability to communicate with any of the root actors, that is, to access any
resource or public service. The widely used definition of live actors is described
in [12]. Conceptually, an actor is live if it is a root or it can either potentially:
1) receive messages from the root actors or 2) send messages to the root actors.
The set of actor garbage is then defined as the complement of the set of live
actors. To formally describe our new actor GC model, we introduce the following
definitions:

– Blocked actor: An actor is blocked if it has no pending messages in its
message box, nor any message being processed. Otherwise it is unblocked.

– Reference: A reference indicates an address of an actor. Actor A can only
send messages to Actor B if A has a reference pointing to B.

– Inverse reference: An inverse reference is a conceptual reference in the
counter-direction of an existing reference.

– Acquaintance: Let Actor A have a reference pointing to Actor B. B is an
acquaintance of A, and A is an inverse acquaintance of B.

– Root actor: An actor is a root actor if it encapsulates a resource, or if it is
a public service — such as I/O devices, web services, and databases.

Distributed Garbage Collection for Mobile Actor Systems 363

The original definition of live actors is denotational because it uses the concept
of “potential” message delivery and reception. To make it more operational, we
use the term “potentially live” [7] to define live actors.

– Potentially live actors:
• Every unblocked actor and root actor is potentially live.
• Every acquaintance of a potentially live actor is potentially live.

– Live actors:
• A root actor is live.
• Every acquaintance of a live actor is live.
• Every potentially live, inverse acquaintance of a live actor is live.

3 The Pseudo Root Approach

The pseudo root approach is based on the live unblocked actor principle — a
principle which says every unblocked actor should be treated as a live actor. Ev-
ery practical actor programming language design abides by this principle. With
the principle, we integrate message delivery and reference passing into refer-
ence graph representation — sender pseudo roots and protected references. The
pseudo root approach together with imprecise inverse reference listing enables
the use of unordered, asynchronous communication.

The Live Unblocked Actor Principle. Without program analysis tech-
niques, the ability of an actor to access resources provided by an actor-oriented
programming language implies explicit reference creation to access service ac-
tors. The ability to access local service actors (e.g. the standard output) and
explicit reference creation to public service actors make the following statement
true: “every actor has persistent references to root actors”. This statement is im-
portant because it changes the meaning of actor GC, making actor GC similar
to passive object GC. It leads to the live unblocked actor principle, which says
every unblocked actor is live. The live unblocked actor principle is easy to prove.
Since each unblocked actor is: 1) an inverse acquaintance of the root actors and
2) defined as potentially live, it is live according to the definition of actor GC.

With the live unblocked actor principle, every unblocked actor can be viewed
as a root. Liveness of blocked actors depends on the transitive reachability from
unblocked actors and root actors. If a blocked actor is transitively reachable
from an unblocked actor or a root actor, it is defined as potentially live. With
persistent root references, such potentially live, blocked actors are live because
they are inverse acquaintances of some root actors. This idea leads to the core
concept of pseudo root actor GC.

Pseudo Root Actor Garbage Collection. The pseudo root actor GC starts
actor garbage collection by identifying some live (not necessarily root) or even
garbage actors as pseudo roots. There are three kinds of pseudo root actors: 1)
root actors, 2) unblocked actors, and 3) sender pseudo root actors. The sender
pseudo root actor refers to an actor which has sent a message and the mes-
sage has not yet been received. The goal of sender pseudo roots is to prevent

364 W.-J. Wang and C.A. Varela

Case 1

Blocked Actor Pseudo Root
Actor

Message

B

A

B

A

C

Case 2

In-Transit
Reference

Protected
Reference

A A A A

B B B BC C C C

Stage 1 Stage 2 Stage 3 Stage 4

Blocked Actor Unblocked Actor Reference Deleted Reference Message

Fig. 2. The left side of the figure shows a possible race condition of mutation and
message passing. The right side of the figure illustrates both kinds of sender pseudo
root actors.

erroneous garbage collection of actors, either targets of in-transit messages or
whose references are part of in-transit messages. A sender pseudo root always
contains at least one protected reference — a reference that has been used to
deliver messages which are currently in transit, or a reference to represent an
actor referenced by an in-transit message — which we call an in-transit refer-
ence. A protected reference cannot be deleted until the message sender knows
the in-transit messages have been received correctly.

Asynchronous communication introduces the following problem (see the left
side of Figure 2): application messages from Actor A to Actor B can be in transit,
but the reference held by Actor A can be removed. Stage 3 shows that Actor
B and C are likely to be erroneously reclaimed, while Stage 4 shows that all
of the actors are possibly erroneously reclaimed. Our solution is to temporarily
keep the reference to Actor B undeleted and identify Actor A as live (Case 1
of the right side of Figure 2). This approach guarantees liveness of Actor B by
tracing from Actor A. Actor A is named the sender pseudo root because it has
an in-transit message to Actor B and it is not a real root. Furthermore, it can
be garbage but cannot be collected. The reference from A to B is protected and
A is considered live until A knows that the in-transit message is delivered.

To prevent erroneous GC, actors pointed by in-transit references must uncon-
ditionally remain live until the receiver receives the message. A similar solution
can be re-used to guarantee the liveness of the referenced actor: the sender
becomes a sender pseudo root and keeps the reference to the referenced actor
undeleted (Case 2).

Using pseudo roots, the persistent references to roots can be ignored. Figure 3
illustrates an example of the mapping of pseudo root actor GC. We can now
safely ignore: 1) dynamic creation of references to public services and 2) persis-
tent references to local services.

Imprecise Inverse Reference Listing. In a distributed environment, an
inter-node referenced actor must be considered live from the perspective of lo-
cal GC. To know whether an actor is inter-node referenced, each actor should
maintain inverse references to indicate if it is inter-node referenced. This ap-
proach usually refers to reference listing. Maintaining precise inverse references

Distributed Garbage Collection for Mobile Actor Systems 365

Blocked ActorRoot Actor Unblocked Actor Reference

A

B

C

D

E

F

G

H

I

J

Root Actors

A

B

C

D

E

F

G

H

I

J

Root Actors

Persistent Reference Deleted Reference Message

Blocked ActorPseudo Root Reference

An Example of the Real World The Corresponding Pseudo Root Actor Reference Graph

Fig. 3. An example of pseudo root actor garbage collection which maps the real state
of the given system to a pseudo root actor reference graph

in an asynchronous way is performance-expensive. Fortunately, imprecise inverse
references are acceptable if all inter-node referenced actors can be identified as
live — inter-node referenced actors can be pseudo root actors (we call them the
global pseudo roots), or reachable from another local pseudo root to guarantee
their liveness.

4 Implementation of the Pseudo Root Approach

To implement the proposed pseudo root approach, we propose the actor garbage
detection protocol. The actor garbage detection protocol, implemented as part of
the SALSA programming language [28, 34], consists of four sub-protocols — the
asynchronous ACK protocol, the reference passing protocol, the migration proto-
col, and the reference deletion protocol. Messages are divided into two categories
— the application messages which require asynchronous acknowledgements, and
the system messages that will not trigger any asynchronous acknowledgement.

The Asynchronous ACK Protocol. The asynchronous ACK protocol is
designed to help identifying sender pseudo roots. Each reference maintains a
counter, count, for expected acknowledgements. A reference can be deleted only
if its expected acknowledgement count is zero. An actor is a sender pseudo root if
the total expected acknowledgements of its references are greater than zero. The
protocol is shown in the left upper part of Figure 4, in which actor sender sends
a message to actor receiver. The event handler OnSend is triggered when an
application message is sent; the event handler OnReceive is invoked when a mes-
sage is received. If a message to receive requires an acknowledgement, the event
handler OnReceive will generate an acknowledgement to the message sender.
The message handler ACK is asynchronously executed by an actor to decrease
the expected acknowledgement count of the reference to actor receiver held
by actor sender. With the asynchronous ACK protocol, the garbage collector
can identify sender pseudo roots and protected references from the perspective
of implementation:

366 W.-J. Wang and C.A. Varela

a b

deletion
OnReferenceDelete

Remove
Inverse
Reference

sender receiver

MOnSend

OnReceiveack

ACK

sender receiver

M(&c)OnSend OnReceive

ack

ACK
ACK

c

OnReceive

ack

ack

ACK

migrator remoteSystem

immigrantOnMigrate OnReceive

localSystem

Redeliver
Temporarily
Stored
Messages

requestRedeliver

resendingMessages
Receive

Messages

The Asynchronous ACK Protocol The Reference Passing Protocol

The Actor Migration Protocol The Reference Deletion Protocol

invRefRegistration

Fig. 4. The actor garbage detection sub-protocols

– A sender pseudo root is one whose total expected acknowledgement count
of its references is greater than zero.

– A protected reference is one whose expected acknowledgement count is greater
than zero. A protected reference cannot be deleted.

The Reference Passing Protocol. The reference passing protocol specifies
how to build inverse references in an asynchronous manner. A typical scenario of
reference passing is to send a message M containing a reference to c, from sender
to receiver. The reference (sender,receiver) and the reference (sender,c)
are protected at the beginning by increasing their expected acknowledgement
counts. Then sender sends the application message M to receiver. Right af-
ter receiver has received the message, it generates an application message
invRefRegistration to c to register the inverse reference of (receiver,c) in c.
A special acknowledgement from c to sender is then sent to decrease the count
of the protected reference (sender,c). Making invRefRegistration an appli-
cation message is to ensure that reference deletion of reference (receiver,c)
always happens after c has built the corresponding inverse reference. The pro-
tocol is shown in the right upper side of Figure 4.

The Migration Protocol. Implementation of the migration protocol requires
assistance from two special actors, remoteSystem at a remote computing node,
and localSystem at the local computing node. An actor migrates by encoding
itself into a message, and then delivers the message to remoteSystem. During
this period, messages to the migrating actor are stored at localSystem. After
migration, localSystem delivers the temporarily stored messages to the mi-
grated actor asynchronously. Every migrating actor becomes a pseudo root by

Distributed Garbage Collection for Mobile Actor Systems 367

increasing the expected acknowledgement count of its self reference. The mi-
grating actor decreases the expected acknowledgement count of its self reference
when it receives the temporarily stored messages. The protocol is shown in the
left lower side of Figure 4.

The Reference Deletion Protocol. A reference can be deleted if it is not
protected — its expected acknowledgement count must be zero. The deletion
automatically creates a system message to the acquaintance of the actor deleting
the reference to remove the inverse reference held by the acquaintance. The
protocol is shown in the right lower side of Figure 4.

Safety of Actor Garbage Detection Protocol. The safety of local actor
GC in a distributed environment is guaranteed by the following invariants:

1. Let x �= y. If Actor y is referenced by a non-pseudo-root actor x, actor y
must have an inverse reference to Actor x.

2. If an actor is referenced by several pseudo roots, either it has at least one
inverse reference to one of the pseudo roots, or it is a pseudo root.

The above two invariants together guarantee the property of one-step back tracing
safety. The property says that if an actor is inter-node referenced, the actor either
can be identified as a remotely dependent pseudo root by one-step back tracing
through its registered inverse references, or is reachable from some local pseudo
roots.

5 Collecting Distributed Cyclic Actor Garbage

In order to collect distributed cyclic garbage, we need to obtain a consistent
global view of the system. With the help of the pseudo root approach, we have
devised a logically centralized global garbage collector, which is concurrent (does
not stop applications), asynchronous, and non-FIFO. The global collector trig-
gers distributed GC periodically, decides which computing nodes to include, asks
each computing node to return a local snapshot, merges the snapshots, identi-
fies garbage, and then notifies each computing node of the garbage list. Before
snapshots are returned, deleted references or inverse references are preserved for
consistency. Migrating or migrated actors are removed from the group of GC,
and actors referenced by them are identified as pseudo roots directly. Actors
that have been unblocked or are currently unblocked during garbage collection
are also pseudo roots. Details of the global collector can be found in [32].

6 Experimental Results

Major concerns on the performance of distributed applications are mostly the
degree of parallelism and the application execution time. In this section, we use
several types of applications to measure the impact of the proposed actor GC

368 W.-J. Wang and C.A. Varela

mechanism in terms of real execution time and overhead percentage. The results
are shown in Table 1, and each result of a benchmark application is the average
of ten execution times. To show the impact of GC, the measurement for actor
GC uses two different mechanisms: No GC and DGC. “No GC” means nothing
is used; “DGC” means local garbage collectors are activated every two seconds
or in case of insufficient memory, and distributed GC starts every 20 seconds.
The results of local GC experiments can be found in [32].

Distributed Benchmark Application

Each distributed benchmark application is executed at four dual-processor So-
laris machines. These machines are connected by Ethernet. The benchmark ap-
plications are described as follows:

– Distributed Fibonacci number with locality (Dfibl): Dfibl optimizes the num-
ber of inter-node messages by locating four sub-computing trees at each
computing node.

– Distributed Fibonacci number without locality (Dfibn): Dfibn distributes the
actors in a breadth-first-search manner.

– Distributed N queens number (DNQ): DNQ equally distributes the actors
at four computing nodes.

– Distributed Matrix multiplication (DMX): DMX divides the first input ma-
trix into four sub-matrices, sends the sub-matrices and the second matrix
to four computing nodes, performs one matrix multiplication operation, and
then merges the data at the computing node that initializes the computation.

Table 1. The distributed garbage collection experimental results (measured in seconds)

Application(Argument)/Number of Actors
Dfibl(39) Dfibl(42) Dfibn(39) Dfibn(42) DNQ(16) DNQ(18) DMX(1002) DMX(1502)

Mechanism /177 /753 /177 /753 /211 /273 /5 /5

No GC (Real) 1.722 3.974 3.216 8.527 13.120 426.151 6.165 39.011
DGC (Real) 2.091 4.957 3.761 9.940 17.531 461.757 6.715 38.955

DGC Overhead
(Real) 21% 25% 17% 17% 34% 8% 9% 0%

7 Related Work

Distributed garbage collection has been studied for decades. The area of dis-
tributed passive object collection algorithms can be roughly divided into two
categories — the reference counting (or listing) based algorithms and the indi-
rect distributed garbage collection algorithms. The reference counting (or listing)
based algorithms cannot collect distributed cyclic garbage — such as
[16, 4, 20, 21, 3, 33, 25]. They are similar to the proposed actor garbage detection
protocol but they tend to be more synchronous — all of them rely on First-In-

Distributed Garbage Collection for Mobile Actor Systems 369

First-Out (FIFO) communication or timestamp based FIFO (simulated FIFO)
communication, and some of them are even totally synchronous by using remote-
procedure-call [4]. Since actor communication is asynchronous and unordered,
these algorithms cannot be reused directly by actor systems.

There are various indirect distributed garbage collection algorithms for passive
object systems. The most important feature of these algorithms is that they
collect at least some distributed cyclic garbage. Hughes’ algorithm [10] uses
global timestamp propagation from roots which is very sensitive to failures.
Liskov et al. [13] present a client-server based algorithm which requires every
local collector to report inter-node references to a server. Vestal’s algorithm [31]
tries to virtually delete a reference to see whether or not an object is garbage.
Maheshwari et al. [17, 18] and Le Fessant [15] propose heuristics based algorithms
to suspect some objects as garbage and then to verify the suspects. Lang et al.
[14] propose a group-based tracing algorithm to collect garbage hierarchically.
Rodrigues et al. [23] present a dynamically partitioning approach to form a group
of objects for global garbage collection. Veiga et al. [29] propose a heuristics
and snapshot based algorithm, in which any change to the snapshots may force
current global garbage collection to quit. Hudson et al. [9] propose a generational
collector where the address space of each computing node is divided into several
disjoint blocks (cars), and cars are grouped together into several distributed
trains. A car/train can be disposed of if there are no incoming inter-car/inter-
train references to it. Blackburn et al. [5] suggest a methodology to derive a
distributed garbage collection algorithm from an existing distributed termination
detection algorithm [19], in which the distributed garbage collection algorithm
developers must design another algorithm to guarantee a consistent global state.
All of the above algorithms cannot be reused directly in actor systems because
actors and passive objects are different in nature.

Marking algorithms for actor garbage collection are relatively various, in-
cluding Push-Pull, Is-Black by Kafura et al. [12], Dickman’s algorithm [7], and
the actor transformation algorithm by Vardhan and Agha [26, 27]. Most dis-
tributed actor garbage collection algorithms are snapshot based. The algorithm
proposed by Kafura et al. [11] uses the Chandy-Lamport snapshot algorithm [6]
to determine a precise global state, which is expensive and requires FIFO com-
munication to flush communication channels. Venkatasubramanian et al. [30] as-
sume a two-dimensional grid network topology, and the algorithm also requires
FIFO communication to flush communication channels. Puaut’s algorithm [22] is
client-server based, and requires each computing node to maintain a timestamp
vector to simulate a global clock. Vardhan’s algorithm [26] transforms each local
actor reference graph into a passive object reference graph, and uses Schelvis’
algorithm [24] for global garbage collection. It assumes: FIFO communication,
and periodically performs stop-the-world garbage collection. All existing actor
garbage collection algorithms violate the asynchronous, unordered assumption
of actor communication, and all of them do not support the concept of actor
migration.

370 W.-J. Wang and C.A. Varela

8 Conclusion and Future Work

In this paper, we have redefined garbage actors to make the definition more
operational. We also introduced the concept of pseudo roots, making actor GC
easier to understand and to implement. The most important contribution of
this paper is the actor garbage collection framework for actor-oriented program-
ming languages. Implementation of actor GC is available since version 1.0 of the
SALSA programming language [34, 28]. Unlike existing actor GC algorithms, the
proposed framework does not require FIFO communication or stop-the-world
synchronization. Furthermore, it supports actor migration and it works con-
currently with mutation operations. This feature reduces interruption of users’
applications. The proposed logically centralized global garbage collector is safe
in the case of failures since it does not collect actors which are referenced by
unknown actors.

Future research focuses on the idea of resource access restrictions, which is
part of distributed resource management. By applying the resource access re-
strictions to actors, the live unblocked actor principle is no longer true — not
every actor has references to the root actors. Another direction of this research is
to modify the partitioning based passive object GC algorithms to increase scal-
ability. Last but not least, testing the GC algorithms on real-world applications
running on large-scale distributed environments is necessary to further evaluate
their scalability and performance.

Acknowledgements

We would like to acknowledge the National Science Foundation (NSF CAREER
Award No. CNS-0448407) for partial support for this research.

References

1. S. E. Abdullahi and A. Ringwood. Garbage collecting the internet: A survey of
distributed garbage collection. ACM Computing Surveys, 30(3):330–373, 1998.

2. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

3. D. I. Bevan. Distributed garbage collection using reference counting. In PARLE’87,
volume 258/259 of Lecture Notes in Computer Science, pages 176–187, Eindhoven,
The Netherlands, June 1987. Springer-Verlag.

4. A. Birrell, D. Evers, G. Nelson, S. Owicki, and E. Wobber. Distributed garbage col-
lection for network objects. Technical Report 116, DEC Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, Dec. 1993.

5. S. M. Blackburn, R. L. Hudson, R. Morrison, J. E. B. Moss, D. S. Munro, and
J. Zigman. Starting with termination: a methodology for building distributed
garbage collection algorithms. Aust. Comput. Sci. Commun., 23(1):20–28, 2001.

6. K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

Distributed Garbage Collection for Mobile Actor Systems 371

7. P. Dickman. Incremental, distributed orphan detection and actor garbage collection
using graph partitioning and Euler cycles. In WDAG’96, volume 1151 of Lecture
Notes in Computer Science, Bologna, Oct. 1996. Springer-Verlag.

8. Hewitt, C. Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence, 8(3):323–364, June 1977.

9. R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S. Munro. Garbage collecting
the world: One car at a time. SIGPLAN Not., 32(10):162–175, 1997.

10. J. Hughes. A distributed garbage collection algorithm. In Record of the 1985
Conference on Functional Programming and Computer Architecture, volume 201
of LNCS, pages 256–272, Nancy, France, Sept. 1985. Springer-Verlag.

11. D. Kafura, M. Mukherji, and D. Washabaugh. Concurrent and distributed garbage
collection of active objects. IEEE TPDS, 6(4), April 1995.

12. D. Kafura, D. Washabaugh, and J. Nelson. Garbage collection of actors. In OOP-
SLA’90, pages 126–134. ACM Press, October 1990.

13. R. Ladin and B. Liskov. Garbage collection of a distributed heap. In International
Conference on Distributed Computing Systems, Yokohama, June 1992.

14. B. Lang, C. Queinnec, and J. Piquer. Garbage collecting the world. In POPL’92,
pages 39–50. ACM Press, 1992.

15. F. Le Fessant. Detecting distributed cycles of garbage in large-scale systems. In
Principles of Distributed Computing (PODC), Rhodes Island, Aug. 2001.

16. C. Lermen and D. Maurer. A protocol for distributed reference counting. In ACM
Symposium on Lisp and Functional Programming, ACM SIGPLAN Notices, pages
343–350, Cambridge, MA, Aug. 1986. ACM Press.

17. U. Maheshwari and B. Liskov. Collecting cyclic distributed garbage by controlled
migration. In PODC’95, 1995.

18. U. Maheshwari and B. Liskov. Collecting cyclic distributed garbage by back trac-
ing. In PODC’97, pages 239–248, Santa Barbara, CA, 1997. ACM Press.

19. J. Matocha and T. Camp. A taxonomy of distributed termination detection algo-
rithms. J. Syst. Softw., 43(3):207–221, 1998.

20. L. Moreau. Tree rerooting in distributed garbage collection: Implementation and
performance evaluation. Higher-Order and Symbolic Computation, 14(4):357–386,
2001.

21. J. M. Piquer. Indirect reference counting: A distributed garbage collection algo-
rithm. In PARLE’91, volume 505 of Lecture Notes in Computer Science, Eind-
hoven, The Netherlands, June 1991. Springer-Verlag.

22. I. Puaut. A distributed garbage collector for active objects. In OOPSLA’94, pages
113–128. ACM Press, 1994.

23. H. Rodrigues and R. Jones. A cyclic distributed garbage collector for Network
Objects. In WDAG’96, volume 1151 of Lecture Notes in Computer Science, pages
123–140, Bologna, Oct. 1996. Springer-Verlag.

24. M. Schelvis. Incremental distribution of timestamp packets — a new approach to
distributed garbage collection. ACM SIGPLAN Notices, 24(10):37–48, 1989.

25. M. Shapiro, P. Dickman, and D. Plainfossé. SSP chains: Robust, distributed refer-
ences supporting acyclic garbage collection. Rapports de Recherche 1799, INRIA,
Nov. 1992.

26. A. Vardhan. Distributed garbage collection of active objects: A transformation and
its applications to java programming. Master’s thesis, UIUC, Urbana Champaig,
Illinois, 1998.

27. A. Vardhan and G. Agha. Using passive object garbage collection algorithms. In
ISMM’02, ACM SIGPLAN Notices, pages 106–113, Berlin, June 2002. ACM Press.

372 W.-J. Wang and C.A. Varela

28. C. A. Varela and G. Agha. Programming dynamically reconfigurable open sys-
tems with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology
Track Proceedings, 36(12):20–34, Dec. 2001.

29. L. Veiga and P. Ferreira. Asynchronous complete distributed garbage collection.
In O. Babaoglu and K. Marzullo, editors, IPDPS 2005, Denver, Colorado, USA,
Apr. 2005.

30. N. Venkatasubramanian, G. Agha, and C. Talcott. Scalable distributed garbage
collection for systems of active objects. In IWMM’92, volume 637 of Lecture Notes
in Computer Science. Springer-Verlag, 1992.

31. S. C. Vestal. Garbage collection: An exercise in distributed, fault-tolerant program-
ming. PhD thesis, University of Washington, Seattle, WA, 1987.

32. W. Wang and C. A. Varela. Distributed garbage collection for mobile actor systems:
The pseudo root approach. Technical Report 06-04, Dept. of Computer Science,
R.P.I., Feb. 2006. Extended Version of the GPC’06 Paper.

33. P. Watson and I. Watson. An efficient garbage collection scheme for parallel com-
puter architectures. In PARLE’87, volume 258/259 of Lecture Notes in Computer
Science, pages 432–443, Eindhoven, The Netherlands, June 1987. Springer-Verlag.

34. Worldwide Computing Laboratory. The SALSA Programming Language, 2002.
Work in Progress. http://www.cs.rpi.edu/wwc/salsa/.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 373 – 384, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Grid-Based Node Split Algorithm for Managing
Current Location Data

Jae-Kwan Yun, Seung-Won Lee, Dong-Suk Hong, Dong-Oh Kim, and Ki-Joon Han

School of Computer Science & Engineering, Konkuk University,
1, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea

{jkyun, swlee, dshong, dokim, kjhan}@db.konkuk.ac.kr

Abstract. There is rapidly increasing interest in Location Based Service(LBS)
which utilizes location data of moving objects. To efficiently manage the huge
amounts of location data in LBS, the GALIS (Gracefully Aging Location
Information System) architecture, a cluster-based distributed computing archi-
tecture, is proposed. The GALIS using the non-uniform 2-level grid algorithm
performs load balancing and indexing for nodes. However, the non-uniform 2-
level grid algorithm has a problem creating unnecessary nodes when moving
objects are crowded in a certain area. Therefore, a new node split algorithm,
which is more efficient for various distribution of moving objects, is proposed
in this paper. Because the algorithm proposed in this paper considers spatial dis-
tribution for the current location of moving objects, it can perform efficient load
balancing without creating unnecessary nodes even when moving objects are
congested in a certain area. Besides, the various data distribution configuration
for moving objects has been experimented by implementing node split simula-
tors and it's been verified that the proposed algorithm splits nodes more effi-
ciently than the existing algorithm.

1 Introduction

According to the development of wireless mobile communication technology, mobile
devices such as mobile phone and PDA(Personal Digital Assistants) have been pre-
vailed, and as location measurement technology like GPS is developed, LBS which
utilizes location data of moving objects becomes attractive. In order to provide this
service, the location data management system is required to manage the location data
of moving objects efficiently [1,2,3,4].

The GALIS architecture proposed for LBS is designed for a cluster-based distrib-
uted computing architecture to handle the large amount of moving objects [5,6]. The
GALIS is composed of the SLDS(Short-term Location Data Subsystem) for manage-
ment of the current location data and the LLDS(Long-term Location Data Subsystem)
for management of the past location data. The SLDS divides the entire service area
into smaller ones based upon the non-uniform 2-level grid algorithm, and each node
processes the movement of moving objects in different area. The non-uniform 2-level
grid algorithm implemented in the GALIS is a method proposed for load balancing
and indexing of moving objects, and to provide load balancing, it divides one node
into two nodes when the number of moving objects which processed in a certain node
exceeds the specific limit.

374 J.-K. Yun et al.

The non-uniform 2-level grid algorithm basically has a 2-split structure and per-
forms node split based on the central position of the splitting area as a basis [7]. Be-
cause this algorithm doesn’t consider the current location data distribution of moving
objects, unnecessary nodes would be created, and it has a problem of load unbalanc-
ing between nodes.

Therefore, in this paper, we proposed an efficient node split algorithm that is ap-
propriate to the SLDS of the GALIS architecture. Since the proposed algorithm con-
siders the size of area and the number of moving objects for the two nodes after split,
it doesn’t create unnecessary nodes and can solve the problem of load unbalancing
between nodes.

This paper is organized as follows. The GALIS architecture, the non-uniform
2-level grid algorithm, and the problems of the non-uniform 2-level grid algorithm are
described with examples in chapter 2. A new node split algorithm is proposed in
chapter 3 and the results from the experiment and performance evaluation are ana-
lyzed in chapter 4. Finally, the conclusion and future work are described in chapter 5.

2 Related Works

In this chapter, the GALIS architecture, the non-uniform 2-level grid algorithm for the
management of location data of moving objects, and problems of the non-uniform
2-level grid algorithm are described.

2.1 GALIS Architecture

The GALIS, which is for LBS, has a cluster-based distributed computing architecture
with multiple nodes, and each node is able to process the movement of moving ob-
jects in different area.

Figure 1 shows the GALIS architecture. The GALIS consists of the SLDS for cur-
rent location data management and the LLDS for past location data management. The
SLDS uses a main memory DBMS(Database Management System) in order to effi-
ciently process the periodic update of current location data and the LLDS uses a disk-
based DBMS for managing past location data[8]. Each node in the SLDS is named the
SDP(Short-term Data Processor) and it manages current location information of mov-
ing objects in a Macro-cell area. One node of the SDP is called the SDP Master and
the rest of them are called the SDP Worker.

The LLDS also has a similar form of the SLDS, and each node in the LLDS con-
sists of the LDP (Long-term Data Processor) Master and the LDP Worker. The SLDS
and the LLDS also have Coordinators for load balancing. The SDP Master receives
current location information of moving objects in real time and has a role of transmit-
ting it to the other SDP and the LDP master. Each Coordinator node observes the
number of moving objects that are processed in the SDP or the LDP and performs
dynamic load balancing using the non-uniform 2-level grid algorithm [9].

2.2 Non-uniform 2-Level Grid Algorithm

When the whole area that needs to be processed for LBS is considered as a two-
dimensional plane, this two-dimensional plane is divided into n areas and each

 A Grid-Based Node Split Algorithm for Managing Current Location Data 375

Fig. 1. The GALIS architecture

Fig. 2. Structure of non-uniform 2-level grid algorithm

divided area is called Macro-cell in the GALIS. Macro-cell can be composed of
different sized rectangle areas. Split of Macro-cell occurs when the number of moving
objects included in a Macro-cell exceeds the pre-defined maximum number, and
the split method takes the central position of axis x and of axis y alternately and
makes split. Merge with adjacent Macro-cell occurs, on the other hand, when the
number of moving objects included in a Macro-cell less than the pre-defined mini-
mum number.

Location information regarding moving objects included in each Macro-cell
boundary is processed by a single node and a Macro-cell, in turn, is divided into an
area called Micro-cell that has a regular real-world size of 100m by 100m. Micro-cell
is organized to index current location information of moving objects in a node and it
especially uses the z-ordering technique for indexing [9]. When moving object data is
inserted using the z-ordering technique, the system can recognize the number of mov-
ing objects which are included in a specific Micro-cell.

The left side in Figure 2 shows the whole service area that has been divided into 10
Macro-cells and the right side shows a single Macro-cell that has been divided into 16
regular sized Micro-cells.

376 J.-K. Yun et al.

2.3 Problem Definitions

The non-uniform 2-level grid algorithm has a problem of load unbalancing between
nodes and a problem of unnecessary node creation. The creation of unnecessary node
can make split impossible when a certain node needs to be split. Also, the problem of
load unbalancing implies that the system resources are not optimally utilized.

Figure 3 shows a node state that has been split by the non-uniform 2-level grid al-
gorithm. Before Figure 3 is explained, it is assumed that the system serving whole
area in Figure 3 can use three nodes at maximum.

Fig. 3. Split of non-uniform 2-level grid algorithm

In Figure 3, when moving objects are congested in the right side area, the first split
can not distribute them into two nodes because it occurs at the middle point of axis x.
Therefore, through the second split, the moving objects can be distributed into node 2
and node 3. Even in this state, the number of moving objects in node 1, 2, and 3 are
still in unbalance. Node 1, in this case, still processes a certain area even though there
is no real load at all(i.e., the number of moving objects = 0) and thus, shortage of
nodes can cause split impossible when split is needed in case some moving objects
move from node 2 to node 3.

3 Node Split Algorithm

A new node split algorithm is suggested and explained in this chapter. This node split
algorithm is divided into two parts; selection of the candidate split positions and se-
lection of the final split position.

3.1 Selection of Candidate Split Positions

The number of moving objects after split is one thing that needs to be considered in
the node split algorithm. Because the node split algorithm decides the split position by
consideration of the number of moving objects in the node after split, the optimal
number of moving objects limited by a single node after split during the process of the

 A Grid-Based Node Split Algorithm for Managing Current Location Data 377

Fig. 4. Example of split without consideration of area size

algorithm must be known. The optimal number is the same as the half of the number
of moving objects in the current node. This number is called the optimal number of
moving objects after split.

When only the number of moving objects is considered to decide the split position,
unbalance of area processed by the node can be made. Figure 4 shows an example of
split that can occur when the size of area is not considered.

In Figure 4, the size of one node can be very small because the size of area is not
considered although the number of moving objects is appropriately divided. In this
case, another split may become necessary when moving objects in the smaller area
move a little to another node. To solve the problem, the optimal number of moving
objects after split is recalculated and expressed by a scope value having the maximum
and minimum values. This scope value is defined as a loosely optimal value and the
candidate split positions are selected by using this loosely optimal value.

An algorithm for selecting the candidate split positions uses a two-dimensional in-
teger array that has the number of moving objects included in the cell, and cellij
means the number of moving objects in the cell located at i-th cell of axis x across
with j-th cell of axis y. The number of moving objects in a specific Macro-cell that
can be known due to the characteristic of the SLDS is used in the algorithm. The
algorithm also takes the coefficient variable (CV) of the optimal value and the number
of moving objects (MONum) being processed by the current node as its input.

A split position selection method begins with finding the optimal value
(MinLOPT) and the loosely optimal value (MaxLOPT) after split. The algorithm for
finding these values is described in Figure 5. Next, based upon split axis information
accepted, the number of moving objects in the first column are summed and stored in
a one-dimensional array in case of axis x, the next column stores the accumulated
value by adding the values stored in the previous column to the number of moving
objects in the current column. In case of axis y, the same process as axis x is per-
formed for the row. Thus the obtained one-dimensional array is defined as the cumu-
lative array (CA) and is marked as CAx for the axis x and as CAy for the axis y. In

addition, CA x
i (CA y

i) indicates the i-th element of CAx (CAy). CA is automatically

sorted because it contains accumulated values.
CA and the loosely optimal value are used to select the candidate split positions.

From each sorted CA, an appropriate position into which the loosely optimal value

378 J.-K. Yun et al.

Fig. 5. Selection algorithm for candidate split positions

can be inserted is found and stored in CSP which contains a set of candidate split
positions. The candidate split positions based on axis x are marked as CSPx and those
based on axis y is marked as CSPy. The values stored in CSP are integer values that
indicate the position to be split in the Micro-cell.

3.2 Selection of Final Split Position

After the candidate split positions are stored in CSP, we have to select a final split
position. DF, an important element in the selection of the final split position, shows
the difference in the number of moving objects in two nodes and in ratio of area, and
the candidate split position having the smallest difference is selected as the final split
position. The formula for finding DF is as follow.

When split is made on the basis of the candidate split positions, two nodes after
split are called node 1 and node 2, and MONum1 (MONum2) and MicroNum1 (Mi-
croNum2) represent the number of moving objects and the number of Micro-cells
processed by node 1 (node 2), respectively.

Figure 6 shows the algorithm that computes DF for each candidate split position
and selects the final split position which has the minimum DF value.

 A Grid-Based Node Split Algorithm for Managing Current Location Data 379

Fig. 6. Selection algorithm for final split position

If more than one final split position is selected, the algorithm selects the position
having the minimum number of moving objects among the cells adjacent to the split
position. In this case, more than one position could be selected. If that’s the case, the
split position nearest to the central position of the selected positions is finally
selected.

4 Experiment and Performance Evaluation

This chapter describes moving object data used in the experiment and explains node
split simulators implemented for performance evaluation of two algorithms, that is,
our advanced node split algorithm and the non-uniform 2-level grid algorithm. Last,
the two algorithms are compared each other with respect to the following three points;
the number of nodes used for node split, the number of splits and merges, and the
degree of load balance.

4.1 Moving Object Data

We have utilized GSTD[10] to create moving object data used in the experiment, and
1,000 moving objects and 10 timestamps were taken. In addition, six different distri-
bution types of data were created to experiment various type of moving objects for
different cases. The shape of six types of moving object data is shown in Figure 7.

380 J.-K. Yun et al.

Fig. 7. Six types of moving object data

4.2 Node Split Simulators

In order to evaluate the proposed algorithm, node split simulators were implemented
in this paper. There are two types of node split simulators; one is executed by the non-
uniform 2-level grid algorithm and the other is executed by the advanced node split
algorithm proposed in this paper. Set-up variables for the two simulators are shown in
Table 1.

Values set up for the experiment are shown in Table 2. The same values are used
for the two algorithms. CV in Table 2 is an additional set-up variable for the optimal
value and is only used in the simulator utilizing the advance node split algorithm and
it is not used in the simulator utilizing the non-uniform 2-level grid algorithm.

Table 1. Common variables for simulators

Variable Name Description

MAXMONUM Maximum number of moving objects that can be processed in a
single node

MINMONUM Minimum number of moving objects for node merge
NODENUM Total number of nodes

TSNUM Number of timestamps in input data
MONUM Number of moving objects in input data

CV Variable coefficient for optimal value

 A Grid-Based Node Split Algorithm for Managing Current Location Data 381

Table 2. Set-up values for simulators

Algorithm
Set-up Variables

Non-uniform 2-
level grid algorithm

Advanced node split
algorithm

MAXMONUM 100 100
MINMONUM 50 50
NODENUM 30 30

TSNUM 10 10
MONUM 1000 1000

CV N/A 10

4.3 Evaluation and Analysis of Performance

Evaluation of performance has been done by comparing the average number of nodes
used for load balancing, the number of splits and merges, and the degree of load bal-
ance for six different types of moving object data.

Split shape from the execution result of simulators can be observed by timestamps.
Figure 8 shows split shape of the first moving object data type, among six experimen-
tal data types, where moving objects move toward to the south.

Above part in Figure 8 shows split shape at the third timestamp and lower part
shows another split shape at the last timestamp. By looking at Figure 8, it is clear that
the non-uniform 2-level algorithm can create unnecessary nodes that have no load at
all for split and in the advanced node split algorithm, the load of every node is distrib-
uted evenly.

Fig. 8. Split shape by simulators

382 J.-K. Yun et al.

Fig. 9. Number of nodes used for load balancing

Fig. 10. Number of splits and merges according to data types

Figure 9 shows the number of nodes used for load balancing. It shows that load
balance is performed with the same number of nodes in the case of type 2 data where
moving objects are spread evenly. However, we can see that the advanced node split
algorithm uses the less number of nodes in all other data types compared with the
non-uniform 2-level grid algorithm.

In Figure 10, the number of splits and merges calculated by the simulators using
two algorithms is measured to estimate the degree of overhead in load balancing. As
shown in Figure 10, the advanced node split algorithm has less number of splits and
merges in all cases, thus proves that it can achieve load balancing with less amount of
splits and merges compared with the non uniform 2-level grid algorithm.

Figure 11 shows the standard deviation for the number of moving objects proc-
essed by nodes to see which algorithm performs the better load balancing. Except for
the type 2 data, the less standard deviation is found for the advanced node split algo-
rithm in every case, and about the same standard deviation is found in type 2 data. It
means that both algorithms make load balance evenly only for the type 2 data, but the

 A Grid-Based Node Split Algorithm for Managing Current Location Data 383

Fig. 11. Standard deviation of moving objects in each node

advanced node split algorithm always performs the better load balance in all other
data types compared with the non uniform 2-level grid algorithm.

5 Conclusion and Future Work

In this paper, we proposed an advanced node split algorithm for the SLDS of the
GALIS architecture proposed for LBS. The role of the SLDS is to manage current
location data of moving objects. The proposed algorithm is able to solve the problems
caused by the existing non-uniform 2-level grid algorithm since it considers the dis-
tribution of moving object data and performs the node split based upon the state of the
node that has already split.

To evaluate and compare the proposed algorithm with the non-uniform 2-level grid
algorithm, two node split simulators have been implemented and six types of moving
object data are created by using the GSTD in this paper. The paper has proved, by
performance evaluation experimented against six different types of moving object
data, that the proposed algorithm always performs the better load balance using less
number of nodes than the non-uniform 2-level grid algorithm without creating unnec-
essary nodes. It also has confirmed that the advanced node split algorithm can reduce
the amount of communication cost between nodes with creating the less number of
splits and merges.

The load balance has been made based upon the maximum and minimum number
of moving objects that has pre-set for now, but further study on how to adapt the
maximum and minimum number of moving objects in accordance with different sys-
tem capacity will be needed in the near future.

Acknowledgements

This research was supported by the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Technology Assessment).

384 J.-K. Yun et al.

References

1. Lee, S.W., Kang, H.K., Hong, D.S., Han, K.J.: Design and Implementation of Extended
SLDS for Real-time Location-based Services. Journal of the Korea Open Geographic In-
formation System Research Society. Vol.7, No.2. (2005) 47-56.

2. Lee, S.W., Hong, D.S., Kang, H.K., Han, K.J.: Design and Implementation of Extended
SLDS for Dynamic Load Balancing. Proceedings of the GIS/RS Conference (2005) 37-44.

3. Cho, D.S., Nam, K.W., Lee, J.H., Min, K.W., Jang, I.S., Park, J.H.: Information System
with Very Large Location Data. Journal of the Korea System Science Society Special In-
terest Group on Databases. Vol.18, No.4. (2002) 11-22.

4. Han, K.J.: A Review of LBS Standards and Trends. Information Policy on National Com-
puterization Agency. Vol.10, No.4. (2003) 3-17.

5. Kim, M.H., Kim, K.H., Nah, Y.M., Lee, J.W., Wang, T.H., Lee, J.H., Yang, Y.K.: Distrib-
uted Adaptive Architecture for Managing Large Volumes of Moving Items. Society for
Design and Process Science, IDPT-Vol.2. (2003) 737-744.

6. Nah, Y.M., Kim, K.H., Wang, T.H., Kim, M.H., Lee, J.H., Yang, Y.K.: A Cluster-based
TMO-structured Scalable Approach for Location Information Systems. Proceedings of the
9th IEEE International Workshop on Object-oriented Real-time Dependable Systems
(2003) 225-233.

7. Theodoridis, Y., Silva, J. R. O., Nascimento, M. A.: On the Generation of Spatiotemporal
Datasets. Proceedings of the 6th International Symposium on Large Spatial Databases
(1999) 147-164.

8. Nah, Y.M., Wang, T.H., Kim, K.H.(Kane), Kim, M.H., Yang, Y.K.: TMO-structured
Cluster-based Real-time Management of Location Data on Massive Volume of Moving
Items. Proceedings of STFES (2003) 89-92.

9. Nah, Y.M., Kim, K.H., Wang, T.H., Kim, M.H., Lee, J.H., Yang, Y.K.: GALIS: Cluster-
based Scalable Architecture for LBS systems. Proceedings of the Korea Information Sci-
ence Society Conference. Vol.18, No.4. (2002) 66-80.

10. Pfoser, D., Theodoridis, Y.: Generating Semantics-Based Trajectories of Moving Objects.
Journal of Computers, Environment and Urban Systems (2003) 243-263.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 385 – 394, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Cicada: A Highly-Precise Easy-Embedded and
Omni-Directional Indoor Location Sensing System

Hongliang Gu, Yuanchun Shi, Yu Chen, Bibo Wang, and Wenfeng Jiang

Computer Science and Technology Department, Tsinghua University,
Beijing 100084, P.R. China

ghl02@mails.tsinghua.edu.cn,
{shiyc, yuchen}@tsinghua.edu.cn,

wangbibo@tsinghua.org.cn, jiangwf04@mails.tsinghua.edu.cn

Abstract. For supporting location-aware computing in indoor environments,
the location sensing/positioning system not only need to provide objects’
precise location, but also should own such characteristics as: isotropy and con-
venience for portability. In this paper, we present an indoor location sensing
system, Cicada. This System is based on the TDOA (time difference of arrival)
between Radiofrequency and ultrasound to estimate distance, and adopts a tech-
nology integrating Slide Window Filter (SWF) and Extended Kalman Filter
(EKF) to calculate location. Consequently, it not only can determine the coordi-
nate location within 5cm average deviation either for static objects or for
mobile objects, but also owns a nearly omni-directional working area. More-
over, it is able to run independently, mini and light so that it is very easy to be
portable and even embedded into people’s paraphernalia.

1 Introduction

Location-awareness is a paramount characteristic of many computing fields, such as
pervasive/ubiquitous computing, mobile computing, and many applications, such as
location-dependent information services [1] and location-aware instruction [2]. The
location sensing/positioning system, which provides objects’ location, is a most un-
derlying component of location-aware computing. Although Global Positioning Sys-
tem (GPS) [3] is renowned for its outstanding performance outdoors, it does not work
well in indoor and urban environments. Thus, design and implementation of indoor
location sensing system is urgent for location-aware computing in an indoor environ-
ment, e.g. in Smart Space [4]. Besides provision of location, location-aware comput-
ing in indoor environments gives the location sensing system other requirements:

• Precision. In Smart Space, persons, the important located objects, are always fairly
close. To distinguish person-sized objects, location precision is expected to be less
than 1 dm. Moreover, because persons keep moving, the system should be able to
determine almost as precise location for mobile objects as for static objects.

• Isotropy. In a building the located unit carried by a person keeps changing its di-
rection along with his/her activities. The system should be immune to the varying
of direction, that is, its working area should be omni-directional.

386 H. Gu et al.

• Convenience for portability. It means the located unit (the portable part of system)
is mini and light enough to be portable. Moreover, it had better run independently,
namely it can work without help of other portable devices, e.g. a computer or PDA.

Compared with the guidelines of indoor location sensing system, several popular
systems can not meet the all-around requirements more or less. Aiming at this, we
present our indoor location sensing system, Cicada.

2 Working Principle and Framework

Being somewhat similar to the physical principle of Cricket [5], Cicada is also based
on the TDOA between RF (radiofrequency) and ultrasound. Being different from
Cricket, Cicada is of active mode. The framework of Cicada is shown in Fig. 1.

Fig. 1. Working principle and framework of Cicada

As Fig. 1 shows, Cicada consists of three main parts: CBadge, CReader and Loca-
tion Server. CBadges are carried by users or attached to those objects located, which
emit RF and Ultrasound at the same time periodically. And each RF corresponding to
each CBadge modulates the CBadge’s ID. CReaders are deployed on the fixed loca-
tion of a building, e.g. ceilings, whose coordinate location are known by beforehand
measurement. Because the propaganda speeds of RF and Ultrasound are different, the
TDOA between them from a CBadge to a CReader is direct proportional to the dis-
tance between them, where the coefficient is the velocity of sound in air (neglecting
the propaganda time of RF). According to the theory, a CReader can infer the distance
from a CBadge, and then report it to a dedicated computer, Location Server, through a
serial port cable. The Location Server collects all distance and calculates out location.
Applications can acquire location from the Location Server as its clients.

The close-up of CBadge and CReader is shown in Fig. 2. A RMB coin and a ruler
(the unit is cm) are nearby. The CBadge has a rechargeable 3V lithium battery at-
tached on its back. The omni-directional ultrasound transmitter of CBadge is com-
posed of 5 ultrasound sensors being mutually orthogonal. The CReader has two ports:

 Cicada: An Indoor Location Sensing System 387

(a) CBadge (b) CReader

Fig. 2. The CBadge and CReader in Cicada

one is USB, which connects to the serial port of a computer by a USB-to-COM
Switching; and another is parallel port, which connects to a computer’s parallel port.
The parallel port is unplugged unless CReader is re-programmed. And when Cicada
runs, the USB port must connect to the Location Server (being plugged) all the time.

3 Positioning Algorithm

After acquiring the distance set from CReaders, how to infer objects’ coordinate loca-
tion is concerned with the positioning algorithm. In Cicada, the positioning computa-
tion includes two phases: distance filter and location calculation.

3.1 Distance Filter

Due to ultrasound’s reflection, obstruction and diffraction from wall, furniture and
instruments etc, the indoor multi-path effect occurs very often. That is, quite a few of
distances is invalid because they do not traverse along a LOS (line-of-sight). Before
the distances go into location calculation, the invalid value of them must be filtered
out carefully. Here Cicada adopts a method called Slide Window Filter (SWF).

The data received from CReaders includes CReader’s ID, CBadge’s ID, distance
between the CReader and the CBadge, and the timestamp when the CBadge emits its
signal, which is quaternion],,,[tdbr . If the CReader and CBadge are given, the data

from CReaders is a set of pairs ,2,1],,[=idt ii
 according to time’s ascendant order.

Define a distance tuple D as the triple],,[iiii vdtD = , where)()(11 −− −−= iiiii ttddv .

A slide widow is a cyclic queuing to stores recent distance tuple for each pair of
CReader and CBadge.

In slide widow, what the rear points at is the distance tuple received most recently,
and what the front points at is the distance tuple received earliest, which was

388 H. Gu et al.

dequeued just now. Define the average velocity of slide widow as
=

=
n

i
iv

n
V

1

1 . When

a new distance tuple],,[vdtN = is received, if },min{ maxVVv α≤ , it will be added

into the slide window; otherwise it will be rejected as an invalid distance. Here
maxV is

the maximal velocity of objects’ moving, and represents the maximal acceleration.
For example, in our actual applications,

maxV is set to 1.5m/s, which is a typical mov-

ing velocity for human indoors, and 5.1=α .
SWF can filter out a majority of distance noise caused by multi-path effect. How-

ever it is incapable of handling the measurement error (noise) itself.

3.2 Location Calculation

On location’s calculation method, after comparing with an intuitive method, Linear
Equations Method (LEM), we adopt the Extended Kalman Filter (EKF) as Cicada’s
location calculation algorithm at last.

3.2.1 Naïve Method
The distances from all CReaders with the same timestamp and CBadge’s ID are guar-
anteed to come from a CBadge at a time. Because the positions of the CReaders re-
porting the distances are known, the distances with the CReaders’ position can be
notated as pairs 1,,0],[−= nidp ii

, where
ip is a 3-D coordinate value being also

notated as),,(iii zyx , and n is the pairs’ total number. If the unknown CBadge’s

position is),,(zyx=φ , the Linear Equations Method (LEM) is to solve the quadratic

system of equations below:

=−+−+−

=−+−+−

−−−−
2

1
2

1
2

1
2

1

2
0

2
0

2
0

2
0

)()()(

)()()(

nnnn dzzyyxx

dzzyyxx

(1)

Let each equation above minus each other, we get a non-homogeneous linear sys-
tem of n-1 equations, which can be notated as a form of matrix:

bAX = (2)

Apparently when 4>n , we get an over-constrained system. In the presence of
measurement errors, there may not be a unique solution to the equation above. For
avoiding this, we take a transformation on it:

BKXbAAXA TT == (3)

Where AAK T=×33
, and bAB T=×13 . The equation above is the main algorithm of

Linear Equations Method (LEM). When 4>n , LEM can guarantee that

()
=

−−
n

i
ii dp

1

2φ is minimal [6]. Nevertheless, LEM has several drawbacks:

 Cicada: An Indoor Location Sensing System 389

1. Be disabled when the number of distance at a time is less than 4.
In those cases, we have to take the most recent distance stored in the slide windows

as the received distances which are not actually received to make up 4 equations.
Actually, those distances from the slide windows are not received simultaneously,
which violate the simultaneity condition of distance, especially for mobile objects.
2. Take no account of the measurement noise on distance.

Due to environmental causes, the measured distances often deviate from the actual
value more or less. The deviation is called measurement noise, which is inevitable.
3. Always generate large error, due to ill-conditioned coefficient matrix.

By experiments we find that the coefficient matrix K of (3) often becomes ill-
conditioned. That is, any little change of the elements in K which is generated by
measurement noise will result in a great change of X value by tens of times.
Because LEM considers naively that the location calculation is to directly solve the
quadratic equations, we also call it naïve method or intuitive method. Though having
quite a few drawbacks, LEM is regarded as a basic contrastive method with others.

Because LEM considers naively that the location calculation is to directly solve the
quadratic equations, we also call it naïve method or intuitive method. Though having
quite a few drawbacks, LEM is regarded as a basic contrastive method with others.

3.2.2 EKF Method
Aiming at the drawbacks of Naïve Method, we adopt another method, Extended Kal-
man Filter (EKF), to calculate location. Kalman Filter [7] is an optimal estimation
method for a linear dynamic system perturbed by Gaussian white noise, while Ex-
tended Kalman Filter [8] is the Kalman Filter extended for non-linear system. EKF is
composed of circular iterations, and each of iterations is called a time-step, which
consists of two phases: prediction and correction, and each time-step can guarantee
that the error covariance between the estimated value and actual value is minimal.
Moreover, since EKF works on time domain, it owns low computation complexity,
against those working on frequency domain, such as Wiener filter. On location calcu-
lation, Cicada adopts the EKF based on position-velocity model (PV model), which is
described as follows:

In PV model, we set the state vector of EKF to a vector with 6 components, notated
as TvzvyvxzyxX],,,,,[= , where),,(zyx is object’s 3-D coordinate position,

and),,(vzvyvx is object’s velocity on 3 axes respectively. Because in Cicada the

measurement value is only the distance, we let measurement vector m be the meas-
ured distance, which is a scalar value. So we get the system’s equations of PV model:

Δ+=
Δ+=
Δ+=

Δ+Δ+=

Δ+Δ+=

Δ+Δ+=

−−

−−

−−

−−−

−−−

−−−

Tazvzvz

Tayvyvy

Taxvxvx

TazTvzzz

TayTvyyy

TaxTvxxx

kkk

kkk

kkk

kkkk

kkkk

kkkk

11

11

11

2
111

2
111

2
111

2

1
2

1
2

1

(4)

390 H. Gu et al.

Here, TΔ is the time difference between adjacent time-steps, and),,(azayax is the

acceleration on 3 axes respectively, which are regarded as zero-mean Gaussian white
noises, namely),0(~,, qNazayax . The system’s equations in the matrix form is :

+=
Γ+Φ= −−

kkk

kkk

Xhm

WXX

γ)(
11 (5)

Here Δ
=Φ

3

33

0

*

I

ITI ,

Δ

Δ
=Γ

3

3

2

*

*
2

IT

I
T

, =
az

ay

ax

Wk
,

3I is an 33× identity matrix,

and. kγ is the measurement error, and it is also a zero-mean Gaussian white noise,

namely),0(~ rNγ where r is called measurement noise covariance matrix.
222)()()()(RkRkRkk zzyyxxXh −+−+−= , where),,(RRR zyx is the known

CReader’s position. We define H as the Jacobian of h:

[]000)()()(
)(

1
)(RRR zzyyxx

Xh
XH −−−= (6)

In the system’s equations, the white noises azayax ,, and γ are mutually independ-

ent. So we define the process noise covariance matrix
kQ as:

3*][IqWWEQ T
kkk == (7)

According to the theory of EKF, we can acquire the all computing equations
(namely the iterator) of PV model as follows:

1. Prediction phase

)(
1

)(+
−

− Φ= kk XX (8)

T
k

T
kk QPP ΓΓ+ΦΦ= −

+
−

−
1

)(
1

)((9)

Here)(−
kX is the predicted state, and)(−

kP is the predicted error covariance.

2. Correction phase

1)()()(−−− += rHPHHPK T
kkk

T
kkk

 (10)

)]([)()()(−−+ −+= kkkkk XhmKXX (11)

)()()(−−+ −= kkkkk PHKPP (12)

 Here kK is Kalman gain, kH is an abbreviation of)(kXH ,
)(+

kP is the corrected

error covariance, and)(+
kX is the corrected state as well as the output of EKF.

 Cicada: An Indoor Location Sensing System 391

3.2.3 The Parameters of EKF
As a parameter of EKF, the measurement noise variance represents the average error
during measuring distance. We put a pair of CReader and CBadge face-to-face on a
line at various distances from 0.2m to 4m, and record about 300 samples reported by
the CReader. By comparing the samples with actual distance, we know that the aver-
age measure error is 4.3cm, so 183.4 2 ≈=r . The process noise variance is more
difficult to determine. For static objects, we set 0=q . For mobile objects, in our ex-

periment, the device carrying a CBadge moves around a ring track, providing the
perimeter C and cycle time T are measured, so the process noise variance is near to:

2

4

44 T

C

T

TC

T

v
aq ==== (13)

4 Performance Evaluation

We conducted an experiment to evaluate the positioning performance of Cicada. In
the experiment, we deploy 6 CReaders in a room, and divide the experiment into 3
groups: mobile-LEM experiment, mobile-EKF experiment, and static experiment. In
mobile-LEM experiment we mount a CBadge on the top of a small trolley with a
height of 83.5cm, and let the trolley move along a rectangle track at an average veloc-
ity of 11cm/s. The location calculation of mobile-LEM experiment adopts LEM. The
scenario of the mobile-EKF experiment is the same as that of the mobile-LEM, and
the unique difference from mobile-LEM experiment is that its location calculation
adopts EKF. In the static experiment the CBadge is put on the 9 locations, and loca-
tion calculation also adopts EKF. The whole scenario’s plan-form is shown in Fig. 3.

Before the experiment, we still test out some approximate blind areas, which are
also labeled in Fig. 3. A blind area is the area where less than 4 CReaders can hear the
CBadge’s whistle along LOS. As a result, we record the about 2780 position data in
the mobile-EKF experiment, 400 position data in the mobile-LEM experiment, and 90

Fig. 3. The experiment scenario

392 H. Gu et al.

Fig. 4. The position data in mobile-EKF experiment

position data in the static experiment. As an example, the data in mobile-EKF ex-
periment is shown in Fig. 4.

By our survey means available now, it is different to know the exact actual location
of mobile objects at a certain time, while it is easy to get that of the static objects.
Fortunately, because in the 3 groups of experiments the objects’ heights are invari-
able, both for the mobile objects and for the static objects, it is easy to survey the
z-axis error. In view of this cause, we first compare the z-axis error of the three
experiment groups, and then infer the distance error according to the ratio of z-axis
error to distance error in the static experiment. The z-axis error CDF (cumulative
distribution function) of 3 groups of experiments is shown in Fig. 5.

As Fig. 5 shows, a half (the occurrence = 48%) error of the static experiment ren-
ders is no more than 2.2cm), that (the occurrence = 53%) of the mobile-EKF experi-
ment is no more than 2.3cm too, but that (the occurrence = 47%) of the mobile-LEM
reaches 18cm. The cause why the performance of the previous two are much higher
than that of the last one is that the previous two adopt position-velocity model EKF
while the last one adopts the LEM. This phenomenon illustrates EKF can not only
minimize the effect of Gaussian white noise that LEM can not do, but also it is more
immune to blind areas than LEM. Even if only a distance is received, EKF can still
realize the state’s prediction and correction. On the contrary, because in those cases
LEM resorts to the distances in slide windows which violate the simultaneity condi-
tion, it generates a larger error for mobile objects. This result also proves the impor-
tance of location calculation method, and meanwhile explains why Cicada adopts
EKF as its location calculation at last.

As is seen from Fig. 5 too, the error distribution of mobile-EKF experiment is quite
almost near to that of the static experiment. And a little of difference is that, the
maximal error of static experiment is no more than 6cm, the 99.8% error of mobile-
EKF is no more than 12cm, and its maximal error reaches 21cm. This result proves
that Cicada can guarantee the average height deviation (error) at a sub-decimeter
level, either for static objects or for mobile objects. The cause of difference between
both experiments is likely to be that, in the static experiment, the Slide Window Filter
has enough time to filter out the invalid distance and EKF has enough time-steps to
converge to the actual location, while those conditions can hardly be met in the mo-
bile experiment.

 Cicada: An Indoor Location Sensing System 393

Fig. 5. The z-axis error CDF of three groups of experiments

Table 1. The error of the static experiment

Each Dimension
x y z

3-D
(distance)

Average error (cm)
Dimension error/Distance error

Although those discussed above focus on only one-dimension (height) error, we
can also know the distance error (3 dimensions error). The each dimension error and
distance error in the static experiment are shown in Table 1.

As Table 1 shows, the ratios of each dimension average error to the distance aver-

age error are approximately equal, and all near to 578.03
3 ≈ . By utilizing this

conclusion, we can infer the distance error in the mobile experiment according to the
height error:

hd EE ×= 3 (14)

Where Ed is the distance average error, and Eh is the height average error. By the
equation, we can conclude that Cicada can provide the average location precision of
about 5cm both for static objects and for mobile objects, a sub-decimeter precision.

Another experiment is designed to test the direction sensitivity of Cicada. In the
experiment, a pair of CReader and CBadge is put apart at a distance of 2m. We adjust
their orienting angle from -900 to +900, and record the distance date they report. The
result shows, no matter what the orienting angle is, the CReader can report the dis-
tance all the time, and meanwhile all error is below 15cm, an acceptable range.

The physical characteristics of Cicada are also listed as follows. Size:
8.8*3.0*4.3cm; weight: 50g (with batteries). Besides, the CBadge can work without
connection to any PDA or computer. That is, Cicada can run independently.

5 Conclusion

In this paper, we have presented Cicada, an active system for locating indoor objects.
The experiments illuminate that Cicada can not only provide a high location precision

394 H. Gu et al.

of about 5cm median resolution both for static objects and for mobile objects, but also
its working area is omni-directional. Moreover, being mini, light and able to run inde-
pendently, it is convenient enough to be portable or embedded into people’s para-
phernalia. Those advantages illuminate that, Cicada meets the various requirements of
location-aware computing well, and it is a promising indoor location sensing system.

References

1. Dik Lun Lee, Jianliang Xu, Baihua Zheng, Wang-Chien Lee: Data Management in Loca-
tion-Dependent Information Services. Pervasive computing, IEEE Press, Vol 1, No 3, pp.
65-72, 2002.

2. Hongliang Gu, Yuanchun Shi, Guangyou Xu, et al: A Core Model Supporting Location-
Aware Computing in Smart Classroom. Proc 4th International Conference on Web-based
Learning, pp.1-13, 2005.

3. McNeff, J.G.: The global positioning system. IEEE Transactions on Microwave Theory and
Techniques, Vol 50, No 3, pp.645-652, 2002.

4. The introduction to smart space: http://www.nist.gov/smartspace/.
5. Allen Ka Lun Miu: Design and Implementation of an Indoor Mobile Navigation System.

Master thesis, Massachusetts Institute of Technology, 2002.
6. S. Van Huffel, J.Vanderwalle: The Total Least Square Problem: Computational Aspects and

Analysis. Society for Industrial and Applied Mathematics, Philadelphia, 1991.
7. Greg Welch, Gary Bishop: An Introduction to the Kalman Filter. Tutorial of SIGGRAPH

2001, pp.1-81, 2001.
8. Mohinder S. Grewal, Angus P. Andrews: Kalman filtering: theory and practice. Prentice-

Hall Inc, New Jersey, USA, 1993.

Searchable Virtual File System: Toward an

Intelligent Ubiquitous Storage

YongJoo Song, YongJin Choi, HyunBin Lee,
Donggook Kim, and Daeyeon Park

Korea Advanced Institute of Science and Technology,
Yuseong-gu, Daejeon 305-701, Republic of Korea

{yjsong, yjchoi, hblee, dgkim}@sslab.kaist.ac.kr,
daeyeon@ee.kaist.ac.kr

Abstract. As moving toward ubiquitous environment, demand for a
easy data-lookup is growing rapidly. In an ocean of the exploding data,
users should use some tools to find an right data. Intelligent ubiquitous
applications also make the data-lookup service essential to the ubiquitous
computing framework. This paper proposes a new, searchable, backward-
compatible, virtual file system (S-VFS) for a easy file-lookup. We add
the lookup functionality to VFS, the de facto standard layer in the file
system. Users don’t need to remember a full path to find a file any longer.
Instead, each file has the attributes to use at lookup. S-VFS maintains the
attributes in a normal file per partition. The indexing structures for the
attributes are placed on a separated partition. Using the attribute files
and the indexing structures, S-VFS processes queries provided by users
and returns the result as a form of directory. In spite of this modification
in VFS, S-VFS uses the legacy file systems without any modification.
Since S-VFS supports the full backward compatibility, users can even
browse hierarchically with the legacy path name.

1 Introduction

People say the ubiquitous computing world, in which the ubiquitous devices
surrounds users with a lot of convenient services. To develop and support the
services easily, ubiquitous frameworks are proposed [1] [2]. Modahl at el [3] sur-
veyed and summarized the frameworks. They classified the components of the
subsystems, including the Data Storage component. The Data Storage handles
significant structured data movement between distributed nodes [4] , and so it
requires the functionality of Searching and Sharing.

In addition, searching (or lookup) is becoming essential in the data manage-
ment. As the Internet is widely used, people access the more information and
the more files. Now, the local disk is too large and the files are too many to know
where the desired file is. Marsden [5] proposed a file browser searches using the
attributes of files. The searchable file systems are also proposed. Semantic File
System [6] is the first attempt to find a file without the directory browsing, and
inherited by BeFS [7] and LogicFS [8]. Commercially, Spotlight by Apple is a
file management technique with a lookup functionality. Microsoft also attempts

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 395–404, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 Y. Song et al.

to add some searchable structures in WinFS - the next generation file system in
Windows Longhorn. These file systems commonly modify a actual file system.
They add the attribute fields in the metadata of each files and some indexing
structure for querying.

We are motivated by the insight that file system in kernel is originally in
charge of the data management. But the current file systems do not have enough
functionality for searching, since previous research into file systems has mainly
focused on the performance and the reliability. So, the Data Storage component
is playing the role of searching in the middleware over file system layer. Note that
the middleware approach means a redundant data management layer over file
system, the original management layer in kernel. Previous file system approaches
can’t be a complete solution since they gave up the backward compatibility. Users
should move the whole files to the new file system and not able to share with the
others. Also they should give up the novel mechanisms for the performance like
clustering, grouping, journalingand defragmentation [9], since the new searchable
file system doesn’t implement those mechanisms. We note that it is because of
the integrating the lookup into the actual file system. Virtual file system layer
would be the right place to have the functionality of searching and sharing
without giving up the legacy file systems.

Searchable Virtual File System (S-VFS) makes the whole data space search-
able. Like BeFS [7] and LogicFS [8], S-VFS also uses the attribute to look up a
file. Users or applications give some attributes and values to the files, and retrieve
using a query. However, VFS approach and the requirement of the backward
compatibility need more mechanisms. First, a new query syntax is addressed to
use S-VFS. S-VFS doesn’t make the separated interface for the query. We inte-
grate the query into the legacy interface of the path. The single query interface
of S-VFS supports both the query and the browsing via path, even including the
mixture form of those. Second, we propose a separated and dedicated partition
for indexing of the attributes. S-VFS searches the whole mounted file systems,
not only a partition. So indexing structure should be independent to a partition.
We place the indexes at the separated partition and it is updated every mount
operation. Finally, we also design a new mechanism for the attribute manage-
ment. S-VFS is a modified VFS, but doesn’t modify an actual file system. That
means i-node can’t be modified to insert the attributes like BeFS [7]. S-VFS
manages the attributes as a normal file per partition. The attribute file has all
information to retrieve a file, and is accessed only by S-VFS. Also, it accelerates
the query processing by the parent caching.

The rest of this paper is organized as follows. Section 2 proposes the new
design of Searchable VFS. The detailed internal structures are described in
Section 3. Section 4 presents the steps of query processing. Section 5 provides
the performance results. Finally, Section 6 concludes this paper.

2 Design

Virtual File System(VFS) is the root of naming and the adequate layer to imple-
ment a searching function. A design philosophy of Searchable-VFS is to support

Searchable Virtual File System: Toward an Intelligent Ubiquitous Storage 397

the generalized query with backward compatibility. S-VFS uses only the legacy file
lookup interface open() and opendir(). Via the same interface, users can browse
the single name space hierarchically, as well as search with some condition. S-
VFS processes the generalized - even including the mixture of hierarchical path
and searching condition - query. The following section describes the syntax of
attribute and query supported by S-VFS. An Architectural overview is also pre-
sented. Again, note that there is no change in the implementation of actual file
systems.

2.1 Attribute and Query

The attribute is mainly used to characterize a file [6] [8], and allows users to
search a desired file without memorizing the whole path. Any name-value pair,
(name, value), can be an attribute. For example, a music file, yesterday.mp3, has
three attributes in Fig 1; (time, 3 : 40), (singer, beatles) and (genre, pop). The
type of the attribute is pre-defined but can be any type, for example, int, float,
string, enum and so on. S-VFS allows even the directory to have attributes.
The directory attributes enable to describe a group attribute. In Fig 1, the
attributes of the directory favorite say ”it has music files selected at 2005.” By
the directory attribute, users can find the pre-grouped files. S-VFS supports the
directory search.

Query generally consists of the required attributes. Users make a query with
the desired attributes set and searching engine processes it and returns the re-
sult set. In S-VFS, the query is not only the set of attributes. A query Q can
have directory path d and query fragment q. d means the required path which
the target files should have. q represents the legacy query consists of required
attributes. S-VFS processes q and d and even the repeated mixture of them.

Fig 2 presents the generalized query using the mixture of q and d. The
query Q1 can be divided into d1, q1 and d2. The user is requiring the files
with the following conditions; in the directory proceeding (d2) made in May 1
or 2 (q1), which is the one of the children of /home/yjsong (d1). No previous
work supports the mixed query like this. Using the single generalized query
interface, S-VFS support both the hierarchical browsing and queryable inter-
face including the mixture of them. So there is no need to modify the legacy
applications.

Fig. 1. An example of attributes Fig. 2. Query in S-VFS

398 Y. Song et al.

2.2 S-VFS Architecture

For the search functionality, S-VFS maintains two data structures, indexing par-
tition and attribute table. S-VFS mimics the indexing of DBMS using the index-
ing partition. At OS installation time, the indexing partition has to be created
like the swap partition. the partition is accessed only by S-VFS for indexing
and searching. It consists of attribute hash table and indexing structures. The
detailed structures will be described in the next section.

Attributes per file is managed as an attribute table in a normal file per parti-
tion. The table file contains all attributes of all files in its own partition. During
the query processing, S-VFS first selects a distinct attribute in the query and
searches the indexing structure for the attribute. And the remaining exact condi-
tions are matched using the attribute table file. Heuristic for choosing a distinct
attribute has been a hot issue in the research area of DBMS [10] , and it’s out
of the scope of this paper.

3 Data Structures

3.1 Indexing

S-VFS maintains a partition dedicated for the indexing structures. The indexing
partition has the number of indexing structures equal to the number of the
attributes. It means that all the files are sorted by each attributes.

During the query processing, S-VFS selects a distinct attribute. Index parti-
tion returns the indexing structure sorted by the distinct attribute. An indexing
structure can be any form, B+tree, hash table, Bloom filter [11] and even simple
linked list(Fig 3). The only guideline is that they should get the minimum and
maximum value of the query and result the sorted file list. B+tree would be
efficient for the attribute create time. For attribute keyword, hash table may be
better. User or system selects a proper indexing structure at adding an attribute.

Implementation of indexing structure should use the disk by block unit. Page
cache is also used for the caching effect during the query processing.

3.2 Attribute Description Table

The indexing structure contains indexes. Attribute Description Table (ADT) is
the other structure in the indexing partition, pointing the head of a indexing
structure for an attribute. Since S-VFS dynamically generates, modifies and
removes the indexing structures, there should be a mapping of attributes to their
indexes. ADT is a closed hash table. Each attribute has a hashed ID and the
mapping is placed at the bucket of the ID. The bucket has the first block number
of indexing structure. The hashed ID and the information of the attribute are
also stored for resolving collisions. At the query processing time, S-VFS can get
the exact indexing structure by referring to ADT. The hashed ID of the attribute
is used to the direct referencing, not a iterative lookup.

Searchable Virtual File System: Toward an Intelligent Ubiquitous Storage 399

Kernel

Searchable VFS

ext3 TCP

Disk

Raw partition
for indexing FAT32NTFS

User program / Middleware

Attribute Description Table

Indexing structures

Fig. 3. Raw partition for indexing

3.3 Attribute Table

S-VFS creates the files named ”attributes.svfs” at the root of each disk partition.
The files have the attribute table that maintains all attribute information in each
partition. The attribute table is a closed hash table that uses the hashed i-node
number as a key(Fig 4). Each file of a partition has its bucket in the attributes.svfs
at the root of the partition.

The bucket consists of the i-node number of the file, the reserved space for
parent cache and the attributes information the file has. The parent cache is
for accelerating the processing of the mixed query. Each bucket maintains the
bucket number of the parent and the tree depth from the root directory. The
detailed usage of the parent cache will be described in the next section.

Kernel

Searchable VFS

ext3 TCP

Disk

Raw partition
for indexing

FAT32NTFS

User program / Middleware

Attribute ID Table

Attribute Table

attributes.svfs

…

Fig. 4. Attribute Table as a normal file

400 Y. Song et al.

The type of the attribute name is the array of character. The string of the
name in each bucket wastes the disk and slows down exact-matching in query
processing. So attributes and values are stored in buckets as a form of ID-value
pair, (ID, value). The mapping between ID and the actual attribute name is in
the head of attributes.svfs, Attribute ID Table. If a file has too many attributes
to store in its bucket, S-VFS assigns another bucket for the remained attributes.
The last element of the bucket is the pointer to the next bucket.

4 Query Processing

S-VFS is an extended VFS. S-VFS makes VFS queryable while it still supports
hierarchical file lookup. To make it searchable, we use a new namei function. In
VFS, namei traverses a path and returns the i-node named by the path. S-VFS
uses modified-namei to process queries inserted in the path. The procedure of
query processing is shown in pseudo code form in Algorithm 4.1.

Algorithm 4.1. hierarchical lookup(parent, path)

(d, q, r) = parse path(path);
inode = namei from(parent, d); //4.1.1 hierarchical traverse
if (q �= null)
inode = SEARCH(inode, q); //4.1.2 query processing
else
return inode;

HIERARCHICAL LOOKUP(inode, r); //4.1.3 repeat from 1

To separate the query fragment q from the path, S-VFS call parse path,
which returns the first directory path d and the first query fragment q. r means
the remained path except q and d. In the example of Fig 2, (d, q, r) is
(/home/yjsong/, month = 5/day < 3/, proceeding/).

The first step of query processing is the hierarchical traverse. The legacy
namei function is called to traverse d. The parameter parent is the start point of
traversing. It is null at the first call of HIERARCHICAL LOOKUP. If there is no
query to process, the lookup function returns the results of directory traversing.
q, if exists, is processed using the Algorithm 4.2. The first parameter parent
means the scope of searching. SEARCH processes the query among the children
files of parent.

S-VFS doesn’t maintain a multi-dimensional index. S-VFS first uses the index
of the distinct attribute and the remained conditions are iteratively matched. To
select the distinct attribute from query, parse query divides the query into the
fragment for each attribute. S-VFS refers ADT(section 3.2) to get the indexing
structure(section 3.1) of the selected distinct query dq. The indexing structure
can pick out the files satisfy dq. Lastly, isMatch matches the remained condi-
tions using the attribute table(section 3.3). For the scope of query, isParent is
another condition of the exact matching. S-VFS makes a virtual directory that

Searchable Virtual File System: Toward an Intelligent Ubiquitous Storage 401

has the final list of the files. HIERARCHICAL LOOKUP recursively repeats to
traverse the remained path r. The traverse would be ended when there is no
query to process.

Algorithm 4.2. search(parent, query)

qlist = parse query(query);
select a distinct query dq from qlist //4.2.1 select a distinct condition
indexing structure = ADT(dq.attribute name);
flist = indexing structure(dq); //4.2.2 lookup by the distinct condition
create a virtual directory vd
for each (file in flist){
attributes = AttributeTable(file);
if (isMatch(qlist, attributes) && isParent(parent, file)) //4.2.3 exact matching
insert file into vd;

}
return vd.inode;

Limiting the scope of query is very expensive. There are only two ways to
get the limited result. The one is to use a candidate file set first. If a query q
should be processed within the scope of parent, the candidate set is the list of
all files in the subdirectories of parent. The condition of q should be matched
iteratively, and any indexing structure can’t be used since indexing structures
are not available for all scopes.

S-VFS takes the other approach, checking parent later. S-VFS checks whether
a file is a child of parent during the last iterative matching. It’s also an expensive
task. S-VFS has parent cache in the attribute table to accelerate the checking.
S-VFS checks the parents of a file following parent bucket pointer and depth in
the attribute table. Parent cache stores the result of the checking and eliminates
the repeated checking.

Let’s back to the example of Fig 2, Fig 5 presents the processing steps of the
example. At first, the query Q1 is divided into (d1, q1, d2). By Algorithm 4.1,
S-VFS traverses d1, /home/yjsong/, and gets i-node number and the bucket
number 5 in the attribute table. S-VFS performs Algorithm 4.2 with the param-
eters (5, month = 5/day < 3). Let’s assume that the distinct attribute is day in
this case.1 The distinct query dq is day < 3. S-VFS gets the head block number
50 from the ADT in the raw partition for indexing. Using the indexing structure,
S-VFS gets the bucket list of files which satisfy day < 3. The last conditions are
month = 5 and parent = yjsong(that is, parentbucket = 5). By Algorithm
4.2.3, S-VFS iteratively matches the last conditions using the attribute table. In
Fig 5, the directory proceeding in the bucket 9 matches month = 5. To check
the parent, S-VFS follows the parent bucket field. S-VFS meets osdi and it has
the number of the target parent bucket 5. Or, S-VFS climbs until the depth is

1 To choose a distinct attribute, we made a simple heuristic using the query cost
mechanism like [10] . S-VFS maintains the cost information in ADT.

402 Y. Song et al.

ex. opendir(“/home/yjsong/month=5/day<3/proceeding/”)

NTFS

Attribute Description Table

Indexing Structures

Raw partition

Attribute table

Attribute ID Table

attributes.svfs

…

…

…

1. /home/yjsong/

2.1-2.2. day < 3

2.3 month=5,
parent=yjsong,
name=proceeding

…

Fig. 5. An example of query processing

smaller than that of the target parent, 2. Since the parent checking is successful,
S-VFS puts OK at the parent cache field on the path. At the next checking for
another file, S-VFS can refer OK or NOK sign in the cache.

After the last matching, we get the virtual directory which means /home/
yjsong/month = 5/day < 3/. S-VFS repeats Algorithm 4.1 with the directory.
It will only traverse a directory proceeding. Here is the optional technique to
enhance the processing. In Algorithm 4.1, the first path in r can be moved to
the last condition in q. In case of Fig 5, (/home/yjsong/, month = 5/day <
3/, proceeding/) can be transformed to (/home/yjsong/, month = 5/day <
3/name = proceeding, null). This query transformation may reduce the number
of the iteration of Algorithm 4.1.

5 Evaluation

We assess the performance of our S-VFS on improving the speed of looking up
files. Experiments were conducted on the linux server with Intel Pentium-III
800MHz processor, 256MB memory, a 61.4GB Maxtor 5400RPM E-IDE drive.
S-VFS mechanisms are implemented in the application layer and the actual disk
partitions. We uses a simple open hash table for the indexing structures in the
raw partition.

We evaluated S-VFS with the lookup performance. The test program searches
the target files selected randomly among a working set. We used a linux kernel
source tree as a working set. The linux kernel 2.6.7-21 source tree has 34,007
files and we selects a subset of the tree as a working set. We varies the number
of files in the working set from 10 to 34,007. The lookup test is iterated to get
the meaningful average elapsed time.

Searchable Virtual File System: Toward an Intelligent Ubiquitous Storage 403

Fig. 6. Lookup performance Fig. 7. Lookup performance - log scale

Fig 6 presents the average lookup time. X-axis is the log-scaled number of files
in the working set.Y-axis is the elapsed time per lookup. When the test program
uses the legacy VFS, it should traverse the whole working set to lookup the
target file. So the lookup time is in direct proportion to the number of files
in the working set. Using S-VFS, the lookup times are ignorable by the order
of hundreds of files in the working set. When the working set size is over the
10,000, S-VFS shows the lookup performance logarithmically proportional to the
working set size.

Fig 7 is a log-scaled Y-axis version of Fig 6. VFS test shows the straight
proportional line in Fig 7, too. S-VFS shows the minimum lookup time about
a number of milliseconds. It means the fixed overhead of S-VFS for accessing
the ADT, the indexing structure, and the attribute table. Because of the over-
head, the legacy VFS shows the better performance at the small working set. As
growing the size of the working set, the indexing structure lookup time becomes
dominant. The results over 10,000 files presents the strongest point of S-VFS
lookup, logarithmical proportion to the working set size.

6 Conclusions

In this paper, we have presented the searchable virtual file system, S-VFS. S-VFS
makes the name space of file systems searchable. S-VFS doesn’t need any changes
in the actual file systems and the legacy applications. So S-VFS can support the
ubiquitous middleware and storage with the minimum effort. Currently, S-VFS is
in an initial prototype state. However, our new concepts for the VFS layer intro-
duces a number of challenges for the ubiquitous middleware and storage system.

It is another challenge to consider the concurrency and the consistency in the
access of S-VFS data structures. While the data structures of S-VFS already are
free to access concurrently, it can be a performance bottleneck.

References

1. Romn, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,
K.: Gaia: a middleware platform for active spaces. SIGMOBILE Mob. Comput.
Commun. Rev. 6(4) (2002) 65–67

404 Y. Song et al.

2. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project aura: Toward
distraction-free pervasive computing (2002)

3. Modahl, M., Agarwalla, B., Abowd, G., Ramachandran, U., Saponas, T.S.: Toward
a standard ubiquitous computing framework. In: Proceedings of the 2nd workshop
on Middleware for pervasive and ad-hoc computing, New York, NY, USA, ACM
Press (2004) 135–139

4. Modahl, M., Bagrak, I., Wolenetz, M., Hutto, P., Ramachandran, U.: Mediabroker:
An architecture for pervasive computing. In: PERCOM ’04: Proceedings of the Sec-
ond IEEE International Conference on Pervasive Computing and Communications
(PerCom’04), Washington, DC, USA, IEEE Computer Society (2004) 253

5. Marsden, G., Cairns, D.E.: Improving the usability of the hierarchical file system.
In: SAICSIT ’03: Proceedings of the 2003 annual research conference of the South
African institute of computer scientists and information technologists on Enable-
ment through technology, , Republic of South Africa, South African Institute for
Computer Scientists and Information Technologists (2003) 122–129

6. Gifford, D.K., Jouvelot, P., Sheldon, M.A., James W. O’Toole, J.: Semantic file sys-
tems. In: SOSP ’91: Proceedings of the thirteenth ACM symposium on Operating
systems principles, New York, NY, USA, ACM Press (1991) 16–25

7. Giampaolo, D.: Practical File System Design with the Be File System. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

8. Padioleau, Y., Ridoux, O.: A logic file system. In: USENIX ’03: Proceedings of
USENIX 2003 Annual Technical Conference. (2003) 99–112

9. Ahn, W.H., Park, D.: Mitigating data fragmentation for small file access. IEICE
Trans. Information and Systems E86-D(6) (2003) 1126–1133

10. Reiss, F.R., Kanungo, T.: A characterization of the sensitivity of query optimiza-
tion to storage access cost parameters. In: SIGMOD ’03: Proceedings of the 2003
ACM SIGMOD international conference on Management of data, New York, NY,
USA, ACM Press (2003) 385–396

11. Koloniari, G., Pitoura, E.: Bloom-based filters for hierarchical data. In: the 5th
Workshop on Distributed Data and Structures (WDAS). (2003)

A Collaborative Privacy-Enhanced Alibi Phone

Hsien-Ting Cheng1, Ching-Lun Lin2, and Hao-hua Chuinst1

1 Department of Computer Science and Information Engineering,
Graduate Institute of Networking and Multimedia,

National Taiwan University, Taipei, Taiwan
{r92006, hchu}@csie.ntu.edu.tw
2 Department of Computer Science,

Columbia University,
New York, NY 10027, USA

cl2399@columbia.edu

Abstract. This paper presents a collaborative privacy protection ap-
proach that not only filters context information and reduces its gran-
ularity, but also intelligently replaces the filtered-out context with an
artificial context considered appropriate by its user. The benefit of this
approach is that individuals accessing the filtered context cannot de-
tect the presence of filtering, namely, filtering becomes imperceptible.
This new approach is used as a basis for designing, implementing and
evaluating a collaborative privacy-enhanced alibi phone, allowing user
to imperceptibly conceal surrounding ambient sound from callers, while
leaving callers unaware of this filtering.

1 Introduction

Many individuals feel that they reveal more (context) information to others re-
garding their daily life than is necessary. For example, when receiving a voice
call or participating in a video conferencing session, individuals not only dis-
close to callers our voice and facial expression, which is the only information
they actually want them to hear/see. Microphones and cameras also capture
and transmit ambient sound and background scenery to callers, reveal addi-
tional context information regarding our current location and activities. In some
situations, such additional information can cause unnecessary embarrassment
and misunderstanding to the callees. To avoid these situations, many callees of-
ten refuse to communicate with callers when they consider it inconvenient. This
work uses the following two scenarios to illustrate situations like those described
above:

1. Joe has told his girlfriend Jane that he was going to play basketball with
his male friends. Unfortunately, some of his male friends did not show up,
leading to cancellation of the basketball game. Instead, Joe decided to meet
some female friends in a coffee shop for a friendly chat. At the coffee shop, Joe
then receives a phone call from Jane. Joe was hesitant to answer this call,

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 405–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 H.-T. Cheng, C.-L. Lin, and H.-h. Chuinst

because he was concerned that Jane would hear that he was with female
friends, possibly causing an unnecessary misunderstanding.

2. Joe noticed a video phone call from his supervisor while he was entertaining
an unexpected client at a local jazz bar. Since this was an unexpected visit,
Joe had not informed his supervisor Jill about it. Again, Joe was hesitant
to pick up the video phone call because he did not want Jill to see or hear
the bar environment and loud Jazz music and thus conclude that Joe was
slacking off from work.

A simple solution to the above dilemmas would be to filter out the ambient
sound and background scene [1]. However, this simple solution is insufficient in
situations in which the callers are expecting certain types of ambient sound or
background scenes from the callees. In the 1st scenario, Jane would expect Joe
to be in the basketball court and expect to hear the sound of basketball being
played. In the 2nd scenario, Jill would expect Joe to be working in a busy office
and expect see sights and hear sounds confirming this. The ideal solution should
produce the expected ambient noise and background scene V the basketball court
or the busy office. Notably, filtering alone can lead to a noticeable absence of
ambient sound and background scenes, particularly when callers are expecting
callees to be in certain places with distinctive ambient sounds and scenes. Fil-
tering may create the undesirable impression that callees are intentionally and
explicitly hiding certain information from callers. Therefore, a new approach to
privacy protection is required that does not simply protect the context infor-
mation of callees, but simultaneously can make such filtering imperceptible to
callers.

This paper proposes a new privacy protection approach that not only filters
out context information, but also intelligently substitutes the filtered-out con-
text information with artificial context information considered appropriate by
its user, thus creating the appearance of imperceptible filtering to callers. This
approach is collaborative in the sense that other peers on the network who may
have access to such artificial context information can help by contributing them.
Based on this new approach, this work has designed an audio-based privacy pro-
tection system for use with a mobile phone. To achieve imperceptible filtering, it
is designed to do the following: (1) filter out background ambient sound from the
voice of the callee, (2) find an appropriate ambient sound source expected by the
caller over a peer network, and (3) mix the selected ambient sound source with
the voice of the callee. Consider the 1st scenario described previously. When his
privacy-enhanced cell phone detects that Joe is not currently at the expected
location on the basketball court, it can filter out the background chatter of Joes
female friends, find an ambient sound source on a basketball court and mix this
ambient sound with Joes voice. Consequently, Jane will hear ambient sound re-
sembling the location where she expects Joe to be, namely a basketball court. Joe
thus can feel comfortable picking up phone calls anytime anywhere regardless of
his current ambient environments.

A Collaborative Privacy-Enhanced Alibi Phone 407

2 Related Work

Previous works on protecting context information were focused primarily on in-
formation filtering and granularities. Project Aura [2] proposed an access control
mechanism for filtering out fine-grained information from raw context data, so
that the provided context information would match the access privileges given
to the request. For example, location information can be determined based on
an image captured by a camera. If a user is only granted access to the location
information, Aura will filter out and remove the image, and return only a text-
based location description. In comparison, the proposed system not only filters
information granularity, but also intelligently substitutes the filtered-out context
information with the artificial context information. As a result, the proposed sys-
tem can create the appearance of imperceptible filtering to people accessing the
context information of call recipients.

Several commercial products are available that can eliminate ambient noises.
The Boom Noise Canceling Headset [2] enables users to communicate clearly in
loud noisy environments. This headset can be plugged into most cellular phones.
The headset is fitted with two microphones. The mouthpiece microphone collects
the voice of the user together with some of the ambient noises surrounding the
user. Meanwhile, the noise microphone picks up all the ambient noise but little of
the users voice. The handset subtracts the ambient noise gathered by the noise
microphone from the audio signals gathered by the mouthpiece microphone. The
net result of the subtraction is a pure recording of the speakers voice.

Some cellular phone service providers, such as TransAsia Telecom in Taiwan [3],
are currently offering services that enable users to mix backgroundmusic into their
phone calls locally and centrally, respectively. To use these services, users must es-
tablish a schedule for mixing the music or sound effect, such as noise of traffic jam,
a circus parade, a thunderstorm, a ringing phone, into the phone call. Additionally,
users candecidewhatandhowtomix themusic or soundeffectbasedon the identity
of the callee/caller. Nevertheless, the proposed system differs from these services
in several respects. First, both of the previous system lack the ambient noise filter-
ing feature, which will be crucial in a location with extremely noise background,
simply mixing is unable to replace the original ambient noise. Second, the previous
service providedby TransAsiaTelecom [3] is designed to make phone calls more en-
tertaining rather than being designed to provide privacy protection. Moreover, the
selectionofbackgroundmusic formixingwithvoice inprevious systems is static and
limited, only someprerecorded sound effect are available.Our proposed systemcan
search through a peer network of collaborative users and the available background
sound at their current locations, to find the desired ambient and mix it in real time,
which actually meets the requirements of users.

A group of cell phone users have formed an alibi and excuse club [4], to
provide more substantial excuses, club member has to pick up a phone to let
the boss know of a buddys tardiness and make his wife believe her husband has
an important meeting when he is really at bar. Such club uses a real manual
conversation to hide context information, however, even the founder of the club
admits there existing moral problems from an integrity standpoint.

408 H.-T. Cheng, C.-L. Lin, and H.-h. Chuinst

3 Challenges and Approach

This study identifies the following technical challenges in realizing this privacy-
enhanced phone.

– Detecting whether the user is at the expected location. Detecting this re-
quires the user to maintain a schedule of whether he/she is expected to be
at different times. By consulting the schedule of a user and comparing his/her
expected location with his/her current location, the system can determine
whether the user is at the expected location. Currently, the most popular
locating system is GPS. However, GPS does not work indoors. To overcome
this problem, the proposed system pre-defines some location profiles, such
as office, transportation, countryside, and so on. User can then manually
change current location profile. Additionally, audio recognition techniques
can be applied to ambient environment sound to automatically infer the
current location profile of the user.

– Quickly locate an appropriate ambient sound source at the expected location.
The amount of time required to locate an appropriate ambient sound source
must not exceed a few phone rings, which is the amount of time the caller
is willing to wait for the callee to answer the call. If no appropriate ambient
sound can be identified sufficiently quickly, the caller might abandon the call,
as well as the callee may miss the phone call.

– Filter out background ambient sound and mix the selected ambient sound
in real time. Audio filtering and mixing have been active areas of research
on speech processing. When selecting speech processing techniques for the
proposed system, the limited processing power on mobile devices must be
considered, and the real time constraints of voice calls.

– Security attacks: numerous attacks can be made on the proposed system to
check if a user is using an alibi background sound. Consider the following
attack. To find out whether Joe is at his expected location, an attacker (or
his/her friend) can make a phone call to Joe from Joes expected location.
If Joe is currently not at the expected location, his cell phone will geocast
a message over the peer network that requests the ambient sound source at
the expected location. The attacker (or his/her friend) will then receive this
request message from Joe immediately after calling Joe. This means that
the attacker can tell whether Joe is at the expected place or not, depending
on whether the attacker receives an ambient sound request at the expected
place or not. In the 2nd attack, the attacker can monitor the data packet
containing requests for ambient sound sources. The attacker can then extract
the IP address in the data packet and map it to the likely physical location.

– Reliability: an active ambient sound source can sometimes fail during a call.
Failures can result from wireless network disconnection, the source device
running out of battery, and so on. Since failure of ambient sound source can
make filtering visible to the callers, the proposed system has to be reliable
under all these unexpected conditions.

– Peer-to-peer architecture vs. centralized architecture: two possible methods
exist for building a peer network of collaborative users: peer-to-peer vs.

A Collaborative Privacy-Enhanced Alibi Phone 409

centralized. In section 5, advantages anddisadvantages of these twoapproaches
are compared, and the peer-to-peer method is chosen for implementation.

4 Design

Figure 1 shows the design of our privacy-enhanced Phone. The design comprises
fourcomponents:ContextAgent,LocationScheduler,AmbientSoundLocator,and
Voice Processor. The executing flow is described through the following five steps:

1. Receive a ring-tone on a mobile.
2. Context Agent determines the current location of the callee via GPS or by

checking the pre-defined location of the user.
3. Location Scheduler compares the current location of the callee with his/her

expected location schedule. If the callee is not at the expected location, they
are prompted to see if they need ambient sound at the expected location.

4. Ambient Sound Locator identifies several ambient sound sources and selects
one as the active sound source.

5. Voice Processor filters out the original ambient sound and mixes in the am-
bient sound source.

This work has implemented the phone on HP iPAQ running the Microsoft
Windows CE Operating System. This study has developed and deployed a voice
processor capable of filtering and mixing ambient sounds. The ambient sound
mixer is implemented by adding two waveforms and then adjusting the coeffi-
cients a and b to yield the optimum performance.

S(tk) = aS1(tk) + bS2(tk) (1)

S1, S2: voice signal; tk: time index

4a. Query for the Ambient Sound

4b. Select Sources of Specific Ambient
Sound

Ambient Sound Locator Voice Processor

1. User Receives a Phone Call.

5. To the Caller

3. Check Current Schedule

Context Agent2. Check Current
Location

Peer Network

Location Scheduler

Fig. 1. The executing flow of the privacy-enhanced phone

410 H.-T. Cheng, C.-L. Lin, and H.-h. Chuinst

However, designing a smooth and effective ambient sound filter is more com-
plex than mixing. Developing such a filter is equivalent to the problem of noise
reduction in the field of speech processing. This study examines two general ap-
proaches for noise reduction. The 1st approach employs the whole voice sequence
as an input, and then calculates a global optimal noise signal. This approach re-
quires advance knowledge of the entire voice sequence. The 2nd approach is a
frame-by-frame method based on the Wiener Filter [5] that takes two frames at a
time, and then calculates noise signals locally. This approach has the advantage
property of online frame-by-frame processing, which is applicable to the targeted
voice conferencing application. In addition, the 2nd approach is fast enough to
run in real time. Therefore, it is used.

5 Centralized vs. P2P Architecture

Two possible approaches exist for realizing the peer network of collaborative
users who can help others by acting as ambient sound sources: centralized vs.
peer-to-peer (P2P). In a centralized architecture, the system maintains a direc-
tory server of client locations, which can be accomplished by server periodically
polling the locations of clients or alternatively client pushing the location infor-
mation to the server. The location directory server responds to a client request
for the ambient sound sources at a specified location or a location profile. The
centralized architecture can also deploy powerful, stationary voice processing
servers for running audio filtering and mixing software, and thus can allevi-
ate the problem of limited processing and power for mobile devices. In the

Campus

Dept Building

Student (Callee)

Prof (Caller)

Anonymous Server

Anonymous Server

Phone Line

Ambient Voice Request

Ambient Voice Streaming

Fig. 2. A professor wants to check if a student is currently working in the department
building or is just fooling around. If the student is not at his position, the student
can ask for an ambient sound source provided by other students on campus through
anonymous server.

A Collaborative Privacy-Enhanced Alibi Phone 411

centralized architecture, all voice and data communications must go through
some centralized servers that are responsible for the privacy and security pro-
tection of users making requests or providing ambient sound sources.

However, the centralized architecture requires infrastructure support for de-
ployment. Therefore, this work favors the P2P architecture; namely, direct peer
node communications between the requestors and providers of ambient sound
sources [6]. This work favors the P2P architecture because the application pre-
sented in this work fundamentally has a P2P flavor V in which the participating
users act as service providers sharing their ambient sounds, and also act as ser-
vice consumers when they require ambient sounds.

To address the security attacks described in section 2, this work proposes
using anonymous redirection servers. The security attacks involve an attacker
who can monitor the data packet containing requests for ambient sound sources,
and then infer physical location using the IP address in the data packet. Using
anonymous servers stops this attack because the requests are redirected through
anonymous servers, and these anonymous servers can then remove the IP address
from the request. This is shown in Fig 2.

6 Evalution

This work evaluated the performance of the privacy enhanced phone both objec-
tively and subjectively. In objective part, the evaluation metrics include ambient
sound filtering quality and communication delay; user study was conducted sub-
jectively to evaluate the audible sound quality and the psychological state of user.

6.1 Objective Evaluation

– Ambient sound filtering: To measure the noise reduction performance of
the Weiner Filter, this work employs segmental SNR (signal-to-noise ratio)
improvement which is calculated by:

SNRimprove = segSNRout − segSNRin (2)

Three types of background noise (speech, jazz, rock music) are artificially
added to a sample of clean speech. Each noise has different SNR: -5dB and
5dB. Table 1 lists the noise reduction results.

– Communication delay: the communication delay time was measured, includ-
ing the processing times for audio filtering and mixing, and network delay.
The results listed in Table 2 exhibited good performance in terms of voice
processing time and network delay time. Experiments were performed under
three different conditions: without filtering and mixing, with filtering only,
and with both filtering and mixing.

6.2 Subjective Evaluation: User Study

The system design should consider actual audible sound quality and user psy-
chological state. Current systems are all unable to transmit and mix ambient

412 H.-T. Cheng, C.-L. Lin, and H.-h. Chuinst

Table 1. The improvement of the noise reduction using Weiner Filter for three dif-
ferent noise types: speech, jazz, and rock music. And each type with two inputs SNR
(measured in dB).

Noise type Speech Jazz Rock Music

Input SNR 5 −5 5 −5 5 −5

Improvement 7.3 11.6 8.9 13.3 8.2 12.7

Table 2. Delay time (process + transmit): evaluated with none of filter and mixer,
filter only, and both filter and mix respectively

None Filter Only Both Filter and Mix

Delay time (sec) 0.64 1.53 1.71

sound in real time. Thus, current systems cannot provide users with full privacy
protection. This study describes the actual experiences of 32 participants who
evaluated the system from different perspectives.

This User Study aims to understand the services offered by the proposed sys-
tem and whether its performance can meet expectations. A comparison is made
with overall system efficiency to see whether the proposed system achieves better
efficiency. Additionally, this study surveys user satisfaction with the proposed
system. The following outlines complete process and results.

Independent Variables: The calling procedure of individual users.
Dependent Variables: Actual subjective sound heard, call quality transmis-

sion, privacy protection, subjective satisfaction ranked based on overall call-
ing experience, user perception of call quality, and system user friendliness.

Participants: Thirty-two participants aged 20-40 years old were selected for
the survey. The subjects were frequent PDA and web phone users who pos-
sessed their own PDAs. Few of the participants had any experience with
ambient sound filtering or mixing.

Procedures: Participants were briefed on the goals and procedures of the user
study. The participants were provided a demonstration of the procedures
for dialing using the PDA. The entire evaluation comprised two stages. In
stage one, each participant was asked to answer three phone calls made to
them. The first call involved asking the participants to answer an unfiltered
call. The second call involved filtering of ambient sound. The third call used
the proposed system for filtering and mixing various ambient sounds as re-
quired. In stage two, each participant was asked to rate the overall quality
of the proposed system. The score is ranging from 1 to 5 where higher value
indicates better performance. In addition, each participant completed the
survey form with their background details and personal experience.

Results: The result shows 62.5

– The subject is the boss: Employees feel uncomfortable about the boss
being aware of their location.

A Collaborative Privacy-Enhanced Alibi Phone 413

– The subject is the boyfriend or girlfriend: Relationships with the oppo-
site sex are sometimes complicated, and sometimes when a person in
a relationship ends up unexpectedly in a place not previously reported
to their partner, even when there is nothing wrong, they may feel con-
cerned about potential misunderstandings should their partner discover
their true whereabouts.

– The subjects are parents: Students/adolescents sometimes frequent places
that parents disapprove of, for example pubs, KTVs, billiard halls, and
video game parlors. When the parents call and find that the children are
in such places, the children are likely to feel that their privacy has been
invaded. Additionally, children can also feel apologetic at causing their
parents unnecessary worry by letting them know they are frequenting
such places.

Almost all collected feedbacks are positive. The average score rated by all par-
ticipants is 4.37. There are 93.75% of participants willing to use the proposed
system to protect their privacy. Most users have a high regard for the privacy
protection offered by the proposed system. These users consider that the system
provides better protection than the previous ambient sound filter telephone sys-
tem. Furthermore, the proposed system locates and mixes in the desired ambient
sounds nearly in real-time, fully satisfying user privacy considerations. However,
some users feel that the system efficiency and voice quality can still be improved.

7 Future Work

As shown in Table 1, ambient sound filtering quality for speech is lower than when
the filtering is applied to other noise. We believe that this is due to the fact that
there is a small difference between the voice of the user and background speech;
therefore they are more difficult to distinguish. Future studies can attempt to
enhance the filter to enable it to fully detect and remove background speech.

The current system is designed and implemented using the P2P architecture.
Future studies should seek to improve this P2P application in the areas of scala-
bility, security and privacy, quality of services, performance, fault tolerance, and
so on. We believe that this new system for privacy protection is easily applica-
ble to video and can help users avoid sharing sensitive background scenes withy
callers. Future studies can develop video filtering and mixing methods that can
substitute existing backgrounds with other scene without making callers aware
of the deception.

References

1. The Boom Noise Canceling Headset.
http://www.thetravelinsider.info/roadwarriorcontent/boomheadset.htm (2003)

2. U. Hengartner, P. Steenkiste: Access Control to Information in Pervasive Computing
Environments. HotOS. (2003)

414 H.-T. Cheng, C.-L. Lin, and H.-h. Chuinst

3. TransAsis Telecommunicatios, Taiwan.
http://www.hank.net.tw/channel/TL/BGM/service.htm (2002)

4. Elisa Batista: Phone become alibi for liars.
http://www.wired.com/news/wireless/0,1382,63439,00.html (2004)

5. Speech Processing, Transmission and Quality Aspects (STQ); Distributed speech
recognition; Advanced front-end feature extraction algorithm; Compression algo-
rithms. ETSI ES 202 050 v.1.1.3 5.1 Noise Reduction. (2003)

6. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker: Search and replication in unstruc-
tured peer-to-peer networks. Proc. of the 16th ACM Intl Conf. on Supercomputing.
(2002)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 415 – 426, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Semantic Grid: Requirements, Infrastructure
and Methodology

Kashif Iqbal1, Stefan Decker1, and Mark Baker2

1 Digital Enterprise Research Institute,
National University of Ireland, Galway

{kashif.iqbal, Stefan.decker}@deri.org
2 Advanced Computing and Emerging Technologies (ACET) Centre,

The University of Reading
mark.baker@computer.org

Abstract. The Grid offers a number of advantages for undertaking computation,
information processing, and collaboration, which can be applied to both science
and industry. In this paper, we will discuss where Semantic Web technology can
augment grid technology to help bring it to its full potential; especially with
applications in e-Science, e-Research, and e-Business. The proposed marriage
between Semantic Web and the Grid is known as Semantic Grid. The Semantic
Grid is an extension of the current grid in which information and services are
given well-defined meaning, enabling computers and people to work together for
efficiently and effectively. The Semantic Grid vision is not new, but what we
focus on in this paper are the areas where Semantic Web technologies can
supplement grid technologies. In particular the key components for a Semantic
Grid infrastructure and a methodology to realize this infrastructure by describing
the state of the art of the most relevant technologies.

1 Introduction

Web Services provide a standard means of interoperability among different software
applications, running on heterogeneous platforms for seamless application integration.
Programs providing simple services can interact with each other to compose
sophisticated value-added services (Orchestration). Web Services are built around
ubiquitous, open Web and Internet standards such as TCP/IP, HTTP/S, Java, HTML,
and XML, as well as other standard technologies such as SOAP, WSDL, and UDDI
[1]. Web Services standards define the format of the message, specify the interface to
which a message is sent, describe conventions for mapping the contents of the
message into and out of the programs implementing the service, and define
mechanisms to publish and discover service interfaces.

The Semantic Web [12] is an extension of the current Web in which information is
given well defined meaning, allowing more efficient and effective cooperation among
computers and people . It encompasses the idea that data can be defined and linked in
a way so that it can be effectively discovered, automated, integrated, and reused
across a variety of applications. The Web can reach its full potential, if its data can be
shared and processed by automated tools as well as by people. On the other hand

416 K. Iqbal, S. Decker, and M. Baker

Semantic Web services based on existing Semantic Web and Web Services standards
focuses on describing Web Services interfaces in a machine processable way, so that
that these service descriptions can be processed by software agents in order to
automate the tasks of service discovery, composition and invocation with minimal or
no human intervention.

Grid technologies that are build on top of the Web facilitating global sharing of not
just information, but also of resources ranging from computational and data storage
devices to scientific instruments. Resource sharing among physically distributed
organizations governed by their own administrative policies remains a challenge. Grid
technologies attempt to overcome these problems by providing the protocols, services
and software components needed to allow flexible and controlled resource sharing on
a large scale. One concept at the heart of grid is the Virtual Organization (VO) [2]. It
is a dynamic collection of individuals, institutions and resources that can be grouped
together in order to share resources as they tackle common tasks. Emerging
applications require that grid middleware should allow new capabilities to be
constructed dynamically and transparently from a range of distributed services. In
order to engineer new grid applications it is desirable to reuse existing components
and information resources and to assemble and co-ordinate these in a flexible manner.
Partially, for this reason, the Grid has moved away from a collection of protocols to a
service-oriented approach. The Open Grid services Architecture (OGSA) [3] unifies
Web Services with grid requirements and techniques. This paper highlights how and
where the Semantic Web technology can augment various parts of the Grid.

The rest of the paper is organized as follows: Section 2 describes the vision of
Semantic Grid community. Section 3 highlights the requirements for the Semantic
Grid. Section 4 continues the discussion on the Semantic Grid Infrastructure and
architecture and Section 5 discusses the methodology and state of the art of the
technologies. Finally Section 6 discusses issues and future directions for Semantic
Grid efforts.

2 The Semantic Grid Vision

Both the Grid and the Semantic Web communities started separately as two distinct
research efforts in computer science. Until recently the Grid and the Semantic Web
communities were working individually, despite the convergence of their respective
visions and commonalities in their interests and challenges. Both have a need for
computationally accessible and sharable metadata to support automated information
discovery, integration and aggregation. Both operate in a large-scale, distributed,
dynamic, and error-prone environments. The Semantic Grid is an initiative to develop
effective methods for enabling such complex infrastructures.

According to the Semantic Grid community, the vision (see Figure 1) reflects that
both the Grid and Semantic Web efforts are not orthogonal to each other.
Fundamentally, they are both about joining resources together in order to achieve new
things. For instance, to build new grid applications, we can reuse and reprocess the
available services, data, workflows and indeed knowledge, from existing sources. We
need the Grid to virtualize the heterogeneity of the underlying resources, the latest

 The Semantic Grid: Requirements, Infrastructure and Methodology 417

Data and computation scale

Semantic
Grid

Semantic
Web

Grid
Standards

Web
Standards

In

te
ro

pe
ra

bi
lit

y
Sc

al
e

Fig. 1. Semantic Grid Vision [4]

grid problem is to assemble new services, or even new grids, quickly, easily and as
automatically as possible from diverse resources. By analogy with the Semantic Web,
the Semantic Grid is an extension of the current grid in which information and
services are given well-defined meaning, better enabling computers and people to
work in cooperation [4]. We believe the most logical way of realizing the Semantic
Grid vision is to apply Semantic Web technologies into grid developments, from the
machinery of the Grid infrastructure (such as Grid services) up to the Grid
applications. It is important to note that the ‘semantics’ permeate the full vertical
extent of the Grid and is not just a semantic (or knowledge) layer on top: it is
semantics in, on and for the Grid. As the Semantic Web is to the Web, so is the
Semantic Grid to the Grid.

3 Semantic Grid Requirements

In this section, we will identify the key application areas where Semantic Web
technology can be applied to bring the grid to its full potential. The discussion will
lead towards a Semantic Grid roadmap.

3.1 Security, Trust and Provenance

Security is one of the key building blocks for VOs. There are requirements for trust,
authentication, encryption, privacy, non-repudiation and digital rights management
when multiple stakeholders with their local administrative domains and usage policies
are involved. Policies need to be expressed and applied to multiple resources with a
consistent interpretation, so that automated reasoning can be undertaken to identify
the correct role that should be assigned to members, based on their credentials and
local and VO-wide policies. The expression and propagation of trust based on
delegation of credentials, so that automated reasoning can be undertaken, has a key
role during collaborations within a VO or between multiple VOs. Provenance and the
context of information have to be identified in order to judge the quality of the content
and the associated services. These are necessary when integrating data from different
sources in a grid environment.

We believe that Semantic Web has much to offer for grid security, trust and
provenance requirements identified in the previous paragraph. Ontology and rule-
based languages with context support (e.g. OWL [8], Triple [6]) as well as tools from

418 K. Iqbal, S. Decker, and M. Baker

the Semantic Web community can be utilized as a basis to develop policy and trust
ontologies and to facilitate reasoning mechanisms associated with them. Service
mediation is another challenge whenever we discuss data integration between
heterogeneous sources and sinks to provide interoperability. For example, while using
a single ontology to describe policy that can be applied to a set of resources. Currently
the Semantic Web community is pursuing the data, protocol and process mediation
challenges, their outcomes will be exploited by Semantic Grid community.

3.2 Dynamic VO Life Cycle and Management

As described in section 1, a VO may consist of individuals, institutions and resources
that may be grouped together, so that common tasks can be undertaken. A VO is a
dynamic environment as resources, services and users may join and leave at anytime.
For many grid applications these requirements vary over time so it is hard to tell
exactly in advance, what services it will need in a given system. Thus, new services
composed of different individuals, institutions and resources are needed to handle
dynamic workloads and varying needs of volatile properties of Grid applications
including scale, timeliness and quality of service. Beside the dynamic characteristics
of VOs, still the process of building, managing and destroying a VO requires a lot of
human intervention in terms of efforts and is very time consuming and tedious. For
instance, it took more than a year to form a virtual organization for ESG (Earth
System Grid) [11] after the exchange of several emails, face-to-face meetings and
phone calls.

We believe Semantic Web tools and technologies can be used to, for example,

• Help in selecting the best resources to deliver the desired service,
• Divide work in the most effective way between the resources,
• Monitor an ongoing operation of the VO and to alter it when appropriate,
• Dissolve collaboration when they are no longer sustainable within a VO

lifecycle.

Semantic Web models and languages, including RDF [7], OWL and WSMO [10],
can be used to realize these requirements by providing declarative models for
describing the workflow for a VO’s life cycle, via an expressive policy language,
which can facilitate sophisticated reasoning over policies in order to identify the role
for an individual, institution or resource based on their credentials and the usage
policies of VO.

3.3 Workflow Model and Enactment

In this section, we will identify some of the issues related to the workflows
description, discovery and enactment at the resource or service level. To support the
creation of a VO’s services, a system needs descriptions (such as workflows) to
facilitate the composition of multiple resources, and mechanisms for creating and
enacting these in a distributed manner. Whenever we talk about composition, we
think in terms of discovery and integration of possibly heterogeneous distributed data
and components, and in terms of their control and data flow. An aim of the Semantic
Web community is, but not limited, to provide solutions for such information and data

 The Semantic Grid: Requirements, Infrastructure and Methodology 419

integration challenges for complex resource sharing in scientific workflows. Resource
description and discovery for workflows is described separately in section 3.5.

Declarative models are required to support the design of complex workflows
encompassing heterogeneous data sets, components and other workflows. Existing
Semantic Web languages like OWL-S [9] define a process (workflow) using the
OWL-S process model ontology. On the other hand, WSMO is aiming to use abstract
state machines language to define the process model and execution semantics for
workflows description and execution.

Another challenge during the process of service composition where semantics can
be of help is where services are semantically equivalent but structurally incompatible,
i.e. their semantic descriptions match the request, but data and control flow differs. To
handle such situations it becomes necessary to annotate data sets, workflows and
other components to facilitate efficient matching. Execution semantics are required to
formally describe the operational behavior of a given system. On the other hand,
information captured in the form of execution semantics can be used for automating
control and data flows and to define alternative control and data flows (dynamic
workflows) for exception handling in case of partial failures. Ontologies can be used
with monitoring data also. Here the ontology can be used for defining relationships
and capacity planning during workflow execution. There is currently little that exists
to handle partial failures and capacity planning in grid workflows systems.

3.4 Annotations and Metadata

From the classification of a model to publish the scientific analysis, it is necessary to
have annotations and metadata that enrich the description of any digital content. This
meta-content may apply to data, information, or knowledge and depends on agreed
interpretations. While the basic metadata infrastructure already exists in the shape of
RDF and Dublin Core [14], metadata issues have not been fully addressed in current
grid deployments. It is relatively straightforward to deploy some of the technologies
in this area, and this should be promoted [5]. RDF and RDFS [13], for example, are
already used for encoding metadata and annotations as shared vocabularies. However,
there is still a need for work in the area of tools and methods to support the design and
deployment of ontologies. Annotation tools and methods need to be developed so that
emerging metadata and ontologies can be applied to the large amount of content that
will be generated and consumed by grid applications.

To further clarify, we look at one application area for annotations and meta-data
(semantics) in the Web Services Resource Framework (WSRF) [15]. In WSRF, every
WS-Resource has zero or more properties expressed as XML elements, representing a
view of the resources state. The element schema is then referenced from a WSDL
description of the interface, advertising that Web Services with this interface have this
known set of properties. As both XML and WSDL are solely based on their syntax,
the semantics of the data are required for information discovery and integration tasks.
Both the WSDL description of the interface and the resource properties document can
be annotated using explicit semantics provided by existing ontology languages, i.e.
OWL-S and WSMO, and metadata standards, i.e. RDF, RDFS and Dublin Core.
These annotations can then be utilized for automated discovery and inference support.

420 K. Iqbal, S. Decker, and M. Baker

3.5 Resource Description, Discovery, and Use

In grid systems, the resources may range from digital content to services provided by
various computational and data resources, to particular instruments. For creating VOs
dynamically, appropriate grid resources should be discovered and selected after
negotiation on the fly. The phases for efficient and dynamic resource discovery and
selection, through coordination and negotiation among various entities, mandates the
generation and processing of job, resource, choreography and SLA descriptions. They
further require on-demand and dynamically planned use of resources in order to meet
the requirements of an existing virtual organization or forming a new one. On the
other hand, a system should be able to store and retrieve these descriptions in a timely
and efficient manner, which may require the federation of resources.

We strongly believe that the Semantic Web tools and languages can augment grid
technologies in creating, storing and processing these machine processable
descriptions of resources, jobs and SLAs. OWL-S and WSMO are ongoing research
efforts for describing requests and Web Services functionality in a way that can help
in the automation of service discovery and composition. WS-Choreography and WS-
Agreement are the recommended specifications for coordination and negotiation
tasks. WS-Choreography will use RDF and OWL to define the semantics of the
choreography language. A registry for semantic data should provide a more
sophisticated data model for storage and processing of semantic content.

4 Semantic Grid Infrastructure and Architecture

In section 3, we have identified a number of requirements for semantics in grid
environments. This section will identify the key building blocks for semantic
infrastructure in order to satisfy the Semantic Grid requirements.

4.1 Information Models and Ontologies

Heterogeneous and distributed systems, such as the Grid, are dependent upon
information acquired from unrelated applications, resources, instruments, components
and sub-systems. To be effectively managed, such information will need to conform
to a common information model. An information model describes the salient entity
attributes, relationships and characteristics needed to complete the process in question
[16], thus, it is the modelling of information requirements for a particular domain.

The information model provides an abstraction of the real world into constructs
that can be represented in computer systems, e.g., objects, properties, behavior, and
relationships. It is not tied to any particular implementation and can be used to
exchange information among different domains. We need an information model for
the Grid because it allows multiple domain experts contribute to a problem’s
description. Ontologies [28] are a key technology for information and domain
modelling. They interweave human understanding of symbols with their machine-
processability. More recently, the concept of ontology is also becoming widespread in
fields, such as intelligent information integration, cooperative information systems,
information retrieval, electronic commerce, Semantic Web Services and knowledge
management. The reason ontologies are becoming so popular is largely due to what

 The Semantic Grid: Requirements, Infrastructure and Methodology 421

they promise of a shared and common understanding of a domain that can be
communicated between people and application systems. Concisely, ontologies are a
formal and consensual specification of conceptualizations that provide a shared and
common understanding of a domain, an understanding that can be communicated
across people and application systems.

In the Semantic Grid framework, ontologies will be used to define the terminology
that will be used by other elements of WSRF and OGSA specifications.

4.2 A Metadata Framework

There is a need to improve access to large source of information about grid resources
and for the development of better search, retrieval, and organizational tools.

Metadata is a fundamental part of the solution to these challenges. The effective
use of metadata among applications, however, requires common conventions about
semantics, syntax, and structure. Communities define the semantics, or meaning of
metadata that address their particular needs. Syntax is the systematic arrangement of
data elements for machine-processing, it facilitates the exchange and use of metadata
among multiple applications. Structure can be thought of as a formal constraint on the
syntax for the consistent representation of semantics. These three elements
standardized semantics, a definitive syntax, and a framework for exchange, provide
an architecture for resource description that can work across all subject areas on the
Grid. Although, developing a single and complete vocabulary for resource description
is a difficult problem. However, tackling this effort in a modular fashion, allows for
an incremental solution with manageable constituent parts.

4.3 An Architecture for the Semantic Grid

The Open Grid Services Architecture (OGSA) [3] provides a conceptual framework
for grid systems based on Web Services concepts and technologies. Figure 2-(a)
shows the overall OGSA architecture. OGSA being an architecture for the Grid
naturally fulfills the requirements as a Semantic Grid architecture too, but additional
services are required for handling semantic data. We will identify these services,
while also describing OGSA services.

OGSA shown in Figure 2-(a) defines several services that are required in a Grid
environment. These include:

1. Infrastructure services, which leverage Web services technologies to structure
OGSA-based, systems according to the design principle of Service-Oriented
Architecture.

2. Execution Management Services deal with the problems of task initiation and
management.

3. Data Services, which are responsible for efficient data access, consistency,
persistency, integration and location management.

4. Resource Management Services, which allow the management of an individual
resource, management of resources in a grid, i.e. resource reservation, monitoring
and control, and monitoring of grid infrastructure.

5. Security Services, which provide controlled access to resources, which can be in
various administrative domains with different access and security policies.

422 K. Iqbal, S. Decker, and M. Baker

6. Self-Management Services, which includes SLA, policies and service level
manager models.

7. Information Services provide access and can manipulate information about
applications, resources and services in a Grid environment. For the Semantic Grid,
we need knowledge bases in order to effectively and efficiently store and retrieve
semantic information.

8. Semantic Services should be introduced into OGSA to provide the modelling,
creation, attachment, management, and visualization of semantic data (ontologies
and metadata). It may also include a rule based approach for data integration and
mediation.

As explain in section 2, the Semantic Grid implies semantics into grid and onto
Grid. Figure 2-(b) explains this implication by placing Semantic Services vertically
along the layers of the OGSA model. Ontologies developed using Semantic Services
can be used to enrich services ranging from infrastructure services in OGSA to Grid
applications built on top of OGSA. According to OGSA, Infrastructure Services are
based on Web Services specified by OGSI or WSRF.

(a) (b)

Infrastructure Services
(OGSI, WSRF)

Security Services Security Services

Infrastructure Services
(OGSI, WSRF, and SWS)

Execution
Services

Self & resource management and
information services (Knowledge base)

Self & resource management and
information services (Data base)

Execution
Services

Domain Specific Services Domain Specific Services

Data
Services

Data
Services

Se
m

an
tic

 S
er

vi
ce

s
 (

O
nt

ol
og

ie
s,

m
et

ad
at

a,
 in

fe
re

nc
e,

 m
ed

ia
tio

n)

Fig. 2. OGSA for Grids (a) and OGSA for Semantic Grid (b)

5 Methodology and State of the Art

We believe that in order to build the Semantic Grid infrastructure, we need to cross
discipline boundaries, which means: The Semantic Grid should inherit current
technologies by building bridges in order to fill the technology gaps. Moreover,
existing grid and web applications should be able to seamlessly migrate into the
Semantic Grid environment. The Semantic Grid community should exploit the
advances in the areas of the Grid, the Semantic Web and Web Services, in order to
gather use cases and model elaborated sets of requirements from distinct for the
Semantic Grid infrastructure. We also think that there is a need for a Semantic Grid
roadmap in order to guide the Semantic Grid efforts in future.

 The Semantic Grid: Requirements, Infrastructure and Methodology 423

In rest of the section, we will explain the state of the art of various technologies,
most relevant to the Semantic Grid infrastructure and can serve as building blocks.

5.1 The Semantic Web – Metadata and Ontologies

The Dublin Core Metadata Element Set (DCMES) [14] can be viewed as the common
semantic building block of Web metadata. It consists of 15 broad categories
(elements) that are useful for creating simple, easy-to-understand descriptions for
most information resources. Most communities, like the Grid, need additional
semantics to describe their resources. DCMES facilitates the combination of various
modules of metadata to form descriptions that are more complex. The DCMES is the
basic block, but other chunks of metadata can be combined with it to form richer
descriptions.

The Resource Description Framework (RDF) [7] is an infrastructure that enables
the encoding, exchange and reuse of structured metadata. RDF is an application of
XML that imposes needed structural constraints to provide unambiguous methods for
expressing semantics. RDF additionally provides a means for publishing both human-
readable and machine-processable vocabularies designed to encourage the reuse and
extension of metadata semantics between communities. The structural constraints of
RDF impose the consistent encoding and exchange of standardized metadata that
allow interoperability of separate packages of metadata defined by different resource
description communities. RDF Schema [13] is an RDF's vocabulary description
language that is a semantic extension, as defined in RDF. RDFS provides mechanisms
for describing groups of related resources and the relationships between these
resources. OWL, the Web Ontology Language [8], is designed and developed for use
by applications that need to process the content of information, rather than just
presenting information to humans. OWL facilitates greater machine interpretability of
Web content than that supported by XML, RDF, and RDFS by providing additional
vocabulary along with a formal semantics. There have been some efforts [17] in
modelling various aspects of the Grid using OWL.

5.2 Information and Process Modelling

Some of the efforts in information modelling for describing IT resources in general
and Grid resources in particular include CIM and the GLUE schema. Graphical
languages, like UML [20], are equally effective for representing information and
process models. However, several other formalisms exist for modelling Grid
processes (workflows) like Petri nets, and DAG.

The CIM (Common Information Model) [18] from the DMTF (Distributed
Management Task Force) is the standard that provides a common model for
describing computer and network information. CIM infrastructure is an approach to
the management of systems and networks that applies the basic structuring and
conceptualization techniques of the object-oriented paradigm. The approach uses a
uniform modeling formalism that together with the basic repertoire of object-oriented
constructs supports the cooperative development of object-oriented schemas across
multiple organizations. A management schema is provided to establish a common
conceptual framework at the level of a fundamental typology, both with respect to

424 K. Iqbal, S. Decker, and M. Baker

classification, to association, and to a basic set of classes intended to establish a
common framework for a description of the managed environment.

GLUE (Grid Laboratory Uniform Environment) schema [19] collaborative effort
focusing on interoperability between US and EU HEP Grid related projects, which
started in April 2002. In particular, the focus was on modelling all those resources
that participate in a Grid system and that are requested to be discoverable and
monitored. The effort targeted at core grid services, i.e. resource discovery and
monitoring, authorization and authentication, data movement infrastructure, common
software deployment procedures, and preserving coexistence for collective services.
The ultimate objective was to produce a schema available for a Grid Information
Services (GIS) as if concepts and relationships are properly modelled, the same
information can be retrieved from different GISs relying on different technologies.

The Directed Acyclic Graph Manager (DAGMan) [21] is a meta-scheduler for
Condor jobs. A directed acyclic graph (DAG) is used to represent a set of programs
(workflow) where the input, output, or execution of one or more programs is
dependent on one or more other programs. The programs are nodes (vertices) in the
graph, and the edges (arcs) identify the dependencies. DAGMan submits jobs to
Condor in an order represented by a DAG and processes the results.

Petri nets are formalism for modelling dynamic systems. They are graphical,
mathematically normalized, and well analysable. Petri nets have been applied to a
large number of areas, including communication protocols, performance evaluation,
and distributed systems [22], because they are very general and were the first to
model concurrency [23].

5.3 Semantic Web Services

Semantic Web Services (SWS) facilitate and semi-automate the consumption of
resource functionality, through rich service or resource descriptions based on formal
semantics. We believe that these formal descriptions provided by SWS can be
extended to describe grid services and resources by using a formal ontology for
WSRF and can form the basis for Semantic Grid Infrastructure. However, seamless
integration and ad-hoc cooperation between various business parties or dynamic
collaborations on the Web and Grid can be achieved only, if tools for handling
semantically enhanced services are provided.

OWL-S [9] provisions Web Service providers with a core set of markup language
constructs for describing the properties and capabilities of their services in
unambiguous, computer-interpretable form. OWL-S markup of Web Services
facilitates the automation of tasks including automated discovery, execution,
interoperation, composition and execution monitoring. OWL-S also provides a
workflow-oriented orchestration language to describe a workflow model, for the
composition of Semantic Web Services.

The Web Services Modelling Ontology (WSMO) [10] initiative is one of the
several research efforts currently underway working to develop a conceptual model,
language and execution environment for SWS. WSMO aims to provide both
workflow and conversational model (WSMO Orchestration and Choreography [24]
based on Abstract State Machines (ASMs) [25]. Enhancing existing Web Services
standards with semantics markup standardized through the WSMO initiative will

 The Semantic Grid: Requirements, Infrastructure and Methodology 425

promotes existing Web Services standards for semantic-enabled integration. The Web
Services Execution Environment (WSMX) [26] is one of the WSMO initiatives
aiming to provide an execution environment for discovery, selection, mediation,
invocation and interoperation of the SWS.

5.4 The Globus Toolkit

The Globus Toolkit [27] provides an open source software infrastructure for resource
and data management of autonomous distributed systems with provisions for policy
extensibility and co-allocation. The Globus project is an American multi-institutional
research effort that seeks to enable the construction of grids. The Globus Toolkit
provides the basic services and capabilities required to construct Computational, Data
or Service Grids. The toolkit consists of a set of components that implement basic
services, such as security, resource location, resource management, and
communications. The basic services implemented by key components within GT4
(latest release of Globus Toolkit) include grid security (GSI, WS-Security, CAS etc.),
grid resource management (GRAM), data management (GridFTP, RLS, OGSA-DAI,
RFT and XIO), information services (MDS2 and WS-Index) and WS Core.

6 Issues and Future Directions

In this paper we have identified the requirements for the Semantic Grid and discussed
its infrastructure by identifying the relevant technologies and building blocks,
especially how the Semantic Web can augment existing Grid technologies and by
explaining state of the art of various other relevant technologies. However, we
foresee that this integration of the Semantic Web and Grid technologies under the
Semantic Grid effort will not lead to just a one-way migration path, i.e. the Semantic
Web supplementing the Grid. Rather we strongly believe that Grid technologies have
much to offer as well, in terms of computational and storage resources to store and
process ontologies, a secure, robust, scalable resource and data management
infrastructure to share resources.

References

1. Web Services: The Next Big Thing By: Jack Martin
2. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International Journal of Supercomputer Applications, 15 (3). 200-
222. 2001.

3. Foster, I., Kesselman, C., Nick, J. and Tueske, S., “The Physiology of the Grid: An Open
Grid services Architecture for Distributed Systems Integration”, Globus, Project.

4. http://www.semanticgrid.org/vision.html
5. David de Roure, Nicholas R. Jennings, senior member, IEEE, and Nigel R. Shadbolt. The

Semantic Grid: Past, Present, and Future, Invited Paper, IEEE proceedings, March 2005.
6. TRIPLE, http://triple.semanticweb.org/
7. W3C Resource Description Framework, http://www.w3.org/RDF/
8. W3C Ontology Web Language, http://www.w3.org/2004/OWL/

426 K. Iqbal, S. Decker, and M. Baker

9. OWL for Services, http://www.daml.org/services/owl-s/
10. Web Service Modeling Ontology, http://www.wsmo.org
11. Earth System Grid (ESG), https://www.earthsystemgrid.org/
12. W3C Semantic Web, http://www.w3.org/2001/sw/
13. W3C RDF Schema, http://www.w3.org/TR/rdf-schema/
14. Dublin Core meta data initiative, http://dublincore.org/
15. Web Service Resource Framework (WSRF) http://www.oasis-pen.org/committees/tc_

home. php? wg_abbrev=wsrf
16. Information Model, http://mayoresearch.mayo.edu/mayo/research/bmi/grant_dev_eval_

term_full.cfm
17. http://www.csm.ornl.gov/~7lp/ontos.html
18. http://www.dmtf.org/standards/cim/
19. http://infnforge.cnaf.infn.it/glueinfomodel/
20. http://www.uml.org/
21. http://www.cs.wisc.edu/condor/dagman/
22. T. Murata. Petri nets: properties, analysis, and applications. Proceedings of the IEEE,

77(4):541–580, 1989.
23. J. C. M. Baeten. A brief history of process algebra. Rapport CSR 04-02, TU Eindhoven,

2004.
24. WSMO Choreography and Orchestration Working Draft, http://www.wsmo.org/TR/d14/

v0.1/
25. Abstract State Machines, http://www.eecs.umich.edu/gasm/
26. Web Service Execution Environment, http://www.wsmx.org/
27. Globus Toolkit, http://www.globus.org/
28. D. Fensel and M. Musen: Special Issue on Semantic Web Technology, IEEE Intelligent

Systems, 16(2), 2001.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 427 – 436, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MPLS Inter Domain Services Routing Architecture
and Model Based on P2P Semantic Grid

Chongying Cao1,2, Jing Yang3, and Guoqing Zhang1

1 Institute of Computing Technology, Chinese Academy of Sciences,
P.O. Box 2704, Beijing 100080, China

2 Graduate School of the Chinese Academy of Sciences, Beijing, China
3 UTStarCom Company, China

caocy@ict.ac.cn, Jamesy@utstarcom.com, gqzhang@ict.ac.cn

Abstract. Service routing across different MPLS and access networks domain is
the critical problem in next generation networks. BGP is a de facto inter domain
routing standard, but it can not satisfy the inter domain traffic engineering. It
doesn’t take into account service metrics. These cause routing efficiency of BGP
very low. To solve the problem, we propose a new architecture to setup service
semantic P2P grid. Based on the architecture, we define the formal model of
service semantic network, including how to map network service to service
ontology and construct a service semantic network. We use a common network
measurement platform to get information which is imported to set up time and
space relationships among their service ontology. According to these
relationships, we setup index structure of a service routing. Using the index
structure, we can easily setup service routing across different MPLS and access
network domains.

1 Introduction

With the development of society, the requirements to communicate across all kinds of
networks become more and more important. Next generation services are very different
from the services provided today. It brings great challenges to the MPLS networks,
which will be the core networks in the next generation network (NGN). Service routing
is an overlay network routing, which provides related service capability. For example,
we often need to setup VPN services across different MPLS network domains.

The Border Gateway Protocol (BGP) [1] is a de facto standard for inter domain
routing. It is also used between MPLS domains to setup routing. As a path vector
routing protocol, BGP is similar to any other distance vector routing protocol that
doesn’t take into account service metrics. Its criteria for selecting the best path are
based on the length of AS path. In the next generation network, service will become
richer, which need to support multimedia, openness and virtualization. In BGP, bearer
and control is not completely decomposed. These causes BGP hardly support different
service routing according to the open service requirement of NGN. It makes service
routing across different MPLS domains become a NP-hard problem. This brings great
complexity to the network interconnection. If we use underlying network protocols to
connect different domain for NGN services, it will become N2 problem. At the same

428 C. Cao, J. Yang, and G. Zhang

time, different MPLS and access network domains are owned by different network
providers, they have different service providing methods and policies, which make
them lacking common languages to understand each other. Such kind of problems can
not be solved by reinforcing the underlay network algorithms [2].

Due to these reasons, service routings across different network domains are difficult
to be setup. To solve the problem, we must open MPLS network capability. OGSA [16]
is a good platform to converge different MPLS service. At the same time, the semantic
provide the common language among different MPLS service domains. Then we
introduce an innovative idea —— service semantic P2P grid architecture and model to
organize the resources of service routing across different network domain based on
ontology.

The rest of the paper is organized as follows. In section 2, we introduce the related
research works. According to the comparison, we set up architecture for the service
semantic P2P network in section 3. In the section 4, we setup the model. After set upping
the architecture, we give the formal definition of the service semantic P2P networks and
solve how to map service ontology. After setting up a service network graph, we use
index structure to improve the routing efficiency. Network measurement will reduce the
complexity of service routing and improve its efficiency. Based on network
measurement, we provide the P2P routing constructing methods. In the section 5, we
make a conclusion.

2 Related Works

There are many researches to improve BGP protocol [12]. Many heuristics also have
been proposed due to its NP-completeness [14]. Due to complexity imposed on router,
their improving arranges are limited. High complexity prevents their practical
applications. Some algorithms only suit for a specific network, which can’t support
different service routing.

To solve the online computing overhead, overlay network is proposed to decompose
the functions from routers [13] recently. However, they do not possess details of the
underlying network, and control over routing on the underlay. In telecommunication
domain, Parlay Gateway [3] has been proposed to open the network capabilities. Its
connectivity manager API [4] and policy manager API [5] can be used to abstract the
MPLS network capabilities and policy management capability to setup the MPLS inter
domain routing. However, Parlay is based on CORBA, one fine-grain management
architecture, which is close-coupled. Web Services [6] is used to provide loose-couple
in Parlay Gateway, but it run short of the dynamic resource management. To setup
routing across heterogeneous MPLS domains, service convergence and virtualization is
the key. Parlay can’t provide such kind of capability. OGSA (Open Grid Services
Architecture) [16] is such service convergence and virtualization platform. Due to its
new mechanism, such as soft state management, grid services [16] can be used.

Parlay doesn’t concern routing between different domains in MPLS network. P2P
routing can provide such scalability. Many research efforts have been focused on
improving searching efficiency by designing good P2P routing and discovery
protocols, and so on. Xiaohui Gu of University of Illinois gave a framework to
composite the QoS-aware service for large-scale peer-to-peer systems [7]. To get the

 MPLS Inter Domain Services Routing Architecture and Model 429

network status between peer nodes, measure must be considered. To minimize the
number of nodes that a query probes, heuristic-based approaches was employed to
direct a search to only a fraction of the node population. These approaches can be
further divided into three categories: random walk [8], employing summarization [9],
and organizing nodes with similar contents or sharing interests into groups [10].

However, current peer-to-peer routing algorithms are based on key words, which can
hardly solve those problems whose key words are more than one. Different service
relationships are very complex for those only can be solved through key words.
Different network providers have their own service definitions and policies, which are
understood by each others hardly. Semantic Network was proposed, which can make
the network resources become a large database. In particular, the notion of Semantic
Overlay Networks (SONs) [11] is a way to group together peers sharing the same
schema information. Thus, peers employing one or more concepts of the same thematic
hierarchy are semantically related and belong to the same SON. This approach
facilitates routing, since a peer can easily identify relevant peers instead of broadcasting
query requests on the networks.

3 Architecture

To setup service routing across different MPLS networks and access networks
domains, we design semantic P2P grid Architecture as figure 1. At first, we need use
Parlay API to open the MPLS network capability, which includes connectivity
management and policy management. For each MPLS border node, relative service
node is setup. These service nodes decompose the functions from MPLS border nodes
and Parlay Gateway, and provide a distributed computation. These capabilities opened
are wrapped as Grid Services, which can effectively manage MPLS network resources
and their states. We use the OGSA platform —— Globus to converge service. On the
foundation, we set up a single semantic image —— ontology. Ontology [8] is a formal,
explicit specification of a shared conceptualization. The Ontology is gotten through a
knowledge platform —— Semantic Grid. Through ontology, we can get, describe,
express and compose services to set up service routing across different MPLS domains

Fig. 1. System Architecture

430 C. Cao, J. Yang, and G. Zhang

and other networks. At the same time, different service relationships can be set up
through semantic. In semantic grid level, different MPLS domains and other access
networks can understand each other through ontology, and become a transparent
homogeneity network. In such a homogeneity network, we can use semantic to set up
P2P service routing.

4 System Model

4.1 Service Semantic Network Model

We give a formal definition for service semantic network model based on semantic p2p
gird, which will be used to setup service routing across different MPLS network and
access network domains. Our P2P service routing system P is constituted by a set of
peers, each of which includes a set of mapping function that specify the semantic
relationships with network services delegated by other peers. In the model, service
paths in MPLS domains are mapped by Parlay Gateway. Every MPLS Parlay service
will be mapped to a peer based on service ontology. The Services Semantic P2P
Overlay Network forward according to the service ontology.

Definition 1: Formally each service peer node p P is defined as a service tuple p =
(O, S, L, M), where

 O is the basic bearer service of node p, which is ontology of service.
 S is the source service of node p, which is defined by different network providers

in different MPLS and access networks domains and mapped by Parlay Gateway.
 L is a set of local mapping assertions between O and S. Each local mapping

assertion is an expression of the form L(S) O.
 M is a set of P2P mapping assertions between two peer nodes of the same service

ontology in different MPLS domains.

According to Definition 1, we can define a service semantic P2P grid model for service
routing between different MPLS domains which are composed of these peer nodes.

Definition 2: Service Semantic P2P Grid SSPG(O) = (P(O),E) is a network which is
composed of all basic grid service peer nodes in Semantic Grid platform over the Parlay
Gateways which are supported by MPLS networks and their access networks, where

)}(|{)(ii pOoPpoP ∈∈= are service peer node sets, and)(),(|),({ jiji oPpoPpppeE ∈∃∈∀=

)},(ji pp∩ are service semantic link sets.

4.2 Vertical Integration

4.2.1 Mapping Model Between Parlay and Grid
According to above model, we must map underlay MPLS network resource provided
by parlay gateway into grid services. At first, we use a standardization center to
translate MPLS service provided by parlay gateway into grid services. In the

 MPLS Inter Domain Services Routing Architecture and Model 431

standardization center, we translate Parlay Service according to the Parlay API, which
will expose the connectivity capability and policy Management capability of MPLS
networks, into Grid service. Then we register such kinds of service into the grid domain
which will manage the MPLS domain.

Parlay consists of two kinds of interfaces: Framework interface and Service
interfaces —— Service Capability Features (SCF). We can reconstruct these interfaces
into Grid Service. Grid Services provide several function interfaces. The
GridServiceBase object is the base of all Grid services and implements the standard
OGSI GridService PortType. It also provides APIs to modify instance specific
properties, as well as APIs for querying and modifying service data. The
ServiceDataSet interface provides the management for the service data. A service can
be created by simply extending from GridServiceImpl, but it is not recommended
because of its limited flexibility. One of solution adopted in GT3 Core is called
Operation Provider model or the dynamic delegation model. Instead of extending from
the base implementation classes, you only provide an implementation of the operations
(as defined in WSDL) that you would like to expose to remote clients.

Here we use the parlay interface IpVPrN as an example (figure 2). The enterprise
operator can create a new virtual provisioned pipe (VPrP) in an existing private
network (VPN) with this VPN interface. Such a pipe is extended between specific
SAPs/sites. Each pipe is associated with QoS parameters identified with a specific
Diffserv Codepoint. The interface IpVPrN aggregate the MPLS traffic trunk MIB ——
mplsTunnelTable to manage through the interface ImplsTunnelTable. At the same
time, we translate the data definition in Parlay specification into the ServiceData, which
will be managed through ServiceDataSet. Last, we will implement the
GridServiceBase. Then a Grid service VPrNGridServiceImpl to manage the VPN in the
MPLS domain is created.

GridServiceBase

getQueryEngine()
getServiceDataSet()

postCreate()
activate()

deactivate()
preDestroy()

(from Server)

ImplsTunnelTable

setmplsTunnel()
getmplsTunnel()

removemplsTunnel()

(f rom MPLS Netw ork)

ServiceDataSet

create()
get()
add()

registerListener()
getNames()

getNotifiableNames()
evaluate()

getIterator()
notifyListeners()

(f rom Server)

IpVPrN

getVPrPList()
getVPrP()

createVPrP()
deleteVPrP()

(f rom cm)

VPrNGridServiceImpl
(f rom Server)

1

1

1

1

<<implements>>

Fig. 2. Parlay-Grid Service Translation

432 C. Cao, J. Yang, and G. Zhang

4.2.2 Service Ontology Model
In the model, there are two levels —— concept level and service resource level.
According to definition 1, we map the services provided by one Parlay Gateway in
service resource level to one service ontology in concept level which is also the basic
bearer service. The Semantic Web is a mesh of information linked up in such a way as
to be easily processable by machines, on a global scale. You can think of it as being an
efficient way of representing data on the World Wide Web, or as a globally linked
database. So we describe the network resource as a database, which is mapped to an
orthogonal resource space. The resource space of basic bearer service O can be
decomposed into n dimensions, in which each node can dynamically manage a resource
or a set of related resource.

Definition 3: In resource orthogonal space RS, each node can be represented as
ORS(D1,D2,…,Dn), where attribute D = {Xi1, Xi2,…, Xik}, where Xij is a coordinate value
for it.

Semantic Network separates concept and its property. Concept is static, but its property
may change. We use grid service to map related resource to support service ontology.
For service routing based on ontology, the service capability will be ensured; the
service routing can ensure the users’ requirements.

According to the definition 3, we can setup basic bearer grid services. In different
MPLS domains and access networks, every service can be represented as a minimal
logic unit, which is a feature description set S. Due to one feature information is related
to a pair of <attribute class (c), attribute value (v)>, then a service can be represented as:
S = {<c1,v1>,<c2,v2>,<c3,v3>,…, <cn,vn>}. Using L(S) O, we can map the feature
information into the orthogonal resource space of service ontology.

4.3 Horizontal Integration

4.3.1 Service Network Graph
In the model, the service network graph (SNG) (Figure 3) represents a “snap-shot” of
the MPLS routing resource states. The inter domain service routing consists of a list of
composable grid services, which is connected into a service path. S is the grid service
vector of the service pipe which provided by parlay gateway. Formally, we define the
vectors S as follows: S = [s1, s2, …, sn]. These vectors represent the service capability of
the service ontology, including traffic attributes, resource attributes and other service
management constraints. A, B, C, D are MPLS network domains, As, Bs, Cs, Ds are grid
service domains translated from the MPLS services provided by parlay gateway.
According to the above service ontology model, we can set up a service network graph.

A SNG is defined as follows:

(1) SNG nodes: The service node of SNG represents the border grid service node
mapped from a MPLS node. In service network domain Bs, both as and bs are the
border service nodes, which is mapped from border node a and b.

(2) SNG edges: Edges from source border node to destination border grid node within
a MPLS domain. In domain Bs, <as, bs > is the service edge which is mapped from
underlay network edge.

 MPLS Inter Domain Services Routing Architecture and Model 433

(3) SNG service instances: In a SNG edge, a grid service instance represents a traffic
trunk across an underlay physical path. Its resource requirement vector Sreq (a, b)
can be satisfied by the corresponding service pipe provided by the parlay gateway.
In domain B, S1 and S2 are two grid service instances, which represent different
service pipes. S1 is across the physical path (a, b), S2 is across the physical path (a,
c) and (c, b).

sA

sB
sC

sa

sb

sD

Fig. 3. Service Network Graph

4.3.2 Index Structure
Maintaining the global view of the service network graph is difficult. After constructing
service network graph through mapping, we must organize the view of the service
network. So we set up an index structure by employing three levels of summarization
(Fig 4). The lowest level is Parlay Gateway level. The second level is named as service
ontology peer level; all information owned by a peer is summarized according to
service ontology. In the level, peers are the grid service instances which wrap service
pipe provided by parlay gateway. Finally, in the third level, named as semantic grid
level, all information contained by a peer group is registered in the semantic grid. Each
semantic grid maintains two pieces of summaries: the super level summaries of its

Fig. 4. Index Structure

434 C. Cao, J. Yang, and G. Zhang

group and its neighboring groups, and peer level summaries of its group. By examining
super level summaries, a super peer can determine which peer group is relevant. Since
the number of summaries may be large, to further improve the efficiency of the system,
we maintain indexes on the summary information. We name the three indexes for
parlay gateway, service ontology peer, and semantic grid level summaries as local
index, group index, and global index, respectively.

4.3.3 Setup P2P Service Routing Based on Measurement
Due to the service ontology, we can setup a service routing through mapping between
neighbor service ontology. However, Ontology is a static concept model which doesn’t
concern the dynamic behaviors, but its content and service object is being changed
dynamically and network resource is dynamically changing. In order to support the
service ontology, we must use grid services’ dynamic mapping capability to support the
service ontology. Using such kind capability of grid service, service ontology can
ensure the network resource status on which they can setup service semantic links
which satisfy the inter domain traffic engineering.

To get such kind of capability, we must get network status information through
measurement. To solve the problem, we propose a hybrid approach that combines
service ontology and network measurement, which makes routing limited to smallest
range. Common network measurement platform is being researched, for example,
routing underlay [17]. The common network measurement platform will use BGP,
Traceroute and Ping to get the network information. Service measurement is also an
import issue. In each MPLS domain, all opened service capability, are registered in grid
register server based on semantic. According to the semantic, each MPLS domain can
sent service measurement requirement to neighbor domains. When a neighbor MPLS
domain receives such kind of requirements, it would response according to its policy.
Such kind of common measurement platform is also based on grid service. This
platform setups measurement for same kind of grid service for MPLS service routing.

4.3.4 Setup P2P Service Routing Methods
P2P semantic grid provides the access port to the grid service based on the service
ontology. In the each semantic grid, there is a MPLS parlay service access engine. It
helps us to match and search MPLS route service dynamically. The semantic access
engine provides a bridge between the MPLS parlay service and semantic grid. Above
service network graph provide the mapped grid service for MPLS domain. Using the
index structure based on ontology, we can find the entry and match service to the
service ontology peer group for G(S, a, d). Then we can get a reduced service network
graph G’(S, a, d) for G(S, a, d), where a is the source service node, d is destination
service node, S is the service ontology. A common network measurement platform gets
a set of network domains which can satisfy the service routing requirements. Through
service ontology mapping and their neighbor list, we get a peer group. According to the
index structure, we can get the entry to semantic grid. Then we can use some P2P
routing algorithm to compute service routing. So we can setup an algorithm about how
to match service based on ontology to setup P2P service routing in Service Routing
Algorithm 1:

 MPLS Inter Domain Services Routing Architecture and Model 435

Service Routing Algorithm 1

ServiceRouting(a, d, S)

Step 1: Get shared measurement result from service node according to the service

request.
Step 2: According to the measurement result, we can sent a service request to the

related semantic grid domains.
Step 3: Semantic grid match service request based on the ontology and find

the service instance group. If it fails, return. Otherwise go to step 4.

Step 4: Return the service ontology metric of the service and service instance.
Step 5: Use P2P algorithm to find MPLS service routing across different MPLS

domains on the service network graph.

5 Conclusion and Future Works

In this paper, we analysis the problem in the MPLS inter domain service routing and
related works. We propose a new architecture to setup MPLS inter domain routing
based on semantic P2P grid. Through Parlay Gateway, we expose the resource of
underlay network. OGSA platform provide good service convergence capability. Using
grid service, we can manage the resource dynamically. Semantic network makes
different network homogeneity, which make different network became same kind of
service network. At the same time, P2P provide scalability. The new service
convergence platform will be a trend to solve the service routing across different
network domains. In the future, we still need to research the related routing algorithms
and dynamic resource management algorithms in the new architecture and model.

Acknowledgement

We are grateful to the support of “Next generation Internet collaborative project
between China and Japan (IPv6-CJ)”.

References

1. Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BEP-4)” (RFC 1771), March, 1995
2. David D. Clark, Craig Partridge, J. Christopher Ramming and John T. Wroclawski, “A

Knowledge Plane for the Internet”, SIGCOMM 2003
3. Ard-Jan Moerdijk and Lucas Klostermann, “Opening the networks with Parlay/OSA:

standards and aspects behind the APIs”, IEEE Network, Volume 17, Issue 3, May-June
2003 Page(s):58 - 64

4. “Open Service Access (OSA); Application Programming Interface (API); Part 10:
Connectivity Manager SCF (Parlay 3)”, ETSI ES 201 915-10 v1.4.1 (2003-07)

5. “Open Service Access (OSA); Application Programming Interface (API); Part 13: Policy
management SCF”, ETSI ES 201 915-13 v1.4.1 (2003-01)

6. “Parlay Web Services Overview (version 1.0)”�October 31, 2002, http://www.parlay.org.

436 C. Cao, J. Yang, and G. Zhang

7. Xiaohui Gu, et al, “QoS-aware service composition for large-scale peer-to-peer systems”
8. Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, “Search and Replication in Unstructured

Peer-to-Peer Networks”, In ICS’02, June 2002
9. S. Rhea and J. Kubiatowicz, “Probabilistic Location and Routing”, In IEEE INFOCOM

2002, June 2002
10. M. Schwartz, “A Scalable, Non-Hierarchical Resource Discovery Mechanism Based on

Probabilities Protocols”, Technical Report CU-CS-474-90, University of Colorado, 1990
11. A Crespo, H Garcia-Molina, “Semantic Overlay Networks”, 2003,

http://www-db.standford.edu/ ~crespo/publication/op2p.pdf
12. Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong, “The Stable Paths Problem

and Inter domain Routing”, IEEE/ACM TRANSACTIONS ON NETWORKING, VOL.10,
NO.2, APRIL 2002

13. Sharad Agarwal, Chen-Nee Chuah, Randy H. Katz, “OPCA: Robust Interdomain Policy
Routing and Traffic Control”, OPENARCH 2003

14. M.S. Garey, D.S. Johnson, “Computers and Intractability: A Guide to the Theory of
NP-Completeness”, W.H. Freeman, New York, 1979

15. Studer R, Benjamins V R, Fensel D, “Knowledge Engineering, Principles and Methods”,
Data and Knowledge Engineering, 1998, 25(1-2)

16. Ian Foster et al., “The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration”, June, 2002

17. Aki Nakao, Larry Peterson, Andy Bavier, “A Routing Underlay for Overlay Networks”, in
Proceedings of the SIGCOMM 2003, Karlsruhe, Germany, August 2003

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 437 – 446, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semantic Metadata Models in References Sharing
and Retrieval System SemreX∗

Hao Wu and Hai Jin

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Peer-to-Peer (P2P) systems are a new paradigm for information shar-
ing and some systems have successfully been deployed. It has been argued that
current P2P systems suffer from the lack of semantics. Therefore combining
P2P solutions with Semantic Web technologies for knowledge sharing become
a new trend. SemreX is a P2P based semantic-enabled knowledge management
system for sharing references metadata. In SemreX, we need to handle hetero-
geneous literature formats, and present a shared understanding about publica-
tions knowledge. Meanwhile, peers in SemreX require some compromises with
respect to the use of semantic knowledge models for self-description. In this
paper, we propose metadata models that combine features of ontology, for en-
coding and aligning semantic information from references, and for a flexible
description of knowledge located in a peer. We describe these models and dis-
cuss the roles of the models in the SemreX environment as well as their crea-
tions and applications.

1 Introduction

Peer-to-Peer (P2P) systems are a new successful paradigm for information sharing. It
has been argued that current P2P systems suffer from the lack of semantics; therefore
combining P2P solutions with Semantic Web technologies for knowledge sharing
become a new trend. Recently, there have been several research projects concerned
with knowledge management in a P2P setting (called P2PKM[1]); examples include
Edutella [2], SWAP [3], Edamok [4], and others [5][6]. In such P2PKM systems,
resources usually are expressed or annotated with knowledge representation language
such as RDF, OWL. For different knowledge applications, there need different
domain metadata models (or domain ontologies). In addition, to retrieve relevant
knowledge in a P2PKM system, one needs to find one or more peers to provide the
knowledge. For this purpose, there need to be content-based routing indices. How-
ever, how to obtain the aggregated descriptions of peers to establish these routing
indices remains questionable. Such a self-description would outline in a few relevant
concepts what kind of knowledge the peer contains. In this paper, we present a similar
P2PKM system SemreX, which is designed for references sharing and retrieval. Our

∗
 This work is supported by National Basic 973 Research Program of China under grant
No.2003CB317003.

438 H. Wu and H. Jin

approach to use metadata model to deal with the existing issues, including literature
resource expression and self-description of peers, are focused.

The paper is structured as follows. In section 2 we briefly introduce the SemreX.
Section 3 presents metadata models in SemreX. Metadata model for publications and
metadata for peers, and their usage are discussed in detail. Finally, we conclude our
works and discuss future work.

2 References Sharing and Retrieval System SemreX

Searching scientific references from the Internet is a frequent and important behavior
for researchers. There is a common phenomenon that a paper in a remote server is
downloaded many times by different researchers in a lab. If a paper is downloaded
from WAN only once and shared in the LAN, it will reduce the unnecessary WAN
traffic and searching time greatly. Furthermore, researchers in a lab usually have the
same or similar research interests. If a member reads a good paper and broadcasts this
message, the total group will benefit from it. To share and exchange references
efficiently, SemreX is proposed and implemented. Bibster [7] is a similar semantics-
based bibliographic P2P system, and is as an application of the SWAP project.
Compared with Bibster, SemreX is more concise because the size of source files of
SemreX is much less than that of Bibster. In addition, SemreX supports heterogene-
ous data and permits the sharing of researchers’ private comments of papers.

Fig. 1. Architecture of SemreX Peer

The software architecture of SemreX (shown in Fig.1) includes the human-
machine interface, P2P communication layer, semantic information abstracting and
classifying, semantic topology and routing, local knowledge repository management.
The human-machine interface receives user’s commands, shows query results, and

 Semantic Metadata Models in References Sharing and Retrieval System SemreX 439

calls services provided by other modules. At present, the automatic semantic informa-
tion abstracting and classifying module mainly categorizes each paper into a sub-
classification of ontology, according to the information from the references data in the
original PDF files. In addition, SemreX provides a graphical interface, which lets user
categorize papers into sub-classification by hand and add some private comments to
each paper.

SemreX supports both automatic semantic information abstracting and manual re-
marking. To describe the semantic information, a private ontology “SemreX: Refer-
ence” is created by our team, which gives some special information to bibliographies
description. “SemreX: PeerProfile” is also utilized to self-describe a peer’s knowledge
resource. The users of SemreX can categorize papers into an accurate sub-
classification according to literature taxonomy, such as ACM CCS (http://www.acm.org/

class/1998/), and evaluate and grade papers. The manual evaluation information of ref-
erences has higher priority than the automatic semantic information abstracting results
in SemreX.

All the metadata in SemreX are stored in the RDF repository. When publication’s
metadata and the peer profile instances are encapsulated and aligned by RDF sche-
mas, they are imported into Local Knowledge Repository (LKR), through LKR man-
agement infrastructure to query, delete and update.

3 Metadata Models in SemreX

3.1 Metadata Model for Publications

The same document can exist in different formats e.g. Postscript, PDF, BibTEX, or
ASCII text. However with general metadata formats, different versions of the same
document can be described in one record, whereas in the hard print version these
would be regarded as different editions.

The most well-known metadata initiative is the Dublin Core (DC) which defines
fifteen metadata elements for simple resource discovery. One of the specific purposes
of DC is to support cross-domain resource discovery. DC has the metadata elements
for publications, but for its initiative target, it does not focus on bibliographic domain.

The SWRC [8] is an ontology for modeling a research community, including per-
sons, organizations, and bibliographic metadata. It is used in various projects and
applications, such as Bibster, the AIFB portal, and the SemIPort projects. Closest to
the SWRC are the AKT reference ontology (http://www.acm.org/class/1998/) developed by
the AKT project and the Knowledge Web portal ontology (http://knowledgeweb.semantic-

web.org/) developed by the Knowledge Web consortium. Both contain similar concepts
and relationships as the SWRC ontology and serve a similar purpose. There are also
other bibliographic ontology described in OWL (Web Ontology Language) on the
web, such as eBiquity Publication Ontology Resource (http://ebiquity.umbc.edu/v2.1/ontol-

ogy/ publication.owl) and BibTEX Definition in Web Ontology Language (http://visus.mit.

edu/bibtex/ 0.1/).
We compare these similar metadata models for publications and find some charac-

teristics listed as follows:

440 H. Wu and H. Jin

• Most ontology written in OWL. AKT reference ontology is expressed by OCML
and Ontolinga; SWRC originally is written with DAML, whereas others are de-
fined in OWL.

• More than 80% concepts and relationships among them are commonly defined and
covered. For example, the concept about bibliographic format such as article, book,
proceedings, master thesis, Ph.D. dissertation, and technical report.

• Most of them do not support ontology mapping mechanism. Only AKT reference
ontology supports mapping mechanism for aligning other new defined concepts
and relationships to original ontology.

Compared with these reference models, the publication metadata model in SemreX
is specifically designed for wrapping the metadata extracted from scientific docu-
ments, and SemreX mainly aims at sharing key attributes of a scientific document.
Therefore we select a minimized concept and relationships set which covers these key
attributes such as document title, authors, abstract, key words, and most used publica-
tion information.

A: <ref:Publication rdf:about="urn://grid.hust.edu.cn/semrex#xxxxxx">
 <rdf:type rdf:resource="http://grid.hust.edu.cn/ontologies/

refonto-yymmdd.owl #Proceedings" />
 <ref:title>Semantic Metadata Models in References Sharing and Retrieval System Sem-

reX</ref:title> … …
<ref:author>Hao Wu</ref:author> <ref:author>Hai Jin</ref:author>

 <ref:authors>Hao Wu, Hai Jin</ref:authors>
 <ref:publish>In Proceedings of GPC2006</ref:publish>

<ref:year>2005</ref:year>
 <ref:abstract> Peer-to-Peer systems…, …, We describe these models ...</ref:abstract>
 <ref:key>1</ref:key>
 <ref:url>http://grid.hust.edu.cn/papers/</ref:url>

<ref:keywords>Metadata, Semantic Web, P2P </ref:keywords>
<ref:classification> Semantic Web and P2P </ref:classification>

 <ref:comment>
 <ref:Person> Yijiao Yu </ref:Person>
 <ref:content> some remarks on this paper </ref:content>

… …
 </ref:comment> … …

</ref:Publication>

B: <ref:Reference rdf:about="urn://grid.hust.edu.cn/semrex#xxxxxx">
<rdf:type rdf:resource="http://grid.hust.edu.cn/ontologies/
refonto-yymmdd.owl #Reference" />
<ref:key>2</ref:key>
<ref:title> The SWRC Ontology - Semantic Web for Research Communities </ref:title>
<ref:authors>York Sure, Stephan Bloehdorn, Peter Haase, Jens Hartmann, Daniel Oberle
</ref:authors>
<ref: publish > In Proceedings of the 12th Portuguese Conference on Artificial Intelli-
gence (EPIA 2005) </ref: publish >
<ref:year>2005</ref:year>

</ref:Reference>

Fig. 2. Example for Aligning Reference Item to Metadata Model

 Semantic Metadata Models in References Sharing and Retrieval System SemreX 441

Another important characteristic is that our publication ontology model reflects the
upper user’s requirement. For a scientific researcher, when he/she gets a publication,
firstly he/she wants to know whether the publication is valuable, or how valuable the
publication is. These questions should be resolved when he/she finishes reviewing.
However, if some researchers have already reviewed this publication, furthermore,
they gave their comment on it. By the annotation tools, these comments and evalua-
tions are combined with those metadata extracted from documents. Through SemreX
communication network, these helpful and valuable information can be shared by
others, especially play a key role for guiding the reader. This approach can seriously
improve the effective of literature sharing.

One example using SemreX ontology to wrap metadata of this paper is shown as
follows. Part A shows the metadata of this paper. Part B shows one reference cited by
the paper. Class ref:comment is defined to encoding a reviewer’s remarks, and more
complex definition also can be introduced to replace it.

3.1.1 Generating Metadata from Literature
Extracting semantic metadata from the content of documents is a different task. Most
existing file formats do not contain semantic markup, and it remains a difficult task to
distinguish between sections of a text-based document.

BibTEX: BibTEX provides metadata attributes (entry types) for nearly every kind of
bibliographic entry which has its own set of attributes describing a reference. The tag-
based syntax of BibTEX is at the moment the most well-known (exchange-) format
for bibliography metadata, especially on the World Wide Web.

Extracting metadata from BibTEX format is easier than PDF format and PS for-
mat. Through parsing the BibTEX format tags and extracting the corresponding
metadata, we can easily align these metadata to RDF-based metadata model of publi-
cations. The bib2rdf (http://www.cs.vu.nl//~mcaklein/bib2rdf/) tool translates the structured
data contained in BibTEX bibliographies into an RDF-compliant form, which makes
a vast amount of bibliographical information available for semantic web applications.

PS and PDF: Postscript is a programming language that is designed to specify the
layout of the printed page. Postscript printers and postscript display software use an
interpreter, often GhostScript (http://www.cs.wisc.edu/~ghost/) to convert the page descrip-
tion into the displayed graphics. The Portable Document Format (PDF) is built upon
the PostScript format and contains similar font and metrics information. Due to this,
we can treat them with same approach.

Several methods have been proposed to extract metadata from a PS or a PDF
document. One is to use the spatial knowledge [9] we have of documents to classify
certain elements; for example, a title generally appears at the top of a page and is in a
larger font size. The technique requires extraction of text from a document and asso-
ciating information about the font, metrics, and axis location to each line. Moreover, a
rule set can be applied to these strings to produce increasingly accurate candidates for
a particular element.

For simple and open purpose, we adopt the popular method of classifying docu-
ments by employing statistical frequencies of words to categorize elements. This
method is more appropriate for document summarization tasks. We refer to the open
source tools and develop Java-based tools to parse metadata from text. Before actual

442 H. Wu and H. Jin

parsing, we use open source converters such as Pstotext (PostScript to text converter),
Pdf2txt (PDF to text converter) to redirect text from the printer to a text file. Then
these texts are as data sources for Metadata Generating Process (MGP) to post-
process.

3.1.2 Metadata Generating Process
Metadata Generating Process includes two phases, extracting and aligning, shown in
Fig.3. Among extracting phase, documents with different formats are passed to the
Document Parser to call corresponding parser, such as BIBTEX parser, PDF parser
and PS parser, to process the document and extract prerequisite metadata into unat-
tached fields. Experimental data play a key role to steering the statistical-based parser
to analysis and extract documents. We use many statistical rules to fuzzy process in
extracting metadata. One example is shown as following:

public int GetTitleProb(String Token, int Pos, int To-
tal)
 {
 int iWords = GetWordCount(Token);
 double Prob = 0.007*iWords*iWords*iWords*iWords -
0.254*iWords*iWords*iWords + 2.1452*iWords*iWords +
8.6235*iWords - 10.129;
 if(Prob < 0) Prob = 0;
 else if(Prob > 100) Prob = 100;
 return (int)Prob;
 }

Its function is to estimate the probability of current reference field (Token) being a
reference title. The formula and coefficients are set according to statistical rule.

Fig. 3. Metadata Generating Process

Among aligning phase, these unattached metadata fields with corresponding se-
mantic are sent to RDF/onto Wrapper to align these metadata to the domain model, in
this paper are RDF Schema and Reference Ontology. Finally the .rdf file is created to
store the literature’s metadata. The RDF file provides a common style to represent
and store metadata of literatures. These files can be imported to the RDF repository or
be distributed directly through P2P network for sharing.

The literature document possesses various characteristics. At present, we focus on
parsing PDF. Many literature organizations or digital libraries adopt or support PDF
as their document format, especially in China where most digital libraries such as
CNKI (http://www.edu.cnki.net/), CALIS (http://www.calis.edu.cn/calisnew/) have their private
document formats. However, all of them also support PDF format, therefore PDF is

 Semantic Metadata Models in References Sharing and Retrieval System SemreX 443

regarded as the de facto standard format of digital library among Chinese research
groups. In addition, XMP (Extensible Metadata Platform) can be utilized to annotate
the PDF-based literatures with extracted metadata automatically.

3.2 Peer Metadata Model

The SemreX network utilizes the semantic topology [10] to optimize the query rout-
ing and message forwarding. Having rich metadata about others will enable peers to
form communities and to have a notion of what a community is about. Having com-
munity descriptions provides an aggregated view of the network, allows users to
choose which communities to join, detects new trends, or finds useful information.

Semantic-based peer description method has been applied in works, such as [4]-
[6], [11], [12]. Most of them provide useful but simple information of peer descrip-
tions, such as in [4]-[6]. [11] and [12] both provide relatively complete model, but
they do not address the partition of information layer about a peer. Different from
them, we elaborately design profile model for SemreX on the base of these former
works. The metadata model supports flexible usage, where we divide the knowledge
associated with a peer into three parts: network layer, focusing on network informa-
tion; content layer, specialized in describing resources on a peer, and expertise layer,
designing for a brief and effective style to create semantic overlay. Fig.4 shows the
core parts of Peer Metadata Model, which are illustrated in detail as follows.

Fig. 4. The Core of Peer Metadata Model

For each peer, we have to know some basic information to identify it in a pure P2P
network. The information is grouped in the Peer object, such as Peer ID, Peer Name,
Peer IP, Peer Domain and Peer Group. Each peer links to a PeerProfile object. This
object contains the meta-information of local knowledge base or links to it. The size
of each profile is fairly small, and is unrelated to how much data is collected about the
peer. Therefore a router can keep a few thousand active peer profiles without any
significant overhead.

As far as PeerProfile concerned, it plays key roles in fields like:

(1) Building semantic overlay [10]. The semantic overlay relies on the knowledge
of the peers about the expertise of other peers, and it can be described by the relation:

444 H. Wu and H. Jin

Knows ⊆P× P, where Know (p1, p2) means that peer p1 knows about the expertise of
peer p2. The semantic overlay in combination with the expertise-based peer similarity
computation is the basis for semantic routing [10].

(2) Self-grouping for community. Community-based exchange is popular and ef-
fective. Different peers sharing the common resources and interests can group to-
gether to communicate each other. Under P2P environments, the community need be
created dynamically, thus each peer need to know other peers’ resources. PeerProfile
just plays a bridge between peers and as a base for self-grouping policies.

(3) Creating global resource views for SemreX network. Resource view provides
an intuitive style for people learning about the resources status on P2P network. When
one peer collects enough well-defined peer profiles, a good and clear global resource
view can be created to help retrieval and search manually.

Gathering this kind of profile information is a knowledge acquisition issue; one can
get manually or automatically extracting profile information from the knowledge base
or from the user’s behavior.

3.2.1 Network Layer of PeerProfile
Each peer has a set of network information points collected, including statistics about
how long it takes for them to reply to a network database query, how often their tun-
nels fail, and how many new peers they are able to introduce, as well as simple data
points such as when we last heard from them or when the last communication error
occurred. Collecting these data is in favor of analyzing the P2P network behaviors
and designing more effective network architecture.

Speed: The speed estimates how many round trip messages we can send through
the peer in a minute. For this estimation it just looks at previous performance, weigh-
ing recent data, and extrapolates it for the future.

Capacity: The capacity estimates how many tunnels the peer would agree to par-
ticipate in over the next hour. Its computation is similar with speed estimation.

Integration: The integration is important only for the network database, as the de-
tection code is not necessary for generally well connected networks. This calculation
itself simply tracks the times the peer is able to tell us about a peer we do not know or
updated data for a peer we know.

Failing: The failing calculation keeps track of a few data points and determines
whether the peer is overloaded or is unable to continue its agreements.

Trust and Security are important when the P2P is for commercial purpose.

We drill through each peer’s profile to come up with a few key calculations, and
based upon those, we organize each peer into groups such as fast, capable, well inte-
grated, trusted, not failing, and failing. Such network knowledge is easily acquired by
underlying P2P platform (e.g. JXTA [14]), and be an assistant in peer selection with
expertise for forwarding. When the router wants to build a tunnel, it looks for fast
peers; when it wants to test peers it simply chooses capable ones; while for routing,
the failings will not be taken into account. Of course, this relies on real-time informa-
tion collection and precise calculation.

 Semantic Metadata Models in References Sharing and Retrieval System SemreX 445

3.2.2 Content Layer of PeerProfile
The peer profile ontology has a major class Resource which is crucial for enabling
profile-based peer management and resource discovery. Resource has several proper-
ties, such as: Name, Category, Amount, URI, and Location.

Resource is an abstract class with its subclasses, such as Literature, Web Service,
which covers several possible types of resources hosted at a given peer. Each subclass
has its own properties, synchronously inherits general information from class Re-
source. Resource also holds the capacity for timed content update, query and request
language support definition. It also utilizes services registry, since SemreX also con-
ceives of the services discovery on it [13].

3.2.3 Expertise Layer of PeerProfile
The class Expertise has two important attributes:

TaxonomyURI. This label contains the URL of any open or user-defined taxonomy,
such as ACM CCS (http://www.acm.org/class/1998/) for digital library, the NAICS
(http://www.census.gov/epcd/www/naics.html) and the UNSPSC (http://eccma.org/unspsc/browse/)

for most web services registry.
TaxonomyTopic. This label represents topics path from a root to the most specific

topic which an instance belongs to in a classification, e.g. ACMCCS98 /Information
Storage and Retrieval / Information Search and Retrieval/ Selection Process (from
ACM CCS) and /Travel and Food and Lodging and Entertainment Services /Travel
facilitation /Travel agents /Tour arrangement services (from UNISPC).

Expertise is designed for a brief style to build semantic overlay. Comparing the
TaxonomyTopic of two Expertises can easily decide the semantic neighborhood of
two peers by taxonomy [10]. This is a key base for building semantic topology.

4 Conclusion and Future Works

We have built a prototype system of SemreX for sharing metadata of publications.
For each processing, the bibliographic files are converted to text files, and metadata
are extracted and wrapped into RDF file according to the reference ontology. The
publications are also classified by literature’s taxonomy. One RDF repository is cre-
ated in memory to store these metadata. The user can search the publication in local
peer, or from other peers through semantic overlay. We also prepare many data to test
the model, the MGP works well in parsing PDF formats. At present, the whole system
is under testing. More evaluations and practical usages must be done to improve the
models in the future. Further development will make it more friendly and strong.

References

1. M. Ehrig, C. Schmitz, S. Staab, J. Tane, and C. Tempich, “Towards Evaluation of Peer-to-
Peer-based Distributed Knowledge Management Systems”, Proceedings of the AAAI
Spring Symposium on Agent-Mediated Knowledge Management (AMKM-2003), Springer
LNAI, Vol.2926, 2004, pp.73-88.

446 H. Wu and H. Jin

2. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T.
Risch, “EDUTELLA: A P2P Networking Infrastructure Based on RDF”, Proceedings of
Eleventh International World Wide Web Conference, 2002, pp.604-615.

3. M. Ehrig, C. Tempich, J. Broekstra, F. van Harmelen, M. Sabou, R. Siebes, S. Staab, and
H. Stuckenschmidt, “SWAP: Ontology-based Knowledge Management with Peer-to-
Peer”, Proceedings of the 1st National Workshop Ontologie-basiertes Wissensmanagement
(WOW2003), Bonn, 2003, pp.17–20.

4. M. Bonifacio, R. Cuel, G. Mameli, and M. Nori, “A Peer-to-Peer Architecture for Distrib-
uted Knowledge Management”, Proceedings of 3rd International Symposium on Multi-
Agent Systems, Large Complex Systems, and E-Businesses (MALCEB’02), 2002.

5. S. S. Raza Abidi and X. L. Pang, “Knowledge Sharing Over P2P Knowledge Networks: A
Peer Ontology and Semantic Overlay Driven Approach”, Proceedings of International
Conference on Knowledge Management, 2004.

6. S. Castano, A. Ferrara, S. Montanelli, and D. Zucchelli, “HELIOS: A General Framework
for Ontology-based Knowledge Sharing and Evolution in P2P Systems”, Proceedings of
2nd Web Semantics Workshop, Prague, Czech Republic, 2003.

7. P. Haase, B. Schnizler, J. Broekstra, M. Ehrig, F. van Harmelen, M. Menken, P. Mika, M.
Plechawski, P. Pyszlak, R. Siebes, S. Staab, and C. Tempich, “Bibster: A Semantics-
Based Bibliographic Peer-to-Peer System”, Proceedings of the 3rd International Semantic
Web Conference, Hiroshima, Japan, 2004, pp.122-136.

8. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle, “The SWRC Ontology -
Semantic Web for Research Communities”, Proceedings of the 12th Portuguese Confer-
ence on Artificial Intelligence (EPIA 2005), 2005.

9. G. Giuffrida, E. C. Shek, and J. Yang, “Knowledge-based Metadata Extraction from Post-
Script Files”, Proceedings of the fifth ACM Conference on Digital Libraries, San Antonio,
Texas, United States, June 2000, pp.77-84.

10. H. Chen, H. Jin, and X. Ning, “Semantic Peer-to-Peer Overlay for Efficient Content Locat-
ing”, Proceedings of 2006 APWeb Workshops (MEGA’06), 2006, pp.545-554.

11. M. Ehrig, P. Haase, R. Siebes, S. Staab, H. Stuckenschmidt, R. Studer, and C. Tempich,
“The SWAP Data and Metadata Model for Semantics-based Peer-to-Peer Systems”, Pro-
ceedings of First German Conference on Multiagent Technologies (MATES-2003),
Springer LNAI, Vol.2831, Erfurt, Germany, 2003, pp.144-155.

12. O. Parkhomenko, Y. Y. Lee, and E. K. Park, “Ontology-driven Peer Profiling in Peer-to-
Peer Enabled Semantic Web”, Proceedings of the Twelfth ACM International Conference
on Information and Knowledge Management (CIKM 2003), 2003, pp.564-567.

13. H. Wu, H. Jin, and H. Chen, “Semantic-Overlay-Driven Web Services Discovery”, Pro-
ceedings of the First International Conference on Semantics, Knowledge and Grid
(SKG2005), 2005.

14. Y. Yu and H. Jin, “Building a Semantic P2P Scientific References Sharing System with
JXTA”, Proceedings of the Asia-Pacific Web Conference, 2006, pp.937-942.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 447 – 455, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Clustering Large Scale of XML Documents

Tong Wang1, Da-Xin Liu1, Xuan-Zuo Lin2, Wei Sun1, and Gufran Ahmad1

1 Department of Computer Science and Technology, Harbin Engineering University, China
Wangtong@hrbeu.edu.cn

2 Northeast Agriculture University, Harbin, China
xuanzuolin@sina.com

Abstract. Clustering is able to facilitate Information Retrieval. This paper ad-
dresses the issue of clustering a large number of XML documents. We propose
ICX algorithm with a novel similarity metric based on quantitative path. In our
approach, each document is firstly represented by path sequences extracted
from XML trees. Then these sequences are mapped into quantitative path, by
which the distance between documents can be computed with low complexity.
Finally, the desired clusters are constructed by utilizing ICX method with lit-
eral local search. Experimental results, based on XML documents obtained
from DBLP, show the effectiveness and good performance of the proposed
techniques.

1 Introduction

Since XML is becoming the pervasive web data exchange format, much research
effort is currently devoted to support the storage and retrieval of large collections of
such documents. Our research is driven by the hypothesis that closely associated
documents tend to be relevant to the same requests, so that grouping similar docu-
ments accelerates the search [1]. However, traditional text clustering approaches [2]
didn’t take the structural information of XML into account. This paper considers the
structure of XML and extracts paths from documents.

Many researchers [3][4][5] measure structural similarity using the “edit distance”
between tree structures. However, the edit distance between two documents has time
complexity at least 2()O n and the algorithm requires computing the distance for each

document-pair. Thus, it is unsuitable for a collection of large documents.
In this paper, we introduce a novel indirect clustering method ICX for XML docu-

ments. The contributions are as follows: a novel distance metric is proposed based
on quantitative path sequence, called _QX path . This metric calculation is simple

with low computational complexity, which is fit for clustering high-volume XML
documents. Based on the metric above, an improved C-means ICX method is
proposed. This method solves local optima problem and the experiment compared
with C-means shows its efficiency.

The remaining of the paper is organized as follows: section 2 is the feature extrac-
tion and similarity metric; section 3 introduced ICX clustering method; section 4
shows experiment evaluation. We conclude in section 5.

448 T. Wang et al.

2 Model Representation and Similarity Metric

Compared to traditional Vector Space Model (VSM), we use a different metric, called
_QX path . In this model, each document is expressed by path sequences, and then is

transformed to _QX path according to tag-mapping table. Finally, we define the

similarity calculation, which has a lower time complexity.

2.1 Document Representation

XML document can be viewed as a labeled tree. In our case, we define here document
model tree TD .

Definition 1. XML document tree. Suppose a countable infinite set E of element
labels (tags), a countable infinite set A of attribute names. An XML document tree is
defined to be (, , , ,)rd V lab ele att v= where V is a finite set of nodes in d; lab is a

function from V to E A ; ele is a partial function from V to a sequence of V nodes

such that for any v V∈ , if ele(v) is defined then ()lab v E∈ ; att is a partial function

from V A× to V such that for any v V∈ and l A∈ , if 1(,)att v l v= , then ()lab v E∈

and 1()lab v l= ; rv is a distinguished node in V called root of d, ()rlab v root= .

Figure 1 shows an example of XML document tree. The model is a rooted, di-
rected, and unordered tree. A path in TD is sequence of nodes 1 2 3, , ,..., nv v v v , through

which we can traverse step by step in TD . In addition, there exists one and only one

path from node iv to node jv for each iv and jv , i jv v≠ . Before we formally define

_QX path , we first give the definition of _X path .

book

firstname lastname

phone

name

author
title

Pubaddr pubname

publisher

Fig. 1. XML document tree

Definition 2. Path Sequence. Given iv and TD , the path sequence of iv is defined as

an ordered sequence of tag names from root to iv , denoted as

0 1_ { , ,..., }T

i

D
v mX path v v v= where

rD

,k [1...m]kv ∈ ∈

 Clustering Large Scale of XML Documents 449

Given node iv and pv , we define iv is nested in pv w.r.t. , _ T

i

D
i p vi p v v X path< ∧ ∈ .

Note that _X path describes hierarchical and structural information of the XML

document TkD , for it shows how iv is nested in TkD . Furthermore, in XML document

collection, an XML document TkD consists of many _ Tk

i

D
vX path sequences, denoted

as follows.

1 2{ _ , _ ,..., _ }Tk Tk TkD D D
Ti v v vnD X path X path X path= . (1)

2.2 Similarity Metric

For clustering methods, similarity metric is foremost and related directly to the com-
puting complexity. This paper proposes a novel distance metric based on quantitative

_QX path with low complexity. And our idea is inspired by numeric transformation

of liner space [10]: Let the size of the alphabet be c, with an established order on the
symbols in the alphabet. Choose an integer d>2c. Let a string of length n be

1 2, ,..., nS S S , with each symbol iS mapped to an integer it between 1 and c. it depicts

the symbol position in the string, where 1< it <c. Thus, the string can be mapped to

linear expression 2
1 2/ / ... / n

nt d t d t d+ + + .

In our approach, we map _X path to numeric _QX path , by which we compute

the similarity metric between each documents. Given document collection TallD , oc-

curring tags collection allT and size of tags collection | |allT , _X paths can be trans-

lated to _QX paths according to the tag-mapping table. When the mapping table is

constructed, WordNet Java API [7] is employed to consider semantics of tag (iv) in

each document and determine whether two tags are synonyms.

Table 1. Tag-mapping table of Fig.1

tag position tag position
book 1 phone 6
title 2 pubaddr 7

author 3 pubname 8
pub-
lisher

4 firstname 9

name 5 lastname 10

Definition 3. Quantitative XML path sequence (_QX path). Given ()

TkD iN v , the

mapping function from iv of TkD to numeric representation, we define the quantitative

path as follows:
2

1 2_ () / () / ... () /Tk

i Tk Tk Tk

D i
v D D D iQX path N v d N v d N v d= + + + . (2)

where d=2 | |allT +1.

450 T. Wang et al.

The method has the ability to preserve “prefix “ properties: the nearer the node to
the root, the more discriminable contribution the node has to the structure. That is to
say, we needn’t represent all the paths from root. When the distance of paths is com-
puted, the root-to-leaf paths can represent almost all the structural information ex-
tracted from the XML tree.

Note that equation 1 can be turned into equation 3. In this process, the structural in-
formation can be mapped into rational numbers, which can reduce the expense of
similarity calculation subsequently.

1 2{ _ , _ ,..., _ }Tk Tk TkD D D
Ti v v vnD QX path QX path QX path= . (3)

Example1. As is shown in table1, allT ={book, title, author, publisher, name, phone,

pubaddr, name, firstname, lastname}, | |allT =10. Let’s take some paths as an example:

_ { , , , }TD
firstnameX path book author name firstname= ,

_ { , }TD
titleX path book title= .

 The corresponding rational number will be:
2

3 4 2 4 5

_ () / | | () / | |

() / | | () / | | 1/ 21+3/21 4 / 21 5 / 21

T

T T

T T

D
firstname D all D all

D all D all

QX path N book T N author T

N name T N firstname T

= + +

+ = + +

2 2_ () / | | () / | | 1/ 21 2 / 21T

T T

D
title D all D allQX path N book T N title T= + = +

Based on the above feature extraction, we define the distance metric between

TxD and TyD .

(,) | _ _ | TyTx

i j

i Tx j Ty

DD
Tx Ty v v

v D v D

Dist D D QX path QX path
∈ ∈

= − . (4)

The time complexity of the metric calculation is satisfactory. Traditional distance
metrics often requires mapping features into vectors and dealing with them in the
high-dimensional Vector Space Model (VSM) [11][12], in which time complexity is
expensive. While the Quantitative path is an indirect distance method, for it only
measures the documents through paths they contain.

Meanwhile, as mentioned above, tree edit distance [3] is unfit for large XML
documents, because the computational expense of metric is 2()O n . In our case, the

distance between two documents has time complexity 2()O p , where p denotes the

scales of _QX path s and is far less than the scale of document collections.

3 ICX Cluster Technique

Document clustering is to categorize the documents based on similarity without the
prior knowledge on the taxonomy. And it has two beneficial aspects: efforts in inte-
grating XML documents with different structures and semantics can be alleviated
because reconciling analogous and relatively small document collection is easier.
Besides, ranges of queries can be dramatically decreased to applicable documents
after relevant documents are aggregated together.

 Clustering Large Scale of XML Documents 451

Section 2 introduces the distance metric of the clustering. In this chapter, we at first
introduce the basic C-means clustering method briefly. Then, we present the Im-
proved C-means methods for XML document, called ICX.

3.1 Standard C-Means Clustering

C-means is a partitional clustering algorithm based on the firm foundation of analysis
of variances. It clusters a group of data objects into a predefined number of clusters. It
starts with randomly initial cluster centroids and keeps reassigning the data objects in
the dataset to centroids based on the similarity between the data object and the cen-
troids. The reassignment procedure will not stop until a convergence criterion is met
(e.g., the fixed iteration number, or the cluster result does not change after a certain
number of iterations). The C-means algorithm can be summarized as:

1. Randomly select cluster centroids to set an initial dataset partition.
2. Assign each data object to the closest cluster centroids.

3. Recalculate the cluster centroid
1

j j

j j
d Sj

c d
n ∀ ∈

=

where jd denotes the data object that belong to cluster jS ; jc stands for the cen-

troid; jn is the number of data object that belong to cluster jS .

4. Repeat step 2 and 3 until the convergence is achieved.

3.2 ICX Method

C-means algorithm is efficient, with time complexity ()O ntk , where n is the size of

dataset, k is the clusters and t is the circle time. Recent studies have shown that parti-
tional clustering algorithms are more suitable for clustering large datasets [6].

However, It is well known that the main drawback of the C-means algorithm is that
the result is sensitive to the selection of the initial cluster centroids and may converge
to the local optima [14]. To solve the problem, ICX method is proposed. The main
idea is that when a solution can be no more improved�the algorithm makes the next
iteration after an appropriate disturbance on the local minimum solution. Thus the
algorithm can skip out of the local minimum and in the meanwhile, reach the whole
search space.

Algorithm ICX
Input: n: number of XML collection; k: number of clusters
Output: k cluster
1. Randomly select one initial partition { }, (1,....,)k iP C i k= =

2. Initialize current best partition
3. Give terminate condition of algorithm; 0ε > ; maximum iterant times n of object

function;
4. do {
5. Search locally in kP to get a local minimum local optf − and its corresponding

partition *
kP ;

452 T. Wang et al.

6. do
7. { *; k k local opt optiP P f f−= = ;}

8. until (local opt optf f− >);

9. Randomly select one object iv

10. If iv is not chosen, Assign iv to other clusters by computing:

*

2 2
'

1 1

| | | |
i i i i

k k

i i i i
i iv S v S

f v c v c
= =∈ ∈

= − − −

11. t=t+1
12. If f εΔ <

13. local opt local optf f f− −= + Δ

14. If local opt optif f− <

15. '; ; 0opti local opt k kf f P P t−= = =

16. } until (t<n)

At first, ICX algorithm randomly finds a local centroid vector by standard c-means

clustering method. From the line 9 to line15 indicates the local search process. Firstly,
we select a vector iv of cluster iS randomly and reassigned to cluster jS , the centroid

vectors will be updated according to equations '

1
i i i

i

i

n c v
c

n

× −=
−

 and '

1
j j i

j
j

n c v
c

n

× +
=

+
,

where in and jn is the number of XML documents. Then, we measure the influence of

this reassignment using the increment
*

2
'

1

| |
i i

k

i i
i v S

f v c
= ∈

= −
2

1

| |
i i

k

i i
i v S

v c
= ∈

− − . If

f ε< , the algorithm regards current partition as local minimum and starts the local

search; otherwise, the algorithm assigns the vector iv to other clusters. During the

process, if iv is assigned for k times, we have to try to choose another ()j i jv v v≠ .

The disturbance can help for skipping out of the local resolutions to improve the qual-
ity of cluster solutions.

4 Experiments and Analysis

Our experiments were conducted on a workstation of 1.5GHz Intel Pentium 4 ma-
chine with 512 MB main memory.

4.1 Dataset

We choose a variety of XML datasets including two widely used real datasets and one
synthetic dataset, Xmark. One real dataset is obtained from DBLP [16], the biblio-
graphical data of scientific conferences and journals; the other is Swiss Prot, a real-
life data set with annotations on proteins; Xmark, a synthetic dataset that models

 Clustering Large Scale of XML Documents 453

transactions on an on-line auction site. Compared with DBLP, the data in Xmark is
relatively tilted and sparse, with more complex structures.

The test subset of DBLP we used consists of 10 different ACM Journals. Each
journal with 100 documents is grouped, denoted by ,1 10iG i≤ ≤ . We mix these

documents together and cluster them for our test. In the context of clustering, we can
also produce 10 categories, denoted by ,1 10iC i≤ ≤ . Similarly, the subset of Protein

set contains 1324 document that have been classified into 54 categories.
For the synthetic dataset, Xmark, our experiment is based on the hypothesis that

the documents with the same DTD will be clustered in the same class. When we gen-
erate files using Xmark, the scale parameter of Xmark is 0.2. That is, each generated
document is 20M or so. We get 5 DTD (Data Type Definition) documents [18] and
for each DTD generate 20, 40, 60, 80, 100 XML documents, respectively. The five
generated datasets are denoted as Xmark1, Xmark2, Xmark3, Xmark4 and Xmark5,
respectively.

4.2 Measurement

In order to measure the clustering accuracy, we take the DBLP as an example. As
mentioned above, the groups we specify beforehand are denoted by ,iG and the final

clustered groups in the experiments are denoted by iC . The δ function is given by

1 2
1 2

1 2

0, , ,
(, ,)

1, , ,
j

i
j

if j d d G
d d C

if j d d G
δ

∃ ∈
=

¬∃ ∈
 . (5)

where 1d 2d are documents from iC category. To quantify the clustering accuracy of

ICX technique, we define Classified Error Rate (CER) as follows.

 ,

(, ,)

[(1) / 2]

i

i
i m n C m n

i

m n C

CER
i i

δ
∈ ∧ ≠=

× −
 (6)

If there is no pair of documents occurring in both C and G classes, the error rate
will reach the maximum value, e.g., combination 2

iC = (1) / 2i i× − . CER is a relative

error rate value, 0 1CER≤ ≤ .

4.3 Results Analysis

In order to compare to naïve method, which uses the standard C-means method, we
also implement the naïve clustering method. Besides, the documents were parsed into
labeled trees via the parser developed by Zhang et al [15] in pre-process.

In the stage of standard C-means procedure, the choice of k is often ad hoc, larger
than the number of classes in general. In our case, we choose the class number. Since
C-means is sensitive to the input order of vectors, we did each experiment several
times and obtained the mean of CER. Fig.2 shows the results of the two methods.

454 T. Wang et al.

Fig. 2. Classified Error Rate of two methods: ICX and naïve method

The first case is to test the accuracy of ICX method. From figure2, for all the data-
sets, it is obvious that CER value of ICX outperformed that of naïve clustering. That’s
to say, the local search in ICX method significantly improves the clustering quality.

100 200 300 400 500
5

10

15

20

25

30

C
la

ss
ifi

ed
 E

rr
or

 R
at

e

Scale of Documents

 ICX

Fig. 3. The scalability of ICX method. The test dataset is Xmark datasets: Xmark1 (n=100),
Xmark2(n=200), Xmark3(n=300), Xmark4(n=400) and Xmark5(n=500), respectively.

Then, we test the scalability of ICAXC. In this experiment, Xmark1, Xmark2,
Xmark3, Xmark4 and Xmark5 are used as the test dataset, one by one. Figure 3 shows
that the Classified Error Rate of these dataset varies very small when the number of
the documents increases. It demonstrates that ICX algorithm is a robust and stable
algorithm when the scale of dataset is large. Thus, the proposed method can be used
for clustering a high-volume XML documents collection over the web.

5 Conclusion

In order to cluster high-volume XML documents efficiently, we have proposed a
indirect distance metric based on quantitative path information. To improve the clus-
tering quality, an improved C-means clustering is applied in our case. Experimental
results show the proposed method is efficient for large scale of XML documents.

 Clustering Large Scale of XML Documents 455

References

1. Faloutsos C Oard D A survey of information retrieval and filtering methods De-
partment of Computer Science University of M aryland Technical Report CS-TR-
35l4 (1995)

2. O. Zamir, O. Etzioni, O. Madani, and R.M. Karp, “Fast and Intuitive Clustering of Web
Documents,” Proc. Second Int’l Conf.Knowledge Discovery and Data Mining,(1997)
287-290

3. A. Nierman and H.V. Jagadish, “Evaluating Structural Similarity in XML Documents,”
Proc. Fifth Int’l Workshop Web and Databases (2002)

4. Gianni Costa, Giuseppe Manco, Riccardo Ortale, Andrea Tagarelli: A Tree-Based Ap-
proach to Clustering XML Documents by Structure. PKDD 2004. (2004) 137-148

5. Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, Timos K. Sellis: A Methodology for
Clustering XML documents using Tree Summaries and Structural Distance Metrics.
HDMS (2004)

6. Al-Sultan, K. S. and Khan, M. M..Computational experience on four algorithms forthe
hard clustering problem. Pattern Recogn. Lett.17, 3, (1996) 295–308.

7. George A. Miller, Richard Beckwith, Introduction to WordNet: An On-line Lexical Data-
base International journal of Lexicography, 3(4), (1990)235-312.

8. Mong-Li Lee, Liang Huai Yang, Wynne Hsu, Xia Yang: XClust: clustering XML schemas
for effective integration. CIKM 2002, 292-299

9. Aoying Zhou, Weining Qian, Hailei Qian: Clustering DTDs: An Interactive Two-Level
Ap-proach. J. Comput. Sci. Technol. 17(6) (2002) 807-819

10. H. V. Jagadish, Nick Koudas, Divesh Srivastava: On Effective Multi-Dimensional Index-
ing for Strings. Proceedings of the ACM SIGMOD Conference on Management of Data.
(2000) 403-414

11. Antoine Doucet, Helena Ahonen-Myka: Naive Clustering of a large XML Document Col-
lection. INEX Workshop 2002.(2002) 81-87

12. X. Cui, T. E. Potok, and P. Palathingal, Document Clustering using Particle Swarm Op-
timi-zation, In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, June, 2005,
Pasa-dena, California, USA,(2005)

13. Abiteboul, S., Buneman, P., Suciu, D.: Data On The Web: From relations to Semistruc-
tured Data and XML. Morgan Kaufmann Publishers, San Francisco, California,(2000)

14. Selim, S. Z. And Ismail, M. A.. K-means type algorithms: A generalized convergence theo-
rem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6,
(1984) 81–87

15. S. Zhang, J. T. L.Wang, and K. G. Herbert. Xml query by example. International Journal
of Computational Intelligence and Applications, Vol. 2, No.3 (2002) 329–337

16. DBLP Computer Science Bibliography. 2004. http:// www.informatik.uni-trier.de/~ley/db/

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 456 – 465, 2006.
© Springer-Verlag Berlin Heidelberg 2006

QoS-Driven Grid Resource Selection Based on Novel
Neural Networks

Xianwen Hao, Yu Dai, Bin Zhang, Tingwei Chen, and Lei Yang

College of Information Science and Engineering, Northeastern University,
Shenyang, 110004, China

haoxianwen@hotmail.com, zhangbin@mail.neu.edu.cn

Abstract. The dynamics nature of grid environment brings challenges for
applications to offer nontrivial QoS on distributed, heterogeneous resources. It’s
a better way to select the suitable grid resources constrained by QoS. In this
paper we propose the application QoS model and metrics as the standard of
resource selection. We also give consideration of the existence of data
dependence between the tasks composing an application and apply it to the QoS
model. And we solve the resource selection problem efficiently using novel
neural networks.

1 Introduction

Grid computing is evolving as the next major distributed enterprise application
platform offering nontrivial QoS [1]. But the native dynamics, distributed, and
heterogeneous characteristics make it challenging for applications to offer designed
QoS in such a grid environment. To guarantee the application QoS is a hot point in
the study of task scheduling and migration, and the primary problem is to select
suitable resources.

Unlike science computing and freedom computing, enterprise computing need
carefully consider the duration and price of an application, and also need to consider
the availability, successful execution rate, reputation etc. In current research
[7,8,9,10] on QoS model of Grid resources, few of them consider duration and price
in a synthetic view, let alone considering other factors.

In this paper we consider all the factors mentioned above, and propose the
application QoS model and metrics as the standard of resource selection. We also give
consideration of the existence of data dependence between the tasks composing an
application and apply it to the QoS model. And we turn the resource selection
problem to be a multistage decision-making problem, and solve it in novel neural
networks.

The rest of this paper is organized as follows. In section two, we firstly give the
application’s QoS model and metrics, and then propose a new QoS-driven resource
selection mechanism. In section three, we propose a new neural network method to
solve this multistage decision-making problem. In section four, experimentation

 QoS-Driven Grid Resource Selection Based on Novel Neural Networks 457

indicates that the approach we proposed is more effective in satisfied results. In
section five, we present related works. In section six, we summarize the contribution
of this paper and our future work.

2 QoS-Driven Resource Selection

We can use a state chart to express a grid application and it contains two parts: tasks
and the dependencies either dataflow or control-flow between tasks. A sample
application expressed by state chart is shown in Fig.1.

Fig. 1. A sample application expressed by state chart

In fig.1, states express the tasks t1 to t8 composing the application A. Task t2 and
t3 can be done in parallel with t4. Either t6 or t7 can be done according to the result of
t5. The numeric on the state expresses the workload of each task and the numeric on
the arc is the data to be transferred.

All kinds of applications mentioned above need supporting from a subset of
resources. Facing the plenty of all kinds of heterogeneous and distributed resources,
how to allocate the most suitable resources becomes a key issue. Resource allocation
includes 2 phases; the first is Resource Discovery, the process of locating a set of
resources on which to schedule the task(s) of an application. And the second phase is
Resource Selection, the process of selecting candidate resources from the set of
resources that come out of the procedure of Resource Discovery. Then the problem of
selection comes since there may be a large number of resources can fulfill the
requirement. So there must be a criterion to evaluate resources based on which to do
the selection.

2.1 QoS Evaluation Model

In papers [7,9,10], the concept of QoS in Grid is mentioned, but there is no broadly
accepted QoS model proposed. Thus, we propose a task QoS evaluation model that
takes consideration of a popular model of a single service [11] and an extended QoS
evaluation model for application under specific resource allocation in the following.
For each criterion, we provide a definition, and show how to compute its value for a
given task (or application).

458 X. Hao et al.

2.1.1 Task QoS Evaluation Model
Before mapping task to resource, the execution time and price are uncertain, and the
QoS model cannot be given to a task without the mapping. So we give a definition
task QoS as follows.

Definition 1 (Task QoS). A task QoS means the task’s service quality running on
given resource. It can be expressed as a vector:

Q(t,r)=<Du(t,r),Pr(t,r),Av(t,r),Su(t,r),Re(t,r)>

Du(t,r):Execution duration. Given a task t and a resource r, the execution duration
Du(t,r) measures the expected delay in seconds between the moment when task t has
sent to r and the moment when the task t finishes. The execution duration is computed
using the expression Du(t,r)=L(r)+M(t)/Pe(r),meaning that the execution duration is
the sum of the processing time M(t)/Pe(r)and the waiting time L(r) for local
scheduling on resource r. M(t) expresses the workload of task t and Pe(r) expresses
the performance of resource r. e.g., Pe(r) is speed ,in millions of cycles per second ,of
computing resource r.

Pr(t,r):Execution price. Given a task t and resource r, the execution price Pr(t,r) is
the fee that task t’s execution on the resource r. The execution price is computed
using the expression

Pr(t,r)=M(t)/Pe(r)*Pr(r), Pr(r) expresses the price of resource r.
Av(t,r): Availability. Given a task t and resource r, the availability Av(t,r) of a task

t is the probability that the task is accessible on the resource r. The value of the
availability of a task is computed using the following expression Av(t,r)=Ta(r)/ ,
where Ta(r) is the total amount of time (in seconds) in which resource r is available
during the last seconds. The value of may vary depending on a particular
application. For example, in applications where tasks are more frequently accessed, a
small value of gives a more accurate approximation for the availability of resource.
If the task is less frequently accessed, using a larger value is more appropriate.

Su(t,r): Successful execution rate(SER). Given a task t and resource r, the
successful execution rate Su(t,r) is the probability that request to task t on resource r is
correctly responded. The value of the success rate is computed from data of past
invocations using the expression Su(t,r)=Nc(r)/K, where Nc(r) is the number of times
that all the tasks on resource r has been successfully completed within the maximum
expected time frame, and K is the total number of invocations.

Re(t,r): Reputation. Given a task t and resource r, the reputation Re(t,r) of a task t
is a measure of its trustworthiness on resource r. It mainly depends on end user’s
experiences of using the tasks on resource r. Different end users may have different
opinions on the same task. The value of the reputation is defined as the average
ranking given to the tasks on special resource r by end users, i.e.,

=
= n

i
nRi

1
/r)Re(t, φ ,

where Ri is the end user’s ranking on a task’s reputation on resource r, n is the
number of times the tasks has been graded on resource r. Usually, end users are given
a range to rank tasks. is the upper limit of the reputation range [0,].

2.1.2 Application QoS Evaluation Model
As for the application, in addition to consider the basic QoS of tasks, the dependence
degree between tasks needs to be considered seriously. Especially for the application

 QoS-Driven Grid Resource Selection Based on Novel Neural Networks 459

with heavy data dependence, large amount of time is consumed on the data transfer
between tasks on different resource nodes .the transaction of data dependence effects
the application’s QoS. So we propose a different QoS vector for application as
followings:

Q(A):<Du(A),Pr(A),Av(A),Su(A),Re(A),DD(A)>

Where Q(A) indicates the QoS of application A; the new-coming element DD (A)
indicates the dependence degree of A, we give its definition as follows:

Definition 2 (Dependence Degree between Two Tasks).
iiii ttTtt →∧∈∀ −− 11, ,

DD(ti-1 ti) indicates the dependence degree between task ti-1 and ti and symbol “ ”
presents that task ti-1 is invoked just before ti, in other words, the output parameters of
ti-1 will be given to task ti as its input parameters. T expresses the set of tasks.

In the following, we give a formula of DD(ti-1 ti):
))(),((/),())(),(()tDD(t 111i1-i iiiiiin trtrBttDtrtrL −−− +=→ , where r(ti) is the resource

where task i is allocated,))(),((1 ii trtrB −
 is the network bandwidth between the two

resources where ti-1 and ti allocated, and))(),((1 iin trtrL − the network latency of them.

Definition 3 (Dependence Degree of Application). DD(A) is the sum of dependence
degrees of all the task pairs.

It is computed using the following expression
= − →= N

i ii ttDDADD
1 1)()(, where N is

the amount of tasks in A.
Among the 6 quality factors, some could be negative, i.e., the higher the value, the

lower the quality. Others are positive. From another aspect of the criteria, some of
them are linear which can be added, others are non linear. In order to use a uniform
computing model to express the element in the QoS vector, we use function Score,
which turns each element to a form which follows the ascent property, has the addable
property and makes the problem a linear one (see table 1 Function Score Column).
After that we transform the scores to value between 0 and 1 so as to keep balance
among 6 factors, using function f(x)=(x-Min(x))/(Max(x)-Min(x)). At last we add the
scores. Table 1 illustrates the procedure simply.

Table 1. Aggregation Functions for Application QoS Model

 Function Score Aggregation Function
Duration Score(Du(r,t))= 1⁄ Du(r,t) Du(A)= f(Score(Du(r,t)))

Price Score(Pr(r,t))=1⁄ Pr(r,t) Pr(A)= f(Score(Pr(r,t)))

Availability Score(Av(r,t))=ln(Av(r,t)) Av(A)= f(Score(Av(r,t)))
SER Score (Su(r,t))=ln(Su(r,t)) Su(A)= f(Score (Su(r,t)))

Reputation Score (Re(r,t))=Re(r,t) Re(A)= f(Score (Re(r,t)))
Dependence Degree Score(DD(r,t))=1⁄ DD(r,t) DD(A)= f(Score (DD(r,t)))

And then we can use a Multiple Criteria Decision Making (MCDM) [2] technique
to give an overall evaluation for application A as follows:

ddresuavprdu

ddresuavprdu

wwwwww

wADDwAwASuwAAvwAwADu
AQ

+++++
+++++

=
)()Re(*)(*)(*)Pr(*)(

)(
 (1)

Where wdu, wpr, wav, wsu, wre and wdd are the weights assigned by the users.

460 X. Hao et al.

From such formula, we know the purpose of selection is to find a set of resources
for application A that makes the formula (1) get the max value.

Above all, we have established the evaluation model for both task and application,
and we will discuss how such QoS evaluation models can do the selection in the
following.

2.2 QoS-Driven Dynamic Selection Process

2.2.1 Dividing Phase
In order to do the selection easily, we will use the approaches that have been proposed
in paper [3] to divide the complex structure into simple one that is just a sequent
structure. A fraction of dividing example of Fig.1 is given in Fig.2.

And we must declare that after select the best satisfied concrete resources in the
dividing graph, in order to achieve the original effect of the complex one, a work of
combination of each divided graph into original one is needed. And for our aim is to
select the best resources for application, we will pay little attention to the combination
work.

Fig. 2. A fraction of dividing example of Fig.1

2.2.2 Substituting and Weighting Phase
As we have mentioned in section 2, in the state chart we just identify the tasks
composing the application. For each task in a dividing graph, there are a large number
of candidate resources on which the tasks can fulfill the function as user needed. So
the first work needed to do is to enumerate the discovered resources for each task.

After the work above, then we will use the QoS evaluation proposed above to do
the selection. Before doing this, we need a method to express the task-resource pair
and QoS properties both the basic one and dependence degree.For such reason, we
decide to use a weighted graph G= (V, E) to express such problem where Vaij ∈∀ , aij

signifies task i on its candidate resource j and E signifies a set of arcs presenting the
execution order between tasks. And based on expression (1), we can calculate the
weight of arc (ti-1 ti) as expression (2),

()

()() ()() ()()
()() ()()

()ddresuavdupr

ddiireiisuii

aviiduiiprii

ii WWWWWW

WttDDWrtScoreWrtSuScore

WrtAvScoreWrtScoreWrtDuScore

ttweight
+++++

∗→+++
++

=→
−

−

)(*,Re*,

,,Pr*,

1

1

(2)

and we can generate the Graph G as Fig.3 shows:

a11

a12

a13

a21

a22

a31

a32

a41

a42

a51

a71

a72

a81

a82

Fig. 3. Graph of task-resource assignment

 QoS-Driven Grid Resource Selection Based on Novel Neural Networks 461

Then, selection becomes a process in which single one resource of each task will
be picked out based on the weight and then formed an executable application.

In essence, the process of resource selection is more or less a multistage decision
making problem. We address the neural networks to be a solution since its high
parallel computational power.

3 Neural Networks for QoS-Driven Resource Selection

Current approaches based on the Hopfield Neural networks, always are used to solve
the problem of shortest path (SP) which apply the neuron matrix proposed by Rauch
and Winarske [4] or the optimized one proposed by Thomopoulos [5] to identify the
optimal path. However, such approaches are not suitable to solve the multistage
decision-making problem for they normally makes all the decisions as neurons for
every stage. To express the path in fig.3, 16×9 neurons are needed, in such method.

According to the unique feature of such multistage decision-making problem, we
propose a structure which is a s×d matrix V= (Vij) as follows:

T

0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 1 1 0 1

=atrixZYDNeuronM

Where i signifies the stage in the graph G and j signifies the node numbered j in stage
i ,Vij=0 if node j of stage i is not selected while Vij =1 the otherwise. From this, we
know that the task needs 9×3 neurons. For Fig.3, ZYDNeuronMatrix expresses the
application A, FaaaaaaaI 82735142312121 →→→→→→→→ . We can see that the overall

neurons in this structure are less than the traditional one.

3.1 Algorithm Description

We adopt the ZYDNeuronMatrix to express the application A. Our aim is to find out
the optimal selection through computing the QoS(A). We establish an energy function
E1 signifying the QoS(A) and punishment function G which ensures that for each row
there is only one and at most one nonzero entry.

[][][][]()
= = =

+ +∗∗=
s

i

d

j

d

k
kiij kijiweightVVE

1 1 1
,1 11 , where

0 ,
,1 =≤∀

+ js
Vdj (3)

2

1 1

1
= =

−∗−=
s

i

d

j
ijVAG ,

where A is a constant and A 0

 (4)

Combining formula (3) and (4), the ultimate energy is established as follows:

[][][][]()
2

1 11 1 1
,1 11

= == = =
+ −∗−+∗∗=

s

i

d

j
ij

s

i

d

j

d

k
kiij VAkijiweightVVE

 (5)

From paper [4], we have t

V

V

E ij

ij ∂
∂

−=
∂
∂

. Then we can delude that

462 X. Hao et al.

0

2

≤
∂
∂−=

∂
∂

∂
∂−=

∂
∂

ij

ij

ij V

E

t

V

V

E

t

E (6)

Formula (6) proves that the NN follows a gradient-descent of the energy, and
ultimately it will keep the state unchangeable. Then, our aim is to change the state of
NN, and find the state that can fulfill (6). That is to say, change the state as expression
(7) used in paper [5] to fulfill expression (8).

() [][][][] ()∗+=+
≠ ≠ix jy

xyij tVjiyxweighttV tanh1
2

1
1

 (7)

() () 012]][1][][[,1 =−∗∗−∗+=
∂
∂

+
j

ij
k

ki
ij

tVAtVkijiweight
V

E (8)

In fig.4, we give an algorithm to describe the whole process of selection.

Fig. 4. Selection process

Based on such algorithm, we can do the multistage decision-making problem and
get the optimal Resource Selection in the term of better constraint evaluation value.

4 Experimentation

In order to verify the approach we proposed in this paper, we use the example
application A as section 2 discussed, and we just discuss a fraction of it showed in
fig.2. Table 2 lists the decomposed tasks in the first column “Task”. The candidate
resources are shown in the second column “Candidate resources”. These candidates
were discovered from resource registries. The scores of basic QoS factors and task
dependence degree are shown in the third and the fourth column in the Table 2. QoS2
is the total value computed by the proposed QoS evaluation model while QoS1 is the
value based on basic QoS standard. And two formulas are given in the following.

5.005.0)(05.0)(1.0)(1.0)(2.0)()(2 ∗+∗+∗+∗+∗+∗= MDavrepratdupr QQScoreQScoreQScoreQScoreQScoreSQoS (9)

5.0/)05.0)(05.0)(1.0)(1.0)(2.0)(()(1 ∗+∗+∗+∗+∗= avrepratdupr QScoreQScoreQScoreQScoreQScoreSQoS (10)

Procedure Selection_Algorithm
begin
Set the MaxStep of iteration.
Generate the first state.
while the step less than MaxStep do
 For each step,

Compute the in- and external state of neuron,
 And compute the function energy.
 if the state is the Ultimate_State then

Output the result,
 else
 Generate the next state.
endwhile

End Selection_Algorithm

 QoS-Driven Grid Resource Selection Based on Novel Neural Networks 463

Table 2. QoS of Application “A” and Computing Process

Score of Basic QoS Parameters Task Candidate
Resource Duration Price SER Reputation Availability QoS1

Score of
Dependence Degree QoS2

a11 0.1 0.2 0.3 0 0.3 0.17 DD(I a11)=0.4 0.285

a12 0.1 0.3 0.2 0.5 0.3 0.22 DD(I a12)=1 0.61

a1

a13 0 0.4 0 0.2 0.2 0.12 DD(I a13)=0.55 0.335
DD(a11 a21)=0.8 0.54

DD(a12 a21)=0.3 0.15

a21 0.2 0.1 0.5 0.4 0.4 0.28

 DD(a13 a21)=0.66 0.33

DD(a11 a22)=0.5 0.525

DD(a12 a22)=0.53 0.265

a2

a22 0.5 0.4 0.6 0.7 0.8 0.55

 DD(a13 a22)=0.74 0.37

DD (a21 a31)=0.8 0.565 a31 0.5 0 0.1 0.1 1 0.33
 DD (a22 a31)=0.93 0.465

DD (a21 a32)=0.27 0.465

a3

a32 0.9 0.6 0.4 0.6 0.4 0.66
 DD (a22 a32)=1 0.5

DD (a31 a41)=0.3 0.425 a41 0.6 0.3 0.7 0.5 0.6 0.55
 DD (a32 a41)=0.4 0.2

DD (a31 a42)=0.52 0.525

a4

a42 0.3 0.5 0.8 0.8 0.7 0.53
 DD (a32 a42)=0.69 0.345

DD (a41 a51)=0.3 0.495 a5 a51 0.4 0.9 0.9 0.9 0.8 0.69

DD (a42 a51)=0.4 0.2
a71 1 0.4 1 0.6 0 0.74 DD (a51 a61)=0.7 0.72 a7

a72 0.2 1 0.8 0.8 0.9 0.61 DD (a51 a62)=0.5 0.555
DD (a71 a81)=0 0.336 a81 0.9 0.7 0.2 1 0.32 0.672

DD (a71 a82)=0.35 0.175
DD (a72 a81)=0.41 0.3985

a8

a82 0.34 0.5 0.3 0.5 0.41 0.387
 DD (a72 a82)=0.44 0.22

In table 2, the task value is calculated and we will establish the Neural Network
matrix for such problem. The matrix is shown as follows:

T

0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 1 1 0 1

=atrixZYDNeuronM

Finally, through using the Algorithm 1 presented in section 3 and only after 34
times iteration, we can get the ultimate application as follows:

Fig. 5. The ultimate application of Table 1 using proposed QoS evaluation model

Furthermore, while just considering the basic QoS parameters the ultimate
application can be seen in Figure 6. From Figure 6, and according to Table 2, task a71
and task a81 have the most slow data transfer rate, and it’s the worse situation for
application A.

464 X. Hao et al.

Fig. 6. The ultimate application of Table 1 using basic QoS evaluation model

From such experimentation, we can conclude that the QoS evaluation model is
effective and the neural network model we proposed has power in dealing with such
resource selection problem for applications with data dependence.

5 Related Works

In paper [6], Scheduling of workflows is supported by the Gridbus Workflow Engine
which otherwise has similar properties with respect to the scheduling of data intensive
applications.

In paper [7], the authors investigate some of the relevant issues that must be
considered in designing grid applications that deliver appropriate QoS for commercial
applications: definition of metrics, relationships between resource allocation and
SLAs, and QoS-related mechanisms.

In paper [8], the authors consider a very general case in which applications are
decomposed into tasks that exhibit precedence relationships, and provided a
framework for building heuristic solutions for NP-hard problem.

In papers [9,10], the authors introduce a novel QoS guided task scheduling
algorithm for Grid computing. The algorithm is based on a general adaptive
scheduling heuristics that includes QoS guidance. And the authors propose the
conception of QoS of resource. But In their study, only one dimension QoS is
considered.

6 Conclusions and Future Work

In summary, we have presented a new application QoS evaluation model, composed
by factors latency, price, availability, successful execution rate, reputation and
dependence degree. Compared with current popular methods, we do better in resource
selection with such model we proposed, especially for application with heavy data
transfer due to the consideration of the factor dependence degree. When consider the
selection process, we employ Neural Network to solve the multistage decision-
making problem. We revolutionized the popular matrix and build a suitable energy
function to solve such unique problem. And the experimentation shows that the
mathematical model we proposed is more pragmatic than others in dealing with
resource selection for a grid application and the neural network model we proposed is
more effective.

Our future work will be focused on optimizing the QoS evaluation model. The
dependence degree factor needs a better depiction, which is now only expressed by
the data transfer time. Moreover, a better method of designating the suitable weight is
worth considering. Lastly, adopting new algorithms to optimize the neural network
we proposed will also be explored.

 QoS-Driven Grid Resource Selection Based on Novel Neural Networks 465

References

1. I. Foster, A. Roy, and V. Sander: A quality of service architecture that combines resource
reservation and application adaptation. The 8th International Workshop on Quality of
Service - IEEE (2000)

2. L.R. Ford Jr. and D.R. Fulkerson: Flows in Networks. Princeton University Press,
Princeton, N.J. (1962)

3. Yu T. and Lin K.J.: Service Selection Algorithms for Web Services with End-to-end QoS
Constraints. IEEE International Conference on E-Commerce Technology (CEC'04).
California (2004)

4. L Zhang, S C A Thomopoulos: Neural network implementation of the shortest path
algorithm for traffic routing in communication networks. The Int’l Joint Conf on Neural
Networks, Washington DC (1989)

5. Herbert E Raugh, Theo Winarske: Neural Networks for Routing Communication Traffic.
IEEE Control System Mag (1998)

6. J. Yu and R. Buyya: A novel architecture for realizing grid work_ow using tuple spaces.
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID'04). Pittsburgh, PA,USA: IEEE Computer Society (2004)

7. Daniel A. Menascé, E. Casalicchio: Quality of Service Aspects and Metrics in Grid
Computing. Proc. 2004 Computer Measurement Group Conference, Las Vegas, NV
(2004).

8. Daniel A. Menascé, E. Casalicchio: A Framework for Resource Allocation in Grid
Computing. Proc. 12th Annual Meeting of the IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Volendam, The Netherlands (2004)

9. Xiaoshan He, Xian-He Sun, and Gregor von Laszewski: QoS Guided Min-Min Heuristic
for Grid Task Scheduling. Journal of Computer Science and Technology, Special Issue on
Grid Computing, 18(4) (2003)

10. X. He, X.-H. Sun, and G. Laszewski: A QoS Guided Scheduling Algorithm for the
Computational Grid. The Proc. of the International Workshop on Grid and Cooperative
Computing (GCC02), Hainan, Chian (2002)

11. Liangzhao Zeng, Boualem Benatallah, etc.: QoS-Aware Middleware for Web Services
Composition. IEEE Transactions on Software Engineering, Vol. 30, No.5 (2004)

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 466 – 477, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards Decentralized Load Balancing in a
Computational Grid Environment

Kai Lu, Riky Subrata, and Albert Y. Zomaya

Networks & Systems Lab, School of Information Technologies,
University of Sydney, NSW 2006, Australia

{kailu, efax, zomaya}@it.usyd.edu.au

Abstract. Load balancing has been a key concern for locally distributed multi-
processor systems. The emergence of computational grid extends this problem,
such as scalability, heterogeneity of computing resources and considerable
communication delay. In this paper, we study the problem of scheduling a large
number of CPU-intensive jobs on such systems. The time spent by a job in the
system is considered as the main issue that needs to be minimized. The
proposed dynamic algorithm of scheduling jobs consists of two policies: Instan-
taneous Distribution Policy (IDP) and Load Adjustment Policy (LAP). Our
algorithm does not address directly the load balancing problem since it is com-
pletely unrealistic in such large environments, but we will show that even a
non-perfectly load balanced system can behave reasonably well by taking into
account the jobs’ time demands. The proposed algorithm is evaluated by a se-
ries of simulations.

1 Introduction

Computational grid is a promising platform that provides plenty of resources for high
performance computing [1]. The grids comprise a variety of high-performance archi-
tectures – ranging from workstation networks to supercomputers. One of the biggest
advantages of a grid environment over an isolated distributed system is that the par-
ticipating computing resources can be utilized more efficiently. However, to fully ex-
ploit such grid systems, resource management and scheduling are key grid services,
where issues of load balancing represent a common concern for most grid infrastruc-
ture developers.

Load balancer found in traditional computing system help harness the computational
power provided by a pool of workstations within one domain [2]. With the growth in the
scale of computational grid, a number of new challenges are presented, including het-
erogeneous computing resources, and considerable communication delay – the commu-
nication delay among computing resources is always one of the most costly and the least
reliable factor in grid computing.

In this paper, we propose a load balancing algorithm especially designed to tackle
the above new challenges of computing grid. Our algorithm is dynamic, sender-
initiated and decentralized. Our algorithm comprises of two specific policies for load
distribution that are driven by performance benefit jobs can gain, which are Instanta-
neous Distribution Policy (IDP) and Load Adjustment Policy respectively (LAP). In
order to reduce/minimize the state-collection overhead in our proposed LB strategy,
state information exchange is done via mutual information feedback.

 Towards Decentralized Load Balancing in a Computational Grid Environment 467

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 presents the system model. Sections 4 describes in details the design
of the proposed algorithm. In section 5, the performance of our algorithm is evaluated
in a series of simulations. Finally, this paper is concluded in section 6.

2 Related Works

In this section, we will give an overview of related work. LB algorithms can be classi-
fied into static and dynamic approaches [3].

Static LB algorithms (e.g. [4]) assume that a priori information about all the char-
acteristics of the jobs, the computing nodes and the communication network are
known and provided. LB decisions are made deterministically or probabilistically at
compile time and remain constant during runtime. The static approach is simple and
has minimal runtime overhead. However, it has two major disadvantages. Firstly, the
workload distribution of many applications cannot be predicted before program exe-
cution. Secondly, it assumes that the characteristics of the computing resources and
communication network are all known in advance and remain constant. Such an as-
sumption may not apply to a grid environment.

In contrast, dynamic LB algorithms attempt to use the runtime state information to
make more informative decisions in sharing the system load. Dynamic LB algorithms
can be further classified into a centralized approach and a decentralized approach. In the
centralized approach (e.g. [5, 6]), one node in the distributed system acts as the central
controller. It has a global view of the load information in the system, and decides how to
allocate jobs to each of the nodes. Many authors argue that it is difficult for this ap-
proach to address communication overhead and administration of remote workstations.
When the system size increases, the global knowledge of the system’s attributes (like
the total work load) is prohibitive due to the communication overhead produced, and the
central controller may become a system bottleneck and the single point of failure.

In the decentralized approach (e.g. [7]), all nodes in the distributed system are in-
volved in making the LB decision. Since the LB decisions are distributed, it is costly
to let each node obtain the dynamic state information of the whole system. Hence,
most algorithms [8-10] only use partial information stored in the local node to make a
sub-optimal decision.

LB algorithms have been extensively studied in the literature, but most of the studies
mentioned above only considered some over-simplified assumptions that are not appli-
cable for the Grid Computing environment. For example, most of them assume that all
the nodes have the same processing power, and that the inter-node communication delay
is negligible (e.g. nearest-neighbor algorithm[9, 10]). Some studies (e.g. [11]) also as-
sumed the existence of an efficient broadcasting service on the communication network.

3 System Model

It is assumed that the grid system consists of a collection of sites S connected by a
communication network, as shown in Fig. 1. The set S contains n sites, labeled as

468 K. Lu, R. Subrata, and A.Y. Zomaya

Fig. 1. Logical view of decentralized Load Balancing architecture

s1,…,sn. Each site may contain multiple computing nodes and each computing node
may be equipped with multiple processors. The sites in the grid system may have dif-
ferent computing capability. The computing capability reflects relative capability
compared with the computing capability of the slowest site in the system, denoted as
APWi.

3.1 Architecture Model

Logically, the site architecture is hierarchical and is divided into three levels: the
Grid-Level, the Site-Level and the Node-Level. The Grid-Level scheduler is respon-
sible for load control among grid sites. The Site-Level consists of a collection of
computing nodes. The Site-Level scheduler can fully control the computing nodes
within the site but cannot operate the computing nodes in other sites directly. The
management of jobs at Site-Level is addressed by many research and commercial sys-
tems [2]: Condor, Load Sharing Facility, Portable Batch System, LoadLeveler, etc.
The Node-Level is a computing node. To clarify the statement and emphasize our
main idea, we simplify the model of grid site as one computing node with a single
processor. Actually, our scheduling algorithm can be easily extended to accommodate
aforementioned complicated cases.

3.2 Communication Model

The sites S is fully interconnected, meaning that there exists at least one communica-
tion path between any two sites in S. The only way for inter-site communication is
through message passing. There is a non-trivial communication delay on the commu-
nication network between the sites. The communication delay is different between
different pairs of sites. The underlying network protocol guarantees that messages
sent across the network are received in the order sent. There is no efficient broadcast-
ing service available.

Our communication model represents the network performance between any site
pair (si, sj) using two parameters: a transmission delay TDij and a data transmission
rate BWij. The communication time for sending an m bytes message between these
sites is then given by TDij+m/BWij. TDij includes a start-up cost and delays incurred
by contention at intermediate links on the path between si and sj. TDij and BWij can be
dynamically forecasted by the Network Weather Service [12]. Some other research
works [13-15] on estimating host distance between any two IP addresses are also
proposed.

 Towards Decentralized Load Balancing in a Computational Grid Environment 469

3.3 Job and Job Queue Model

For any site si∈S, there are jobs arriving at si. The jobs are assumed to be computa-
tionally intensive and mutually independent. As soon as a job arrives, it must be as-
signed to exactly one site for processing. When a job is completed, the executing site
will return the results to the originating site of the job. We use J to denote the set of
all jobs generated at S, J = {j1,…,jk}. Although in most cases the execution time of a
job can not be predicted accurately, it can be estimated by using some approaches.
Several papers [12, 16-17] have attempted to address the problem. In this paper, the
estimations are assumed to be perfectly accurate.

We assume that there exists a global job-waiting queue at each site. We use
GJQ(si) to denote the global job-waiting queue of the site si. The jobs in the global
job–waiting queue are processed in “First-Come-First-Serve” order.

3.4 Job Migration

Some researchers have considered job migration (migration of partly executed jobs)
in their LB algorithms (e.g. [18, 19]). However, job migration is far from trivial in
practice. It involves collecting all system states (e.g. virtual memory image, process
control blocks, unread I/O buffer, data pointers, timers etc.) of the job, which is large
and complex. Many studies (e.g. [11, 20, 21]) have shown that: (1) job migration is
often difficult in practice, (2) the operation is generally expensive in most systems,
and (3) there are no significant benefits of such a mechanism over those offered by
non-migratory counterparts. Hence, we do not consider the migration of partly-
executed jobs in this paper.

A more conservative approach is used to reduce the rate at which jobs are moved
form one site to another. This can be achieved by restricting the maximum number of
jobs transmitted between sites (i.e. maximum one job) at any given time. This ap-
proach might be less responsive in some cases, but is more robust and requires mini-
mal processing power and time at each site.

3.5 Objective

The objective of our LB algorithm is defined by:

()
∈

m

j
Jj

i

i

respTime

minimize

where m represents the total number of jobs in J, and respTime(ji) denotes the com-
pletion time of ji. In other words, our goal is to minimize the average job response
time, denoted as ART in the paper.

4 Proposed Dynamic Load Balancing Algorithm

Dynamic LB algorithms can be classified into sender-initiated algorithms, receiver-
initiated algorithms and symmetrically-initiated algorithms according to their location

470 K. Lu, R. Subrata, and A.Y. Zomaya

policies [22, 23]. Sender-initiated algorithms let the heavily loaded sites take the ini-
tiative to request the lightly loaded sites to receive the jobs; while receiver initiated
algorithms let the lightly loaded sites invite heavily loaded sites to send their jobs.
Symmetrically-initiated algorithms combine the advantages of these two by requiring
both senders and receivers to look for appropriate sites. In this study, we only con-
sider sender-initiated algorithms.

Our objective is achieved by considering proximity information among neighbor
sites to guide load assignments. Our algorithm has two advantages: First, the load in-
formation from neighboring sites tends to be more accurate than from non-
neighboring sites because of shorter communication delay, so the policy allows load
balancing to perform efficiently. Second, the load migration cost is minimized while
load balancing happens among a site and its neighboring sites.

In the following sections we discuss in details the proposed decentralized dynamic
LB algorithm.

4.1 Neighbors

Each scheduler automatically maintains k number of neighboring sites NSeti, which
the scheduler will use to select a neighboring site for offloading jobs. Neighbors for
each site are formed in terms of transmission delay. For a site si, a site sj is considered
as its neighboring site as long as the transmission delay between the site sj and si is
within ε times of the transmission delay between the site si and the nearest site. For
our experiments, we have found ε=1.5 to yield very good results and this value is used
throughout the experiments.

4.2 Load Index

Most algorithms in the literature solely use the instantaneous run-queue length (i.e.
the number of jobs being served or waiting) as the load index of a computing node
[11, 24]. This approach is based on the ‘join the shortest queue’ intuition. The run-
queue length may be a good load index if we assume that all the nodes of the system
are homogeneous and the inter-node communication delay is negligible or constant.
However, it is not a reliable load indicator in a heterogeneous environment. It ignores
the variations in computing power. Owing to the above reasons, we do not use the
run-queue length as the load indicator. Instead, an accumulative job execution time is
utilized. ∀si ∈ S, the load index of si at a particular instant of time t is defined as LDi,t
= TETi,t + RETi,t, where TETi,t is the total estimated job execution time of all jobs cur-
rently waiting in job queue on si at time instant t, RETi,t is the estimated remaining
time of the job currently being processed by site si at time instant t.

4.3 Execution Cost

Unlike conventional approaches that only consider the load index in calculating the
cost of executing a job on a computing node, we include the dynamic communication
cost in the cost calculation. It is because the dynamic and considerable communica-
tion cost may have a great influence on the performance of a LB algorithm in the grid
environment. It may be more efficient to send a job to a node with heavier load but
small communication cost.

 Towards Decentralized Load Balancing in a Computational Grid Environment 471

∀ si, sj ∈ S, the execution cost of sending a job jx ∈ J from si to sj at time instant t is
estimated by si as

If TRAN_IN(jx, si, sj, t) ≥ LDj,t Then
 EC(jx, si, sj, t) = TRAN_IN(jx, si, sj, t) + ETC(jx, sj) + TRAN_OUT(jx, sj, si, t)
Else
 EC(jx, si, sj, t) = LDj,t + ETC(jx, sj) + TRAN_OUT(jx, sj, si, t)

where TRAN_IN(jx, si, sj, t) measures how long it takes to transfer a job from site si to
site sj. TRAN_OUT(jx, sj, si, t) measures how long it takes to transfer a job result from
site sj to site si. LDj,t is the recent load index of site sj at the time instant t that are re-
corded in the site si. ETC(jx, sj) denotes the expected execution time of job jx at site sj.

4.4 Performance Benefit

The performance benefit associated to a job jx is based on the idea that better migra-
tion can be done by assigning a job to a grid site that would “benefit” most in terms of
expected response time if that grid site is assigned to it. Let the value of performance
benefit of a job jx be the difference between its estimated response time at local site
and its estimated response time at a remote site, labeled as Bx.

4.5 Information Policy

Each site si maintains the state information of other sites by using a state object Oi.
The state object helps a site to estimate the load of other sites at any time without
message transfer. Each item Oi[j] is a state object and has a property list (LD, LT):
Oi[j].LD denotes the load information of site sj, and Oi[j].LT denotes the site sj’s local
time when the load status information is reported.

Each site collects and maintains the state information of only its neighbors.
Oi[j].LD and Oi[j].LT is maintained through message exchanges with neighbors. We
could not use state-broadcast because the broadcast services are not available in grid.
We also could not use state-polling approach because it has a few problems in prac-
tice; Firstly, if the polling interval is small, it will generate a large amount of network
traffic. Secondly, as the job needs to wait for the polling result, polling will increase
the response time of the waiting job.

Thus, in order to minimize the overhead of information collection, state informa-
tion exchange is done by mutual information feedback. Specifically, when si transfers
a job jx to a neighbor sj for processing. si appends the load information of itself and its
neighbors to the job transfer request sent to sj by piggybacking. sj then updates the
corresponding load information in its state object by comparing the timestamps if the
sites contained in the transfer request belong to its neighbors. Similarly, sj inserts the
current load information of itself and its neighbors in the job acknowledge or comple-
tions reply to si, so si can update its state objects. Further, for any site si∈S, if the state
object element Oi[j] (∀sj∈NSeti, i≠j) has not been updated for a predefined period TP,
then the LB scheduler will send an information exchange message to sj.

4.6 Transfer Policy and Location Policy

Our transfer and location policies are a combination of two policies – instantaneous
distribution policy (ID) and load adjustment policy (LAP). These are described below.

472 K. Lu, R. Subrata, and A.Y. Zomaya

4.6.1 Instantaneous Distribution Policy (IDP)
When a new job arrives at site si, the LB algorithm decides whether it is to be sent to
the site si or other neighboring sites NSeti. The decision depends on the fact whether it
can get performance benefit if it is distributed to one of its neighboring sites. The pol-
icy also tries to control the job processing rate on each site in the system. The follow-
ing algorithm describes the instantaneous distribution policy:

Algorithm 1. (Instantaneous Distribution Policy):
∀jx∈J with bornSite(jx) = si∈S: /* bornSite(jx) denotes the originating site

of jx */
For each sj in NSeti

 Calculate EC(jx, si, sj, t)
 Calculate related benefit value Bx

Find the neighboring site sj that gives the maximum Bx

If Bx > θ then /* θ is a positive real constant close to zero */
Transfer the job jx to the neighboring site sj

 Update load index of site sj recorded at the site si

Else
 GJQ(si) ← enqueue(jx) /* put the job jx in the job queue GJQ(si) */

4.6.2 Load Adjustment Policy (LAP)
The load adjustment policy for a site si tries to continuously reduce load difference
among the site si and its neighbors NSeti by migrating jobs from heavily loaded sites
to lightly loaded neighboring sites. The load adjustment policy is triggered whenever
a site si receives updated load information of its neighbors. The LB algorithm will use
the most recent load status information to decide whether a migration is initiated. The
job benefits most in the global job queue GJQ(si) considered first for migration. The
load adjustment policy algorithm for a site si is described below.

Algorithm 2. (Load Adjustment Policy):
For each sx in NSeti

 For each Job jx in GJQ(si)
 Calculate EC(jx, si, sx, t)
For each Job jx in GJQ(si)
 Find the site sy that gives the minimum execution cost
 Calculate related benefit value Bx

Sort the jobs in GJQ(si) in ascending order by their benefit value
Pick the Job jy with the biggest benefit value By

Find the neighboring site sj that gives the maximum By to jy

If By > θ then /* θ is a positive real constant close to zero */
Remove the job jy from GJQ(si)
Transfer the job jy to the neighboring site sj

 Update load index of site sj recorded at the site si

 Towards Decentralized Load Balancing in a Computational Grid Environment 473

5 Experiments

We only consider sender-initiated algorithms. In the simulation, our algorithm (la-
beled as DLB) is compared with the following algorithms:

• Local. All jobs are locally processed by their originating sites.
• Random. A site is selected at random to process the arriving job.

5.1 Simulation Model

In this section, we study the performance of the algorithms under different system pa-
rameters via simulations. Several assumptions were devised for the simulation model.
These are:

• The grid system consists of n = 32 sites.
• Jobs arrive at each site si, i=1, 2,…, n according to a Poisson process with rate λi

= λ × Pi, where Pi = 1/n. The actual inter arrival time of jobs is adjusted to give
the required overall average system loading (see below).

• The service times of jobs are assumed to follow a two-phase hyperexponential
distribution [25] with mean X = 1.0 time unit and coefficient of variation CV = 4.

• The transmission delay between any site pairs is chosen from a lognormal distri-
bution with a mean of τ = 0.05 time unit and a standard deviation σc = 0.5.

• To simplify the model and simulation, the transmission time for a job or job re-
sult is assumed to be subject to the same delays as the transmission delay.

• Let ρ be the required average system utilization for our simulation, which is the
average job arrival rate divided by the average job processing rate. Using this
definition, we adjust the job mean inter-arrival time 1/λ needed to get the desired
ρ = 0.8.

Further to the above, we have period for periodic information exchange, Tp = 10 time
unit, and Number of random partners/neighbors for information update, ωP = 2. For
each simulation run, the simulation time is set to 1,300 time units, during which, the
first 300 time units are considered as “warm-up time”. After the warm-up time, we
trace the jobs’ born time, processing time and death time. We carry out each meas-
urement three times with different random seeds. Except for experiment S2, all the
other experiments are highly heterogeneous, and use the system configuration shown
in Table 1.

Table 1. Heterogeneous system configuration

Relative processing power 1 2 5 10
Number of sites 12 8 8 4

5.2 Effect of System Utilization

In experiment S1, we carry out a series of simulations for a system that has a rela-
tively high heterogeneity, under different system utilization parameter ρ. We vary the

474 K. Lu, R. Subrata, and A.Y. Zomaya

Fig. 2. (a) Average response time in S1 (b) Average response time in S2

system load by varying the mean inter-arrival time (initiation time) of the jobs, 1/λ.
Results are shown in Fig. 2(a); The higher the load, the higher the mean response time
the algorithms. We can conclude from observing Fig. 2(a) that the DLB algorithm
performs significantly better than the other two algorithms. When the system loading
becomes high, the difference between the average response time of algorithm DLB
and other two algorithms increases. DLB yields an average response time which is
56% less than Local and 32% less than Random.

5.3 Effect of System Size

In experiment S2, we focus our analysis on the case where the number of sites in the
grid system is varied. We consider a low heterogeneous system consisting of two site
classes with class 1 APW of 1 and class 2 APW of 10. We divided the sites equally be-
tween the two site classes. By observing the average response time of the three algo-
rithms when the number of sites increases from 8 to 32, as shown in Fig. 2(b), we
conclude that the response time of the system that results from applying the DLB is
lower than the response time of the other algorithms under all n. DA has an average
improvement factor of 51% and 26% over Local and Random, respectively.

5.4 Effect of Communication Delay

In experiment S3, we vary the mean network trasmission delay, τ, from 0.05 to 0.3 time
units. The results shown in Fig. 3(a) shows that the DLB consistently gives the best per-
formance across all the values of τ. DLB gives an average improvement of 32% over
Random. The performance is especially apparent when the mean transmission delay is

Fig. 3. (a) Average response time in S3 (b) Average response time in S4

 Towards Decentralized Load Balancing in a Computational Grid Environment 475

high; The increasing rate of DLB is much smaller than that of Random.We suggest that
this is because DLB takes the communication delay into account and use the Mutual
Information Feedback policy for information collection between a site and its
neighbors.

5.5 Effect with Different Job Arrival Pattern

All the experiment results discussed in the previous experiments are generated under
the assumption that all sites have the same job arrival rate. In reality, job arrival rates
usually differ from one site to another. To evaluate the effect of different job arrival
rate on the average response time, we have conducted another experiemnt S4, in
which we randomly choose ten of the sites as lightly-loaded site (ρ=0.3), eleven of
the sites as moderately-loaded sites (ρ=0.6) and eleven of the sites as highly-loaded
sites (ρ=0.9). It can be observed from the Fig. 3(b) that the average response time
with DLB algorithm has an average improvement of 55% and 33% over Local and
Random, respectively.

6 Conclusion and Future Work

The computing grid is a new type of distributed computing that involves heterogene-
ous grid sites from different organizations. Due to the concerns of scalability, site het-
erogeneity and significant communication overheads, these characteristics make grid
systems different from the traditional distributed systems and have a significant im-
pact on the performance of load balancing. In this paper, we have proposed a decen-
tralized dynamic LB algorithm to cater for these characteristics.

Due to heterogeneity in computing capability, we did not use the run-queue length
as load index. Instead, our algorithm defines the load index as accumulated job execu-
tion time at grid sites. Our algorithm operates on two job scheduling and load balanc-
ing policies. The first is Instantaneous Distribution Policy, which tries to control the
job processing rate on each site in the system. The second is Load Adjustment Policy,
which tries to continuously reduce load difference among a site and its neighbor sites.
From the system perspective, our LB scheme, taking into account the different net-
work communication delay between sites can reduce the cost of load movement, and
enable quick response to load imbalances. In other word, our strategy is “greedy” in
the sense that it tries, at each step, to make jobs assignments at lightly loaded site.
Rather than using the conventional state-broadcast or state-polling approaches, state
information exchange in our algorithm is done via mutual information feedback to re-
duce communication overheads. Through simulation experiments, it is found that our
algorithm can give a shorter average job response time than the Local and Random
Load Balancing algorithm over a wide range of system parameters.

Our research in this area is still in its beginning stage and there is much work wor-
thy of further study. Here we list some for consideration. First, we have not modeled
the impact of accuracy of job execution time estimation on the effectiveness of our
proposed LB algorithm. Second, we can modify our algorithm to account for the re-
source requirements of jobs, i.e. jobs which need a set of CPUs. Third, in practical
grid systems, the related files for a job need to be transferred through much slower

476 K. Lu, R. Subrata, and A.Y. Zomaya

Internet links if the job is scheduled to run on a remote site. Thus, corresponding
execution scheme for data distribution need to be studied. Finally, we do not take
network and hardware failure into account in this study. A failure model may be em-
ployed to study the influence. Owing to the dynamic nature of the practical grid envi-
ronment, designing an ideal load balancing algorithm still remains a challenge. We
hope our algorithm can serve as examples for the continuing work in searching for a
general and practical solution.

References

1. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

2. El-Ghazawi, T., K. Gaj, N. Alexandridis, F. Vroman, N. Nguyen, J. Radzikowski, P.
Samipagdi and S. Suboh, “A Performance Study of Job Management Systems,” Concur-
rency and Computation: Practice and Experience 16(13): 1229–1246 (2004)

3. Casavant TL, Kuhl JG. A taxonomy of scheduling in general-purpose distributed comput-
ing systems. IEEE Transactions on Software Engineering 1988; 14(2):141–154.

4. C. Kim and H. Kameda. An algorithm for optimal static load balancing in distributed
computer systems. IEEE Trans Comput., 41(3):381–384, March 1992.

5. Lin H-C, Raghavendra CS. A dynamic load-balancing policy with a central job dispatcher
(LBC). IEEE Transactions on Software Engineering 1992; 18(2): 145–158.

6. Mitzenmacher M., “The power of Two Choices in Randomized Load Balancing,” IEEE
Trans. Parallel and Distributed Systems, vol. 12, no. 10, pp. 1094–1104, October 2001.

7. Shivaratri NG, Krueger P, singhal M. Load distributing for locally distributed systems.
Computer 1992; 33–44.

8. Barak A. and La'adan O., The MOSIX Multicomputer Operating System for High Per-
formance Cluster Computing. Journal of Future Generation Computer Systems, Vol. 13,
No. 4–5, pp. 361–372, March 1998.

9. P. Sanders. Analysis of nearest neighbor load balancing algorithms for random loads. Par-
allel Computing, 25(80), 1999

10. C. Xu, F. Lau, B. Monien, and R. Luling. Nearest neighbor algorithms for load balancing
in parallel computers. Concurrency, Practice and Experience, 7:736, 1995.

11. S. Zhou. A trace-driven simulation study of dynamic load balancing. IEEE Transactions
on Software Engineering, 14(9): 1327–1341, Sept. 1988.

12. R. Wolski, N. Spring, and J. Hayes, "The network weather service: A distributed resource
performance forecasting service for metacomputing," Journal of Future Generation Com-
puting Systems, vol. 15, pp. 757–768, 1999.

13. P.Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps: a global
internet host distance estimation service. IEEE/ACM Transactions on Networking (TON),
9(5): 525–540, 2001

14. A. Agrawal, H. Casanova. Clustering hosts in P2P and global computing platforms.
CCGrid 2003. 3rd IEEE/ACM International Symposium on 12-15 May 2003 Page(s):
367 – 373

15. W. Theilmann, K. Rothermel. Dynamic distance maps of the Internet. INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Socie-
ties. Proceedings. IEEE Volume 1, 26-30 March 2000 Page(s):275–284 vol.1

 Towards Decentralized Load Balancing in a Computational Grid Environment 477

16. S. Xian-He and W. Ming, "GHS: A performance prediction and task scheduling system for
Grid computing," IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2003), 2003.

17. G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, and D. V. Wil-
cox. PACE – a toolset for the performance predictionof parallel and distributed systems.
Int. J. High Performance Computing Applications 3(2000), 228–251

18. Amir Y, Awerbuch B, Barak A, Borgstrom S, Keren A. An opportunity cost approach for
job assignment in a scalable computing cluster. IEEE Transactions on Parallel and Distrib-
uted Systems 2000; 11(7): 760–768.

19. Mor Harchol-Balter and Allen Downey. "Exploiting Process Lifetime Distributions for
Dynamic Load Balancing," Proceedings of ACM sigmetrics '98 Conference on Measure-
ment and Modeling of Computer Systems, May 1997, pp. 115–126

20. Eager DL, Lazowska ED, Zahorjan J. The limited performance benefits of migrating ac-
tive processes for load sharing. Proceedings of the 12th ACM Symposium on Operating
Systems Principles, 1988; 63–72.

21. Zhu W, Socko P, Kiepuszewski B. Migration impact on load balancing—an experience on
amoeba. Operating Systems Review 1997; 31(1): 43–53.

22. P. Krueger and N. G. Shivaratri. Adaptive location policies for global scheduling. IEEE
Transactions on Software Engineering, 20(6): 432–444, June 1994.

23. Eager DL, Lazowska ED, Zahorjan J. A comparison of receiver initiated and sender initi-
ated adaptive load sharing. Performance Evaluation 1986; 6:53–68.

24. Kunz T. The influence of different workload descriptions on a heuristic load balancing
scheme. IEEE Transactions on Software Engineering 1991; 17(7): 725–730.

25. T. Thanalapati and S. Dandamudi. An efficient adaptive scheduling scheme for distributed
memory multicomputers. IEEE Transactions on Parallel and Distributed Systems,
12(7):758–768, July 2001.

A Resource-Autonomy Based Monitoring

Architecture for Grids�

Meizhi Hu1, Guangwen Yang2, and Weimin Zheng2

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China

1hmq02@mails.tsinghua.edu.cn
2{ygw,zwm-dcs}@tsinghua.edu.cn

Abstract. Grid computing becomes more and more popular in integrat-
ing distributed heterogeneous resources. Despite all that, efficient moni-
toring to resources of different ownership in Grids remains a challenge. In
this paper a novel resource-autonomy based grid monitoring architecture
named PIMISA (Plug-In Monitoring and Information Service Architec-
ture) is proposed to address this problem. GMA and SOA are subtly
explored in the “Two-Level-Logic” philosophy of PIMISA: only measure-
ment and control metadata of resources are globally published, while
monitoring data communication between elements of different owner-
ships are handled by means of service invocation. The monitoring within
the scope of an ownership follows a close-loop structure: a dynamic con-
figurable set of management logic is kept, and resource states are an-
alyzed at real time so that corresponding control indications could be
made by decision-making. Moreover, above procedure can be achieved
by a “Third-Party Mount” mode to leverage caused load on resources
proportion to their capabilities. A prototype is currently under develop-
ment, and therefore, the implementation scheme of PIMISA is presented
in mathematical format.

1 Introduction

Grids aim to integrate miscellaneous distributed heterogeneous resources seam-
lessly to provide nontrivial computational services. In recent years it becomes
more and more mature [1]. Much work has been focused on resource collabora-
tion problems like service discovery, negotiation, service composition, scheduling,
etc. In contrast, the issues of resource monitoring are seldom addressed in cur-
rent studies. Our experience on grid computing convinces that an efficient grid
monitoring solution is necessary to promote the prosperity of Grids in practice.

Compared to traditional resource monitoring, grid monitoring must handle
complicate issues such as heterogeneity and various ownership. Generally, re-
source providers always put distinct restrictions on their own shared resources.
And sometimes, they do not like to expose sensitive performance data but still
� This Work is supported by Natural Science Foundation of China under Grant

60573110, 60373005, 90412011, and 973 Project under Grant 2003CB3169007.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 478–487, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Resource-Autonomy Based Monitoring Architecture for Grids 479

do use them for inner management. Due to heterogeneity, different components
or parts of Grids may require quite diverse monitoring specifications. Thus,
global identical monitoring implementations as traditional monitoring solutions
do seem unreasonable and far from satisfaction in Grid context.

In this paper we present a novel resource-autonomy based grid monitoring ar-
chitecture named PIMISA (Plug-In Monitoring and Information Service Archi-
tecture). The primary grid monitoring idea in PIMISA is a “Two-Level-Logic”:
autonomy is guaranteed at resource local level, and atop of that, monitoring-
related components of system global level are built. The“Two-Level-Logic” phi-
losophy separates resource local management from system global management,
which brings great flexibility and scalability. Resource autonomy shields underly-
ing heterogeneity and various ownerships for components of system global level,
facilitating them to wholly focus on their own business logic. And based on the
autonomy feature of underlying shared resources, global unified access manner
and data structure at high logic level are more acceptable in practice. We mainly
address the resource autonomy issues in this paper.

PIMISA follows both GMA and SOA, exploring subtly their elite in proper
place. Only necessary measurement and control metadata of resource are globally
published. This reduces the volume of global-maintained data. Data communi-
cation between elements of different ownership is handled by means of service
invocation, by translating diverse data syntax and semantic to a global com-
mon scheme. Pay attention that, interaction within the scope of same ownership
might utilize any other technologies.

A close-loop structure is employed to achieve resource autonomy in PIMISA.
Resource providers predefine some local resource management logic that could
be modified dynamically. And real-time states are continuously collected and
analyzed so that corresponding control indications could be extracted from man-
agement logic and sent to execute accordingly. Above procedure is referred as
decision-making. Taking into account that such decision-making might cause
substantial cost, it is suggested that a “Third-Party Mount” mode can attain
good effects in making the caused load on resources proportional to their capa-
bilities by shifting all or part of management cost from busy/low-performance
resources to free/high-performance resources. This can also be considered as a
kind of load balance.

The remainder of this paper is organized as follows. Related work is briefly
examined in Sect. 2, and then we introduce PIMISA elaborately in Sect. 3.
Section 4 gives the implementation scheme. Finally, conclusion and future work
are given in Section 5.

2 Related Work

Over the last several years, there have been numerous distributed monitoring
solutions or toolkits, such as SNMP, Ganglia [2], MonALISA [3], etc. However,
many of them have such assumptions as homogeneous resources, identical re-
source monitoring specifications. And poor interoperability has been achieved

480 M. Hu, G. Yang, and W. Zheng

between them so far. Different ownership of resources in Grids means resource
providers are permitted to choose any monitoring tools as they like. That is,
there may be multiple kinds of monitoring tools working at the same time in
a grid system. Additional effort should be made to achieve an acceptable level
of interoperability. From the architecture viewpoint, they are orthogonal to our
work.

Such monitoring solutions as Autopilot/Virtue, CODE [4] presented a close-
loop structure featuring the synchronization feedback mechanism to enable
dynamic control based on real-time measurements. Upon this structure, no stan-
dards have been widely agreed to follow, which also means poor interoperability
between different implementations. In addition, because resource states always
have short validity, high synchronization ability to events is implied to gain full
control on resources. In wide-area network environment, this requirement is not
so reasonable.

MDS [14] from Globus project and GMA [5] proposed by GGF presented other
two monitoring structures: hierarchy model and Producer/Consumer model.
Above two models share some common ideas that elements are required to reg-
ister with somewhere global known for information publishing. Latest version
of MDS obeys WSRF [9] in implementation, and is generally used in scenar-
ios where values of objects change not so fast (e.g. OS TYPE). GMA logically
separates the discovery of events from the event transmission, making asynchro-
nism of above two procedures a reality. Therefore it is widely followed in many
projects, such as R-GMA [15] and GridMon [6]. However, GMA gives no clear
implemental specification, which may result in great difference between different
implementations.

Absorbing advantages of above models, PIMISA presents a “Two-Level-Logic”
monitoring philosophy to cope with complex issues of monitoring heterogeneous
resources of different ownership in Grids: at the system global level, only mea-
surement and control metadata required for object location/discovery are ex-
ported to public know, and data communication between elements of different
ownership are handled by means of service invocation, which means access inter-
faces to the external are wrapped to services; At resource local level, a close-loop
structured decision-making procedure is made use of to monitor resource activ-
ities at real-time, realizing autonomy within an ownership efficiently. Moreover,
a “Third-Party Mount” decision-making mode is utilized to make caused load
proportion to resource capabilities.

3 Design

3.1 Resource Autonomy and “Third-Party Mount” Mode

Shared resources in Grids firstly belong to their owners (also known as “domain”
in the remainder). Therefore, besides to obey global management rules of the
grid system they should also behave as their owners want at the same time. For
example, a resource should react to probe from upper system components as
grid systems require, and stop to receive computational tasks from grid users

A Resource-Autonomy Based Monitoring Architecture for Grids 481

as its owner prescribe when its CPU LOAD exceeds 80%. Above two aspects
are referred as “Grid Activities” (GA) and “Local Activities” (LA) of resources
respectively. As previously discussed, management logic sets of different domains
might enormously vary. Our idea to guarantee both GA and LA of resources is to
realize “Resource Autonomy” at resource local level: each domain independently
keeps a dynamically configurable set of management logic to its own shared
resources, making no influence to other domains, and it is the duty of local
deployed monitoring components to ensure resource GA and LA compliant to
requirements from all sides by employing a close-loop structure. To monitoring
non-local resources, a domain must get the authorization in advance from other
domains. Here, we only involve management logic that can be translated to
quantity-comparable expressions.

Although resources in Grids are argued to have good network connectivity and
computational capacity [7], the case can not be ignored that resources with low
configuration are allowed to be shared in Grids. The decision-making procedure
of close-loop structure might cause substantial cost on resources, which prob-
ably is unacceptable to some resources, especially to those with low-hardware-
configuration or busy in task execution. To overcome this potential irrationality,
a “Third-Party Mount” mode is suggested: the decision-making of one domain
can be handled in other domains as long as good agreement could be negotiated
between these domains. The negotiation can be achieved by out-of-band means
and is beyond our discussion, but it is assumed in this paper that all domains
are honest and well behaved.

3.2 Architecture

Both SOA and GMA are subtly explored in PIMISA. The architecture is shown
in Fig. 1. Domains are all registered to Directory Service (DS) to publish neces-
sary discovery and location information, including monitoring related metadata.
At the edge of domains, only Measurement Services (MS) and Control Services
(CS) are exposed to shield heterogeneous monitoring issues within domains from
upper global system components, enabling them focus on business requirements.
DS, MS, and CS are expected to be WSRF/WSN compliant in implementation
to follow the latest outcome from SOA community.

Inside a domain, Management Logic Set (MLS) is used to store management
logic of local resources. Sensor Manager (SM) and Actuator Manager (AM) are
responsible for management of sensors collecting real-time resource performance
data and actuators executing control indications (For brevity sensors and actu-
ators are omitted in Fig. 1). Decision-Making takes resource performance data
from SM or MS as input, decides resource real-time states, and send predefined
control indications to AM or CS to execute if the conditions of some management
logic are satisfied.

Mounter is used to mount resources of other domains into local site so that lo-
cal domain can handle decision-making procedure for those domains. In “Third-
Party Mount” scenario, not only related sensors and actuators deployed on

482 M. Hu, G. Yang, and W. Zheng

Fig. 1. PIMISA Architecture

mounted resources are registered to local SM and AM, but also the management
logic of mounted resources is injected into local MLS.

In PIMISA, a domain could authorizes management capability of its resources
to other domains, making them could define and store management logic to
local resources in their MLS. Pay attention that a domain has no management
capability of mounted resources until it is authorized by the master domain of
mounted resources. Independently running domains must interact by means of
service invocation if they are of different ownership, while it may not be the
case for communication within a same ownership or decision-making relevant
communication between mounted resources and mounting domains.

4 Implementation

The prototype is under development at present. Some snapshots are shown in
Fig. 2. As a compromise, a few mathematical expressions and pseudocodes to
current prototype implementation are given in this section.

4.1 Prerequisite

A hierarchical naming style is adopted in PIMISA. Domains, resources, metrics,
and actuations are globally identified as “DomainID”, “DomainID:ResourceID”,

A Resource-Autonomy Based Monitoring Architecture for Grids 483

Fig. 2. Prototype Snapshot

“DomainID:ResourceID:MetricID” and “DomainID:ResourceID:ActuationID”.
Define following sets and functions for notation simplification:

– resources(object): resources contained by object
– thirdParty(dID): domains whose resources are mounted to domain dID
– targetDomains(dID): domains authorizing the management capability of

their resources to domain dID. Obviously, dID ∈ targetDomains(dID)
– domains(dID) = thirdParty(dID) ∪ targetDomains(dID)
– mLogics(object): management logic related to object. For domain dID,

mLogics(dID) =
⋃

rID∈resources(dID) mLogics(dID : rID)
– sensors(object): sensors deployed in the scope of object. For domain dID,

sensors(dID) =
⋃

rID∈resources(dID) sensors(dID : rID)
– actuators(object): actuators deployed in the scope of object. For domain

dID,
actuators(dID) =

⋃
rID∈resources(dID) actuators(dID : rID)

– metrics(object): metrics exposed by object. For domain dID,
metrics(dID) =

⋃
rID∈resources(dID) metrics(dID : rID)

=
⋃

rID∈resources(dID) metrics(sensors(dID : rID))
– actuations(object): control indications (a.k.a actuations) exposed by object.

For domain dID,
actuations(dID) =

⋃
rID∈resources(dID) actuations(dID : rID)

=
⋃

rID∈resources(dID) actuations(actuators(dID : rID))
– duty(module, fun): objects targeted by element module on function fun. In

the next discussion we would assign fun to following values of “integrate”,
“collect”, “actuate”, “contain” to respectively denote “integration”, “data
collection”, “indication execution”, and “contain” functions of components.

In addition, it is also assumed that there are some keywords with special mean-
ings in Grids. For example, “Refuse Task” may used to denote computational
tasks from grid system would be rejected by a domain. Use “GridKeyWords” to
represent these keywords.

484 M. Hu, G. Yang, and W. Zheng

4.2 Sensor Manager and Actuator Manager

According to resource autonomy idea of PIMISA, the implementation of Sensor
Manager and Actuator Manager must satisfy the equations of 1, 2, 3 and 4.

duty(SM, integrate) ⊆
⋃

td∈thirdParty(dID)∪{dID}
sensors(td) (1)

duty(SM, collect) ⊆
⋃

td∈thirdParty(dID)∪{dID}
metrics(td) (2)

duty(AM, integrate) ⊆
⋃

td∈thirdParty(dID)∪{dID}
actuators(td) (3)

duty(AM, actuate) ⊆
⋃

td∈thirdParty(dID)∪{dID}
actuations(td) (4)

4.3 Management Logic and MLS

Management logic has such expressions as “Condition → Operation”. Condition
is a quantity expression about metrics, and Operation is a set of control indica-
tions that need to be executed when Condition is satisfied. Refer the Condition/
Operation only covering one metric/control indication as AtomCon/AtomOp.
Logical functor “∨” and “∧” can be used to orchestrate complex Conditions
from AtomCons. Only “∧” is allowed in Operation composition, and the order of
AtomOps is immutable. For example, “CPU LOAD FIV E > 0.70” (AC1) and
“Memory Free > 50M (AC2) are two AtomCons, “set the keywords of Refuse
Task to true” (AO1) and “reduce collection frequency of CPU LOAD FIVE to
half” (AO2) are two AtomOps, “AC1 ∧ AC2”, “AC1 ∨ AC2”, and “AO1 ∧
AO2” are legal, while “AO1 ∨ AO2” is not permitted, and “AO1 ∧ AO2” is not
equivalent to “AO2 ∧ AO1”.

The management logic mLogic must satisfy the equations of 5 and 6. And
MLS deployed in domain dID should satify the equation of 7.

metrics(mLogic) ⊆
⋃

rID∈resources(mLogic)

metrics(rID) (5)

actuations(mLogic) ⊆
⋃

rID∈resources(mLogic)

actuations(rID) (6)

duty(MLS, contain) ⊆
⋃

rID∈resources(tID),tID∈domains(dID)

mLogics(rID) (7)

A Resource-Autonomy Based Monitoring Architecture for Grids 485

4.4 Decision-Making

The decision-making component actually acts as a domain administrator. It
continuously retrieves performance data of cared resources either from target
Measurement Services or Sensor Managers, evaluates the conditions of kept man-
agement logics in local MLS using resource real-time states. If the conditions of
some management logic are satisfied, every control indication in their opera-
tions would be sent to corresponding Control Service or Actuator Manager to
execute. We do recommend that performance data retrieval and control indi-
cation transmission between domains are handled by means of service invoca-
tion, so that current standards like WSRF and WSN can be followed. And the
“subscribe/notification” mechanism us envisioned to work well, under which the
program of this component is pictured in Fig. 3.

while ture {
if notification event arrives {

(1) parse the event, extract all pairs of < domainID:resourceID:MetricID, value > to the set of State
 (2) for each management logic mLogic in local MLS {

if State satisfy the condition of mLogic
send out every control indication in Operation of mLogic in proper order

} //for
} //if-notification

} //while

Fig. 3. Decision-making Program under Subscribe/Notification Mechanism

4.5 Security Consideration

In our current plan, security in PIMISA mainly covers followings: (1) authenti-
cation of users or components; (2) Access control for users to elements in Grids;
(3) read restrictions of a user to certain metric of a resource; (4) authorization to
a control indication of an element in Grids; (5) the permission to mount third-
party resources. Extant tools like GSI [8] are good groundwork to achieve them.
Above security issues have not been involved in our prototype.

5 Conclusion and Future Work

In this paper a novel resource-autonomy based grid monitoring architecture
named PIMISA is proposed. To cope with the highly complicated issues of
monitoring distributed heterogeneous resources of different ownership in Grids,
PIMISA adopts a “Two-Level-Logic” philosophy: resource activities are guaran-
teed at local level to strictly obey what their owners want, so that components at
system global level can wholly focus on business requirements. GMA and SOA
are subtly explored in that, only measurement and control metadata of resources
are globally published, and monitoring data communication between elements of
different ownerships are handled by means of service invocation. At resource local
scope a close-loop structure is used to realize real-time management: not only to

486 M. Hu, G. Yang, and W. Zheng

decide resource states of that time, but also to run decision-making procedure
to send predefined control indications. Since the decision-making might raise
substantial cost on resources, a “Third-Party Mount” mode is used to leverage
the cost proportional to resource capabilities.

In current development of PIMISA prototype, only monitoring of hardware
resources are considered, and at system global level only Directory Service is
under construction. At next step we intend to study a general mechanism for
certain kinds of application software monitoring, and build some modules with
good interoperability with some popular log toolkits like Log4J [10]. Service
Monitoring in Grids is also our working object in the future encouraged by
several outcomes from industrial community, such as MUWS [11, 12] and MOWS
[13]. Security especially precise access control to metrics and control indications
of resources is another important future task we plan to go in for.

References

1. Ian Foster, Carl Kesselman, The Grid2: Blueprint for a New Computing Infrastruc-
ture, San Francisco: Margan Kaufmann Publishers Inc., (2003)

2. Matthew L. Massie, Brent N. Chun, and David E. Culler, The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience, Parallel Computing,
Vol. 30, Issue 7, July (2004)

3. H.B.Newman, I.C.Legrand, P.Voicu, C.Cirstoiu, MonALISA: A Distributed Moni-
toring Service Architecture, In the proceedings of Computing in High Energy and
Nuclear Physics, March (2003)

4. W.Smith, A Framework for control and observation in distributed environments,
NASA Advanced Supercomputing Division, NASA Ames Research Center, (2001),
Available at http://www.nas.nasa.gov/simwwsmith/papers.html

5. B.Tierney, R. Aydt, D. Gunter, W.Smith, V. Taylor, R. Wolski, and M. Swany, A
Grid Monitoring Architecuture, Global Grid Forum Performance Working Group
(2002)

6. Zha Li, Xu Zhiwei, Lin Guozhang et al., A LDAP Based Monitoring System for
Grid, Journal of Computer Research and Development, (2002), Vol 39(8), 930 936

7. I. Foster, A. Iamnitchi, On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing, In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), (2003)

8. GSI (Grid Security Infrastructure) overview, http://www.globus.org/security/
overview.html

9. WSRF website, http://www.oasis-open.org/committees/tc home.php?wg abbrev
=wsrf

10. Log4J website, http://logging.apache.org/log4j/docs/index.html
11. William Vambenepe (Ed.), Web Services Distributed Management: Management

Using Web Services (MUWS 1.0) Part 1, Committee Draft, OASIS, (2004),
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/10558/cd-
wsdmmuws- part1-1.0.pdf

12. William Vambenepe (Ed.), Web Services Distributed Management: Management
Using Web Services (MUWS 1.0) Part 2, Committee Draft,” OASIS, (2004),
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/10557/cd-
wsdmmuws- part2-1.0.pdf

A Resource-Autonomy Based Monitoring Architecture for Grids 487

13. Igor Sedukhin (Ed.),Web Services Distributed Management: Management
of Web Services (WSDM-MOWS) 1.0, Committee Draft, OASIS, (2004),
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/10567/cd-
wsdm-mows-1.0.pdf

14. MDS website, http://www.globus.org/mds/
15. R-GMA website, http://www.r-gma.org/

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 488 – 497, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Machine Learning-Based Adaptive Load Balancing
Framework for Distributed Object Computing

Tarek Helmy and S.A. Shahab

College of Computer Science and Engineering,
King Fahd University of Petroleum and Mineral,

Dhahran 31261, Kingdom of Saudi Arabia
{helmy, sadnans}@ccse.kfupm.edu.sa

Abstract. Distributed object computing is widely envisioned to be the desired
distributed software development paradigm due to the higher modularity and
the capability of handling machine and operating system heterogeneity. In this
paper, we address the issue of judicious load balancing in distributed object
computing systems. In order to decrease response time and to utilize services
effectively, we have proposed and implemented a new technique based on
machine learning for adaptive and flexible load balancing mechanism within
the framework of distributed middleware. We have chosen Jini 2.0 to build our
experimental middleware platform, on which our proposed approach as well as
other related techniques are implemented and compared. Extensive experiments
are conducted to investigate the effectiveness of the proposed technique, which
is found to be consistently better in comparison with existing techniques.

Keywords: Distributed object computing, Jini, Load balancing, Middleware
layer, Reinforcement Learning, Q-Learning.

1 Introduction

The constantly increasing performance of personal computers accompanied by rapidly
growing network bandwidth has equipped the Internet with a large pool of abundant
and inexpensive computational resources. A wide range of large scale, distributed and
parallel scientific problems that require massive computation could benefit
tremendously from this huge pool of inexpensive resources if we have the ability to
find and utilize them efficiently and securely. Devising a scalable architecture to find
these resources and distributing the computation efficiently among them is necessary
to achieve worldwide execution of programs. Therefore, an adaptive and flexible
high-performance distributed middleware services need to be developed to address
the challenges of dynamicity, heterogeneity, load balancing, fault tolerance, and
security over highly dynamic large scale computer networks.
 In Jini terminology [9], a directory service is a lookup (or registry). References
stored in the directory are service items registered with the lookup which generally
include proxy for services. Service providers store proxies with lookup service during
bootstrap and are required to refresh or renew their leases. Clients are computer-based
entities who wish to access the services listed in the Jini lookup service. They must

 Machine Learning-Based Adaptive Load Balancing Framework 489

search the Jini registry (lookup) for services they want to utilize. Clients specify a
service template which may include service attributes such as provider name, model,
specific properties etc. It is quite possible that search templates provided by clients
are general enough to fetch more than one service proxies or it may also possible to
have more than one service providers offering services with similar attributes, like in
case of printing service. It is the responsibility of clients to decide which service
proxy to utilize in order to get the desired Quality of Service (QoS).

In this paper we have addressed the issue of load balancing at middleware layer.
The paper is organized in this fashion. Section 2 deals with survey of proposed
techniques and related work concerning load balancing at middleware layer. Section 3
deals with some introduction to reinforcement learning and its application in proposed
strategy. Section 4 demonstrates our proposed architecture for service provider and
client hosts to facilitate Q-Learning process. Section 5 shows simulation and
experimental results and finally section 6 concludes the paper.

2 Related Works

There have been some approaches proposed in the literature for load balancing. In this
paper, we are concerned with those load balancing approaches that are implemented
at middleware layer. Round-robin scheme was proposed in [6]. It simply causes a
request to be forwarded to the next member and does not take load into account.
Random scheme was also proposed in [6], which is non-adaptive strategy and also
does not take load into account. It simply forwards clients requests to an object group
member residing at a random location. Least loaded scheme was utilized by [4]. The
goal of this strategy is to ensure load differences fall within a certain tolerance, i.e., it
attempts to ensure that the average difference in load between each location/member
is minimized. Another approach proposed in [5], was to incorporate a load monitor
module within middleware layer. Various metrics such as CPU, memory, network
usage were supplied to load prediction module. Based on the predictions, the system
was able to dynamically adjust its configuration by transferring load to other services
so as to minimize the response time. Under the threshold-based approach [7], server
can trigger load-balancing actions if its load level exceeds a certain threshold. The
bidding approach proposed in [3], views the computers as resources and the jobs as
consumers. Clients bid for CPU time; only the winners can execute jobs on server.
However, because the bidding process takes non-negligible time, it is not suitable for
LAN environment. Fuzzy logic based load balancing scheme was also proposed in
[10]. This scheme incorporates a separate service for load balancing. Service
providers are required to send server load information to the load balancing service.
In addition to this, the load balancing service measures remote method invocation
time by invoking a bench mark remote method on each service provider. These
metrics are then fuzzified using pre-defined membership functions. After
fuzzification, inference rules are employed to infer the fuzzy value of output which is
defuzzified using output graph.
 While round robin and random assignment of load to the servers are not adaptive in
nature, fuzzy logic based load balancing suffers from these deficiencies:

490 T. Helmy and S.A. Shahab

• Requirement of a separate service proxy for load balancing will increase the
lease management overhead and it will create unnecessary traffic between
lookup services and load balancing service. The leasing model [9] enables
distributed components to explicitly limit the duration of their agreed
cooperation. This removes any possible ambiguity about when such
agreements are terminated and thereby allows components to safely reclaim
resources that had been associated with them.

• The fuzzy based approach does not provide any feedback mechanism in order
to fine tune the parameters, in other words there is no learning mechanism for
the client hosts.

3 Proposed Technique

We have tackled shortcomings of techniques mentioned in Section 2 by employing
sophisticated mechanism at middleware layer:

• The component which is providing a service will be the ideal to judge load on
its system. We proposed to use a load monitor module incorporated within
service which can monitor the load on the server with minimum overhead.
This approach was also utilized by [5].

• Client can learn the best policy by employing reinforcement based learning
technique [2]. Reinforcement based learning is an un-supervised learning, in
which agents learn through trial and error interactions with environment.

3.1 Reinforcement Learning for Load Balancing

Distributed systems are inherently difficult to manage. The parameters are dynamic
and cannot be treated as static [1]. In this paper, we have proposed to use
"Reinforcement Learning Technique" to enforce load balancing mechanism. It is
highly used in those environments where the response time prior to the execution is
unknown and a static plan cannot be devised [8]. It has been used in solving problems
of allocating resources to a grid [2] and task scheduling problem in parallel processor
systems [3].

Reinforcement learning is the problem faced by an agent that learns behavior
through trial-and-error interactions with a dynamic environment. The goal of
reinforcement learning is to learn an optimal policy : S A that specifies which
action 'a' to choose for every state 's' in the environment to best achieve the goal or
reward 'r'. A model of reinforcement learning consists of a discrete set of environment
states (s S), a discrete set of agent actions (a S) and a set of scalar reinforcement
signals (r R). The agent's job is to find a policy, i.e. a mapping from states to
actions, which maximizes rewards.

Common reinforcement learning methods are structured around estimating value
functions V(s) for every state. One way to learn optimal policy is to use the evaluation
function Q(s , a) defined as the maximum discounted cumulative award that can be
reached by starting in state 's' and taking action 'a' as first action.

 Machine Learning-Based Adaptive Load Balancing Framework 491

)),((*),(),(asVasrasQ δγ+= (1)

Where γ is the discount factor, r(s, a) is expected reward by taking action 'a' at state
's', (s, a) is the Markov function that takes the agent into next state and V*() is the
optimal value function.

3.2 Training Phase

Unlike approach in [10], there is no centralized mechanism for load balancing. In the
training phase, clients request for specific service from lookup registrar. Clients
request for the current load condition on service providers. In order to estimate load
on the service provider, we have incorporated a load monitoring module [5]. This
module monitors current load on the service provider and predicts the future load.
Clients submit their requests to perform tasks and wait for the response. We have
utilized reciprocal of response time as a measure of reward. The Q-Learning
algorithm is iterative in nature. It has been found in experimentation (refer to Section
5) that after some iteration QValues become saturated and change is very minimal.
Thus i given in equation (2) is used as a condition for breaking the iteration.

2
1 |),(),(| asQasQ iii −−=Δ (2)

3.3 Load Prediction

We have used a statistical sampling approach to obtain aggregate load on each service
provider. The simple exponential smoothing method is based on a weighted average
of current and past observations, with most weight to the current observation and
declining weights to past observations. The formula for exponential moving average
is given by equation (3):

nnn L ταατ)1(1 −+=+ (3)

Where 10 ≤≤ α is know as gain parameter, Ln is the most recent load, n stores the
past history and n+1 is the predicted value of load. We maintained two exponentially-
weighted moving averages with different gain parameters. A slow moving average
(0) is used to produce a smooth, stable estimate. A fast moving average (1)
adapts quickly to changes in work load. The maximum of these two values are used as
an account for current load on the service provider.

4 Proposed Architecture

In order to support and facilitate Q-Learning process, we need to modify architecture
of service providers and client hosts. In contrast with fuzzy based load balancing [10],
there are no specific services for load balancing.

4.1 Service Provider Architecture

Following are the chief modules incorporated in service provider architecture.
• Service Monitor: This component monitors the status of service queue and

predicts load (length of queue) as explained in Section 3.3.

492 T. Helmy and S.A. Shahab

• Service Queue: A local queue is maintained within each service provider to
store client requests.

• Scheduler: Scheduler selects client request from local queue based on first
come first serve basis and submits it to the service module.

• Service: Jobs are served without any preemption. We have employed delays
for simulation and experimentation purposes.

• Jini Related Modules: These comprises of discovery manager, join manager
and lease manager which are required to support distributed computing
within the framework of Jini [9].

• Service Interface: Each service provider specifies a standard service
interface to be utilized by the clients.

4.2 Client Architecture

In client hosts, we proposed to use the following modules.

• Jini Related Modules: It includes some key modules such as discovery
module (to search for specific services), and lease management module (to
receive remote events from lookup services), etc…

• Service Requester: This module interacts with users or utilizes pre stored
search template and provides it to Jini modules to search for the services.

• QLearning Module: This module implements the reinforcement learning
procedure as described in Section 3.1. It maintains a database to store
QValues at various states of server.

• Decision Making Module: After Q-Learning phase, decision making
module selects those service proxies which will maximize the reward.
Decisions are made on the basis of current state of service providers. After
the selection of service provider, it also updates the QValue it receives as a
consequence of selecting a particular service provider.

5 Simulation and Experimental Results

For experimentation and simulation purposes, we employed Jini 2.0 version. The
proposed architecture was implemented in Java 2.0. In our experimentation, we
employed 8 machines as server, 2 machines for generating client request and 1
machine to run a lookup service. The configurations of machines are shown in table 1.
In order to simulate services, we employed a pre-defined delay for each server
machine. During the experimentation, clients and service providers do not know IP
addresses or names of each other. They discover lookup service dynamically and thus
proceed to accomplish the protocol specified in Jini specs 2.0. Clients train
themselves during bootstrap process as explained in section 3.2. Round robin and
random selections were used as a benchmark.

Fig. 1 demonstrates QValues variation for different epochs. In case of server state
< 5, QValues are very close to each other. This is expected as for lightly loaded

 Machine Learning-Based Adaptive Load Balancing Framework 493

Table 1. Configuration of machines used in simulation

Type Jini Generated IDs Processor Ram
Service1 b15de466-c132-41d6-9d60-bd663585c09c Pentium 4

2.00 GHz
512 MB

Service2 187de788-30ee-46c8-be0c-93c3cf4a4aab Pentium 4
2.00 GHz

512 MB

Service3 bbb34b1c-1e44-4b2c-8e7d-aa908bac6f12 Pentium 4
2.00 GHz

512 MB

Service4 59eb92ea-04c4-4642-99f1-e4f4675dedd0 Pentium 4
2.00 GHz

512 MB

Service5 ff76839c-54b6-496e-b615-96eed63d2b76 Pentium 3
750 MHz

256 MB

Service6 6837acd8-7bb1-422d-baa5-a1252526d5f6 Pentium 3
750 MHz

256 MB

Service7 8766560a-4234-4a17-b524-87a7618a1b19 Pentium 3
750 MHz

256 MB

Service8 83eca5fc-e2d1-4a82-8c49-a2e4012988d5 Pentium 3
750 MHz

256 MB

Lookup Service 41e05d1a-a9bd-4e86-925b-ed94b0c84e8a Xeon dual
processor
 1.7 GHz

1 GB

Client1 f58509f0-3213-4091-8c32-f749c27b0490 Xeon dual
processor 1.7
GHz

1 GB

Client2 678c146f-7a6e-4c04-8223-b1176d9a7640 Xeon dual
processor 1.7
GHz

1 GB

QValues vs. Time in case of Light Load

100

50

QValues

0

Server State 41 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Server State 3

Server State 2

Server State 1
-50

-100

-150

Epochs

Fig. 1. QValues in Case of Server State < 5

servers there is not much variation in terms of response time especially for fast
servers. Peaks represent variation in response time; this may happen due to increase in
network traffic, servers running some background applications, clients busy in doing

494 T. Helmy and S.A. Shahab

QValue vs. Time in case of Heavy Load

QValues

9

8

7

6

5

Server State 16

-1

0

1

2

3

4 Server State 17

Server State 18

Server State 19

Server State 20

1 2 3 4 5 6 7 8 9

Epochs

Fig. 2. QValues in Case of Server State > 15

Average Response Time vs. No. of Clients (No. of Servers =2)

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Reinforcement

Round Robin

Random

Fig. 3. Average Response Time in Case of Two Servers While Increasing No. of Clients

some other computational work. Fig. 2 shows the variation of QValues for server
state > 15. As compared with Fig. 1, QValues are relatively separated and after few
epochs there is not much variation in QValues. Similarly it is quite visible that
QValues decrease as load is increased on service provider.

The average client response time of proposed approach is compared with
benchmarks keeping number of servers constant. The Fig. 3-6 shows simulation
results. We have configured to simulate these experiments for slow and fast service
providers. Random strategy may select slow service provider which is represented by
many peaks. While in round robin strategy there is not much peak as compared with

 Machine Learning-Based Adaptive Load Balancing Framework 495

Av. Response Time vs. No. of Clients (Servers=4)

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Reinforcement

Round Robin

Random

Fig. 4. Average Response Time in Case of Four Servers While Increasing No. of Clients

Av. Response Time vs. No. of Clients (Servers =6)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Reinforcement

Round Robin

Random

Fig. 5. Average Response Time in Case of Six Servers While Increasing No. of Clients

random strategy. On the other hand proposed strategy produces a smoother curve and
provides response time smaller than two benchmarks. When no. of clients is equal or
less than service providers then all strategies behave in similar fashion. With the
increase in no. of clients, proposed strategy provides reduce response time. It should
be noted that, random strategy may provide better response time at some instant but it
is not consistent and it may be followed by long spike.

496 T. Helmy and S.A. Shahab

Av. Response Time vs. No. of Clients (Servers = 8)

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Clients

R
es

po
n

se
 T

im
e

(m
s)

Reinforcement

Round Robin

Random

Fig. 6. Average Response Time in Case of Eight Servers While Increasing No. of Clients

6 Conclusion

In this paper, we have addressed the issue of load balancing in service oriented
middleware framework. Distributed environments are highly dynamic and
unpredictable in nature. Most of the current schemes for load balancing are based on
static information. These schemes are not suitable for dynamic environments. In
addition to that, there is no learning mechanism for client hosts to better utilize services
so as to minimize response time. In this paper, we proposed to use un-supervised
learning for client hosts to avail those services which will provide minimum response
time. Reinforcement learning is utilized to train client hosts. There is no centralized
mechanism or control for load balancing which is desirable in distributed systems.
Extensive experiments are conducted to investigate the effectiveness of the proposed
technique, which is found to be consistently better in comparison with existing
techniques. During startup process, clients need to learn QValues, which may take
considerable time if servers are heavily loaded. This problem can be solved by
allowing clients to share QValues. Alternatively we may employ different scheduling
algorithm within each local queue of service providers to improve service utilization.
In our future work, we will investigate effectiveness of proposed methodology by
considering different scheduling algorithm within local queues.

Acknowledgments

We would like to thank King Fahd University of Petroleum and Minerals (KFUPM)
for supporting this research work and providing the computing facilities. Special
thanks to anonymous reviewers for their valuable comments on this paper.

 Machine Learning-Based Adaptive Load Balancing Framework 497

References

1. Andrew J. Page, Thomas J. Naughton: Dynamic task scheduling using genetic algorithms
for heterogeneous distributed computing. 8th International Workshop on Nature Inspired
Distributed Computing, IPDPS, Denver, Colorado, USA, April (2005).

2. Aram Galstyan, Karl Czajkowski, Kristina Lerman: Resource Allocation in the Grid Using
Reinforcement Learning. AAMAS'04, ACM (2004).

3. C.A. Waldspurger et al: Spawn. A Distributed Computational Economy. IEEE Trans.
Software Eng., Vol. 18, No. 2, Feb. (1992), pp. 103–117.

4. IONA Technologies: Orbix 2000. http://www.iona.com/products/orbix2000/home.htm.
5. Octavian Ciuhandu, John Murphy: A Modular QoS-enabled Load Management

Framework for Component-Based Middleware. OOPSLA’03, October 26–30, 2003,
Anaheim, California, USA.

6. Ossama Othman, Jaiganesh: The Design of an Adaptive Middleware Load Balancing
Service. IEEE Distributed Systems Online, Volume 2, Number 4, April, (2001).

7. P. Krueger, N.G. Shivaratri: Adaptive Location Policies for Global Scheduling,. IEEE
Trans. Software Eng., Vol. 20, No. 6, June (1994), pp. 432–444.

8. Russell, Norvig: Artificial Intelligence. A Modern Approach. 2nd Ed. (2003)
9. www.jini.org (Jini Technology).

10. Yu-Kwong Kwok Lap-Sun Cheung: A new fuzzy-decision based load balancing system
for distributed object computing. J. Parallel Distributed Computing 64 (2004) 238–253
Science Direct.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 498 – 508, 2006.
© Springer-Verlag Berlin Heidelberg 2006

VWMAC: An Efficient MAC Protocol for Resolving
Intra-flow Contention in Wireless Ad Hoc Networks

Wanrong Yu1,2, Jiannong Cao1, Xingming Zhou2, Xiaodong Wang2,
Keith C.C. Chan1, Alvin T.S. Chan1, and H.V. Leong1

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong
2 School of Computer, National University of Defense Technology, Changsha, China

Abstract. In wireless ad hoc networks, the performance of the media access
control (MAC) protocol has significant impact on the overall network
performance. Although the popular IEEE 802.11 DCF mechanism still works
under multi-hop scenarios, its efficiency is unacceptable. Many efforts have
been made to enhance the mechanism in various aspects. In this paper, a novel
MAC protocol, called MAC with Voluntary Waiting (VWMAC), is proposed to
solve the intra-flow contention problem in multi-hop ad hoc networks. Through
voluntary waiting by mobile hosts according to the length of DATA packet
transmitted, VWMAC uses a very simple strategy to achieve great performance
enhancement. Our simulation results show that VWMAC outperforms IEEE
802.11 and existing approaches in terms of throughput, transmission delay and
energy efficiency.

1 Introduction

A wireless ad hoc network is a network temporarily and spontaneously established by
wireless communication nodes without requiring any infrastructure or central control.
Management of and communications in such a network are typically performed in a
distributed manner. The media access control (MAC) protocol is needed to allocate
the communication resources efficiently and fairly among all nodes in the wireless
networks.

Due to the lack of centralized control in wireless ad hoc networks, researchers have
mainly focused on contention based MAC protocols in this area. Carrier Sense
Medium Access (CSMA) is one of the earliest mechanisms adopted for ad hoc
networks. In CSMA, a transmitter will first sense the wireless channel in the vicinity
and refrain itself from transmission if the channel is already in use.

Based on the mechanism of CSMA, many protocols have been proposed, such as
MACA [1], MACAW [2] and IEEE 802.11 [3]. The IEEE 802.11 scheme has gained
its popularity rapidly for its simplicity and ease of implementation. Although the
Distributed Coordination Function (DCF) mechanism in IEEE 802.11 supports multi-
hop networks, its performance does not meet the requirements [4]. Many works have
been done to improvement the performance of IEEE 802.11 in various aspects.

However, most of existing works do not consider the “intra-flow contention
problem” in wireless ad hoc networks. As illustrated in Figure 1, the continuous flow
is from node N0 to node N5, and nodes N1, N2, N3, and N4 are forwarding nodes on

 VWMAC: An Efficient MAC Protocol for Resolving Intra-flow Contention 499

the route. After node N0 successfully transmits a packet to node N1, it still needs to
continually contend for the radio channel because it still has packets to send in its
transmitting queue. While at this moment, node N1 also has packet to forward and
thus will contend with node N0. Similarly, node N2 will contend with node N0 after it
has received packet from node N1. We call this phenomenon the “intra-flow
contention problem”, which refers to that the neighboring nodes on the route of a
given multi-hop flow content with each other when trying to fulfill the flow.

Fig. 1. Illustration of intra-flow contention

Based on the above observations, we propose a novel MAC protocol, called MAC
with Voluntary Waiting (VWMAC), which effectively solves the intra-flow contention
problem in wireless ad hoc networks. In VWMAC, after sending a packet, a node
voluntarily waits for a period of time before contending for the channel again. Also,
during this period, the voluntary waiting node can safely switch to sleep mode and
awake later in time. Thus, VWMAC saves the scarce battery power of mobile nodes.
Simulation results show that VWMAC greatly outperforms IEEE 802.11 and existing
schemes in terms of throughout, delay and energy consumption under multi-hop
scenarios.

The remainder of this paper is organized as follows. In Section 2, we discuss the
related works, focusing on the enhancements of the 802.11 scheme. The design of
VWMAC is detailed in Section 3. Section 4 presents simulation results that indicate
the great improvement in performance achieved by the VWMAC. Finally, Section 5
concludes the paper with our future work.

2 Related Works

The DCF mechanism defined in IEEE 802.11 is based on CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance), with extensions to allow for the exchange
of RTS/CTS packets between the transmitter and the receiver before the actual
transmission of DATA packet. However, as pointed out in [4], the performance of
IEEE 802.11 DCF under multi-hop scenario is far away from the optimized utilization
of channel bandwidth. Many research efforts have been made to improve the
performance of IEEE 802.11 DCF.

Generally speaking, existing MAC layer approaches enhance the IEEE 802.11 DCF
using one or more of the following methods: (1) adjusting various intervals defined in
IEEE 802.11, such as the inter-frame spacing (IFS) [5] and the contention window
(CW) [5, 6]; (2) adjusting the carrier sense range to leverage spatial reuse [7, 8];

500 W. Yu et al.

(3) enhancing the spatial reuse through the transmission power control (TPC)
technology [9, 10].

However, all above works don’t consider the intra-flow contention problem. This
problem is first addressed in [11]. The author argues to solve intra-flow contention
through adaptive pacing. When one node finds the average number of its retries goes
beyond the pre-defined threshold, it further back-off an additional packet transmission
time in addition to its current deferral period. However, as detailed later, other than
the heavy contention indicated by the large number of retries, it is necessary for a
node to defer transmission even when there exists only one multiple hops flow in the
network. In [12], a fast-forward mechanism is proposed to solve this problem. After a
packet is received, the receiving node determines the next-hop of the received packet
and uses the MAC layer ACK as an implicit RTS for the next hop transmission. The
solution in [13] is based on a similar idea, although in a different way. In [13], the
receiver is assigned higher priority of channel access by using a smaller back-off
timer. However, as illustrated later in this paper, delaying for one additional packet
transmission time is not enough for completely solving the intra-flow contention
problem. More importantly, these works have not explored the potential opportunity
for energy saving during the deferral period. In fact, if a node knows that it should
avoid occupying the channel for a certain period of time, it can switch to the sleep
mode during this period so as to conserve the precious battery power of the node.

3 Description of Proposed VWMAC Protocol

In the design of the VWMAC protocol, we make the following assumptions. First, we
assume that most flows in the network are multiple hops and the average number of
hops of a flow is larger than 3. Second, a flow is assumed to be continuous from the
source to the destination for a period of time. That is to say, the source is saturated
during this period of time. In a moderate or large scale wireless ad hoc network, both
assumptions are easy to keep. In addition, the first assumption can be relaxed as
shown later. Third, we assume that the data transmission rate is identical for all the
nodes in the network. So the time needed to transmit a packet of a certain size is
proportional to the packet length and is the same to all nodes. Multi-rate is not
considered in this paper.

To solve the intra-flow contention problem and improve the network performance,
the key is that a node should not send next packet until the previous one is out of its
interference range. Suppose the interference range equals twice of the space between
neighboring nodes. In the idealized situation, the transmission schedule for the
example shown in Figure 1 should be that as plotted in Figure 2. In the figure, T
stands for the transmitter and R stands for the receiver.

Due to the random factor introduced by the random back-off of IEEE 802.11
MAC protocol, it is difficult, if not impossible, to achieve the ideal result. However,
we can approach as close as possible to the ideal. The strategy used in VWMAC is
that each node voluntarily waits for a period of time after sending out a packet. This
strategy is so simple that the only issue needed to address is how long a node should
wait for before attempting to send the next packet. Obviously, the length of Voluntary

 VWMAC: An Efficient MAC Protocol for Resolving Intra-flow Contention 501

Ti
m

e

Fig. 2. Idealized transmission schedule of Figure 1

Waiting Time (VWT) should be dependent on the length of DATA packet just
transmitted.

In [14], the author suggests to always have the RTS/CTS activated to obtain a near
best performance, while at the same time to save the complex work of designing and
implementing a dynamic RTS_Threshold adjustment mechanism. In designing the
VWMAC, we consider the RTS/CTS mechanism to be used for any size of DATA
packets. Then, for a packet to be forwarded one hop away along the given path, the
minimum time required is given by:

Trequired = TRTS+TCTS+TDATA+TACK+3TSIFS+TDIFS+Tbackoff (1)

In equation (1), TDATA is decided by the size of DATA packet and Tbackoff is
random. Other parts are all definite and common to all nodes. To avoid the effect of
any random factor, we set the one-hop VWT slot Tslot to be:

Tslot = Trequired - Tbackoff (2)

Tslot is long enough for the next hop node to occupy the channel and nearly finish
forwarding the received packet. If only sleeps for one Tslot time, the previous sending
node may wake up a little earlier before the next sending node finishes transmitting.
This is exactly the result we want, because the sleeping node will never be too late to
contend for the channel again. Due to the existence of the carrier sense and back-off
mechanism, the probability for the previous node that wakes up earlier to interfere
with the next sending node is very small. Figure 2 also shows that the source node
should wait for one more slot than the intermediate nodes, because it need not to
receive DATA packets from any other node before transmission. But at the MAC
layer, a node has no way to know whether it is the source node of a flow or not.
Therefore, we use the same rule for all nodes to determine the length of the waiting
period. Another benefit of this simplification is that it makes the action of all the
nodes consistent.

Because the interference range is always larger than the transmission range, it is
not enough for one node to wait for just one Tslot time. In fact, the node should wait
for a period several times Tslot, and the specific number of times is called Number of
Waiting Slots (NWS) in this paper. The value of NWS is determined by the
interference range (Ri) and the average distance between neighboring communication
nodes (Dn).

502 W. Yu et al.

Fig. 3. String Topology

0 1 2 3 4 5 6
2

4

6

8

10

12

Number of Waiting Slots

D
el

ay
(s

)

 350m

 300m

Fig. 4. Delay of various NWS

Ri
NWS

Dn
= (3)

Here, x means the floor of x.

We validate equation (3) by using Figure 3 where there are 11 nodes in sequence.
The distances between neighboring nodes are the same and equal to 300m. Supposing
the interference range, transmission range are 800m and 400m respectively, NWS
should be set to 2 according to equation (3). Simulation results of CBR flow with 2K
packets from node N0 to N10 is illustrated in Figure 4. Obviously, VWMAC achieves
its best performance when NWS equals 2. This fits the computation of NWS
perfectly. When the distances between neighboring nodes increase to 350m, the
optimal value of NWS remains to be 2, as illustrated in Figure 4.

For a given Ri, if we can decide the value of Dn, the value of NWS will be known
according to equation (3). Thus, in order to compute the optimal value of NWS, we only
need to determine the value of Dn. Under general mini-hop based routing protocol such
as AODV [15], the bound of Dn is easy to obtain. Denoting the transmission range by Rt,
we have the following relationship between Dn and Rt : Rt/2 <Dn Rt. Based on this
relationship, we can obtain the bound of NWS accordingly. Because the interference
range Ri is generally twice of Rt or even a little more, the optimal value of NWS resides
in the range [2, 4]. Since the goal of a mini-hop routing protocol is to minimize the
number of hops between the source and destination, the value of Dn is generally closer
to Rt, rather than Rt/2. Thus, in designing VWMAC, we choose 2 to be the optimal value
for NWS. Of course, according to equation (3), when the value of Dn is small enough, 2
is not the optimal value for NWS. So our choice may be a little conservative, but it
achieves satisfying performance as shown by the simulation results even when Dn is
small. Furthermore, it is very expensive and difficult for nodes in the MANETs to
obtain the exact value of Dn dynamically. Under this consideration, without the accurate
knowledge of Dn, we think that a conservative strategy is better.

Obviously, if the hop number between the source and the destination is 1, then it
is not necessary for the nodes to wait. If we want to achieve performance
improvement under VWMAC, the minimum hop number between the source and the
destination should be 4 when NWS equals 2. From Figure 2, we can conclude that the
exact value of the lower bounder of hop number is (NWS+2). This is the reason why
we make the assumption that the hop number is large than 3. Now we consider it
further. Recall that VWMAC only changes the behavior of a transmitting node but

 VWMAC: An Efficient MAC Protocol for Resolving Intra-flow Contention 503

does not distinguish the source node and other forwarding nodes. In fact, if the hop
number is 2, then it is not necessary for the nodes to wait for any additional time. If
the hop number is 3, 1 is enough for NWS. So, to make VWMAC flexible, the value
of NWS should be adjusted according to the number of hops between the source and
destination. As explained before, the optimal value of NWS has been set to 2 in
VWMAC, so the possible values for NWS are 0, 1 and 2. When the hop number is 1
or 2, the value of NWS is set to 0. Under this condition, VWMAC becomes the
standard IEEE 802.11 DCF. When the hop number is 3, the value of NWS is set to 1.
For those cases with the hop number large than 3, the value of NWS is set to 2.

However, at the MAC layer, there is no way for a node on the route to know the
number of hops between the source and destination. Thus, to determine the actual
value of NWS, VWMAC needs some information from the routing layer. Fortunately,
general mini-hop based routing protocols such as AODV record the hop count in the
source node, so it is very easy for the nodes to get the needed information at the MAC
layer.

4 Performance Evaluation

To evaluate the effectiveness of the proposed waiting strategy, we conducted
simulations using different flow models under various topologies. We implemented
the VWMAC protocol in the GloMoSim [16] simulator and compared its performance
with that of the IEEE 802.11 scheme and existing approaches.

The performance of a MAC protocol can be evaluated using the following
metrics: throughput, average end-to-end delay, and energy_goodput. Energy_goodput
means the power consumption per unit data received successfully by the destination,
similar to the metric defined in [17].

To simulate power consumption by VWMAC, we use the same energy model
implemented in GloMoSim. Because VWMAC only put those nodes that participate
in transmitting data packets into sleep, we just need to collect the consumed power of
these nodes when we compute total energy consumed. For other nodes that do not
participate in communication, the energy consumption is the same as the IEEE 802.11
and thus is not included. Also, we ignore the energy consumption by state switching
because it is insignificant compared with the energy consumed by communications.
The parameters used in the simulations are listed in Table 1.

Table 1. Simulation parameters

Data packet size 2KB,1KB,500B Transmit State 1200mW
Transmit power 30mW(15dBm) Receive State 900mW

Transmission range(Rt) 400m Idle State 900mW
Interference range(Ri) 800m Sleep State 50mW

4.1 Line Topology

To highlight the performance improvement made by VWMAC, we first simulate a
network with a line topology similar to that in Figure 3. Here, the distance between
neighboring nodes are same and set to 250m. When the hop number is 1 or 2,

504 W. Yu et al.

VWMAC equals IEEE 802.11, so we start from 3 for the value of hop number. The
source node is N0 and the destination is N3 for 3 hops, N4 for 4 hops and so on, up to
node N10 for 10 hops.

We use data packets of various sizes (2KB, 1KB, and 0.5KB) to measure the
impact of the data packet length on the performance of VWMAC. When the hop
number is near the lower bound of the required value, the throughput of VWMAC is
similar to IEEE 802.11, but VWMAC still outperforms the 802.11 on energy_goodput
and delay, as plotted in Figure 5. Here, the performance of IEEE 802.11 is used as the
baseline. With the increase of hop number, increasing performance improvement is
observed on throughput, energy_goodput, and delay. The improvement reaches a
relative stable level when the number of hops is large enough. Through voluntary
waiting, VWMAC improves the throughput and energy_goodput of the network by a
factor of 40% and 60% respectively, while the average delay reduces to only 40% of
IEEE 802.11. The results in Figure 5 also indicate that the bigger the size of DATA
packet is, the greater the improvement can be made. Obviously, the bigger the DATA
packet size, the longer a node will sleep. Thus, the probability for collision is
decreased more compared with IEEE 802.11, because the size of DATA packet
determines the average duration of collision in the network.

3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Number of hops

T
hr

ou
gh

pu
t

vs
80

2.
11

802.11
2K
1K
0.5K

3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Number of hops

G
oo

dp
ut

 v
s

80
2.

11

802.11
2K
1K
0.5K

3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Number of hops

D
el

ay
 v

s
80

2.
11

802.11
2K
1K
0.5K

(a) (b) (c)

Fig. 5. Performance of VWMAC vs 802.11

The existing methods proposed for adaptive pacing [11] or fast forwarding [12]
make the node to wait for one Tslot time under the best condition, so their best
performance is always worse than the case where NWS equals 1. To compare
VWMAC with exiting approaches, we use the case where NWS is set to 1 to
represent the best performance of existing solutions for the metrics of throughput and
delay. Again, the performance of IEEE 802.11 is used as the baseline. For existing
approaches that do not sleep wireless nodes, their energy_goodput is nearly the same
as 802.11 DCF. We conducted simulations using the line topology with 2K DATA
packet and plot the results on throughput and delay in Figure 6. We conclude that
VWMAC and the existing methods under the best condition (i.e., when NWS equal to
1) perform equally well for the cases where the hop number is 3, 4, 5. With increasing
hop number, the performance of the existing methods under the best condition (i.e.,
when NWS equals 1) is poorer than VWMAC, though both outperform the IEEE
802.11 scheme greatly.

 VWMAC: An Efficient MAC Protocol for Resolving Intra-flow Contention 505

3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Number of hops

T
hr

ou
gh

pu
t

vs
 8

02
.1

1
802.11
NWS=1
VWMAC

3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Number of hops

D
el

ay
 v

s
80

2.
11

802.11
NWS=1
VWMAC

(a) (b)

Fig. 6. Performance comparison of VWMAC, 802.11 and existing approaches

4.2 Grid Topology

We also evaluated the performance of VWMAC under a grid topology, which is more
general. We consider an area of dimensions 2000*2000 (in meters). 81 nodes are
placed uniformly. Thus, the whole area is split into 64 small equal-sized square areas,
each with the edge of 250m. Under such a topology, we simulated two types of flows.
One is that of two cross multi-hop flows, as illustrated in Figure 7(a). In this scenario,
the two flows interfere with each other in the vicinity of cross point.

The simulation results demonstrate that VWMAC has better performance than
IEEE 802.11 and the existing methods, as shown in Figure 8. The reason is that
voluntary waiting greatly decreases the probability for collision. Similar to
simulations with the line topology, the size of DATA packet is still a key factor that
determines how much performance improvement can be achieved. Smaller DATA
packet means fewer enhancements to the performance in terms of throughput and
average delay, but both VWMAC and existing approaches outperform IEEE 802.11
greatly at various sizes, as we can see from part (a) and (b) of Figure 8. Because
existing approaches do not sleep nodes, their good_put is similar to IEEE 802.11. To
compare with VWMAC, we also produce the energy_goodput for the case with
NSW=1. The result shows that VWMAC consumes the least power to transmit unit
data and saves energy greatly, as illustrated in part (c) of Figure 8.

The second type of flows we considered is cluster flows which often occur in real
wireless ad hoc networks such as wireless sensor networks. Suppose four nodes at
different corners of the whole area send packets to the central node at the same time,

(a) cross flows (b) cluster flows

Fig. 7. Two kinds of flows in the grid topology

506 W. Yu et al.

2K 1K 0.5K
0

50

100

150
200

250

300
350

Size of data packet(bytes)

T
hr

ou
gh

pu
t(

K
bp

s)

802.11
NWS=1
VWMAC

2K 1K 0.5K
0
2
4
6
8

10
12
14
16
18
20

Size of data packet(bytes)

A
ve

ra
ge

 D
el

ay
(s

) 802.11
NWS=1
VWMAC

2K 1K 0.5K
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Size of data packet(bytes)

G
oo

dp
ut

(K
b/

m
W

hr
) 802.11

NWS=1
VWMAC

(a) (b) (c)

Fig. 8. Performance of cross flows under grid topology

2K 1K 0.5K
0

100
200
300
400
500
600
700
800
900

Size of data packet(bytes)

T
hr

ou
gh

pu
t(

K
bp

s)

802.11
NWS=1
VWMAC

2K 1K 0.5K
0

2

4

6
8

10

12
14

Size of data packet(bytes)

A
ve

ra
ge

 D
el

ay
(s

) 802.11
NWS=1
VWMAC

2K 1K 0.5K
0

0.5

1

1.5

2

2.5

Size of data packet(bytes)
G

oo
dp

ut
(K

b/
m

W
hr

) 802.11
NWS=1
VWMAC

(a) (b) (c)

Fig. 9. Performance of cluster flows under grid topology

as illustrated in part (b) of Figure 7. Since the number of hops (of only 4) is not large
enough to achieve obvious improvement on throughput, the throughput of VWMAC and
the existing approaches are similar to IEEE 802.11, as plotted in part (a) of Figure 9.
However, even under this condition, the average delay of packets is decreased and
energy_goodput is increased greatly compared with IEEE 802.11, as we can see from
parts (b) and (c) of Figure 9. Also, we can conclude that the performance of VWMAC is
still sensible to the size of DATA packet under this scenario. Larger size packets achieves
greater performance enhancement.

5 Conclusion

Intra-flow contention is one of the main factors that cause the failure of transmission
in multi-hop wireless ad hoc networks. In this paper, we propose a novel strategy,
called voluntary waiting, to solve the intra-flow contention problem and improve the
performance of IEEE 802.11 DCF. In the proposed VWMAC protocol, a node
voluntarily waits for a period of time after successfully sending a DATA packet. The
length of time to wait is determined by the DATA packet just transmitted. Also, for
the first time, we propose that a node can safely change to sleep mode during the
waiting period. Our simulation results show that VWMAC outperforms the IEEE
802.11 and existing schemes greatly in terms of network throughput, packet delay and
energy consumption.

 VWMAC: An Efficient MAC Protocol for Resolving Intra-flow Contention 507

Besides considering more complex topologies and traffic patterns, our future work
also includes studying the influence of sleep on the performance of network and
considering more types of contentions in wireless ad hoc networks. Other than the
intro-flow contention, different flows in the network may interfere with each other if
some of the nodes on their routes are close enough. This can be called inter-flow
contention, which will be taken into consideration in our future work.

Acknowledgements

This work is supported in part by the Hong Kong Polytechnic Universities under the
ICRG grant A-PF77 and 4-6941, and by the National Natural Science Foundation of
China under Grant No. 60273068.

References

[1] Phil Karn, "MACA - A new channel access method for packet radio", ARRL/CRRL
Amateur Radio 9th computer Networking Conference, 1990, pp. 134 – 140.

[2] Vaduvur Bharghavan, Alan Demers, Scott Shenker, Lixia Zhang, "MACAW: a media
access protocol for wireless LAN's", Proceedings of the conference on Communications
architectures, protocols and applications, 1994, pp. 210 – 225.

[3] IEEE, ANSI/IEEE std 802.11, 1999 Edition (R2003), Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications.

[4] Shugong Xu and Tarek Saadawi, "Does the IEEE 802.11 MAC protocol work well in
multihop wireless ad hoc networks?", IEEE Communications Magazine, Vol. 39, No. 6,
pp. 130 - 137, 2001.

[5] S.-T. Sheu and T.-F. Sheu. “A bandwidth allocation/sharing/extension protocol for
multimedia over IEEE 802.11 ad hoc wireless LANs”. IEEE JSAC, 19(10):2065–2080,
October 2001.

[6] F. Cali, M. Conti, and E. Gregori. “IEEE 802.11: Design and Performance Evaluation of
an Adaptive Backoff Mechanism”. IEEE JSAC, 18(9), September 2000.

[7] F. Ye, S. Yi, and B. Sikdar, “Improving spatial reuse of IEEE 802.11 based ad hoc
networks,” in IEEE Global Telecommunications Conference, San Francisco, CA, USA,
December 1-5 2003.

[8] Jing Zhu, Xingang Guo, et al, “Adapting physical carrier sensing to maximize spatial reuse
in 802.11 mesh networks”, Wireless Communications and Mobile Computing , 4(8):
933-946, 2004.

[9] A. Muqattash and M. Krunz. “Power controlled dual channel (PCDC) medium access
protocol for wireless ad hoc networks”. In Proceedings of the IEEE INFOCOM
Conference, pages 470–480, 2003.

[10] J. Deng and Z. Haas, “Dual busy tone multiple access (DBTMA)- a multiple access
control scheme for ad hoc networks”, IEEE Transactions on Communications, Volume
50, Issue 6, June 2002.

[11] Fu Z, Zerfos P, Luo H, Lu S, Zhang L, Gerla M. “The Impact of multihop wireless
channel on TCP throughput and loss”. Proc. of INFOCOM 03. San Francisco: IEEE
Press, 2003. 1733-1753.

508 W. Yu et al.

[12] Zhenqiang Ye, Dan Berger, Prasun Sinha, Srikanth V. Krishnamurthy, Michalis
Faloutsos, Satish K. Tripathi, "On Alleviating MAC Layer Self-Contention in Ad-hoc
Networks" Poster, MobiCom 2003.

[13] H. Zhai, X. Chen and Y. Fang. “Alleviating intra-flow and inter-flow contentions for
reliable service in mobile as hoc networks”. In Proc. of IEEE Milcom'04, Monterey,
California, Nov. 2004.

[14] Shiann-Tsong Sheu, Tobias Chen, Jenhui Chen, Fun Ye. “The Impact of RTS Threshold
on IEEE 802.11 MAC Protocol”, ICPADS, 2002.

[15] http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt
[16] GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/.
[17] Rong Zheng and Robin Kravets, “On-demand Power Management for Ad Hoc Network”,

Elsevier Ad Hoc Journal, 2005

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 509 – 516, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Coloring Based Backbone Construction Algorithm
in Wireless Ad Hoc Network*

Zhiwei Lin1, Li Xu1, Dajin Wang2, and Jianliang Gao1

1 School of Mathematics and Computer Science,
Fujian Normal University, Fuzhou, 350007, P.R. China

{lw, xuli}@fjnu.edu.cn
2 Montclair State University,

Upper Montclair, NJ 07043, USA
wang@pegasus.montclair.edu

Abstract. A wireless ad hoc network consists of many mobile hosts communi-
cating with each other without any infrastructure. Virtual backbone plays a key
role in a wireless ad hoc network for routing optimization, energy conservation
and resource allocation. To construct virtual backbones efficiently, a new dis-
tributed method based on coloring algorithm is proposed in this paper. Because
the proposed algorithm uses only 1-hop neighbors information, it is proven that
this coloring based method can cluster into groups with O() time complexity
and O(n 2) message complexity, which are better than referenced work in this
paper.

1 Introduction

A wireless ad hoc network is a multi-hop wireless network composed of mobile nodes
communicating with each other through wireless links. It is very different from tradi-
tional wireless environments, such as cellular networks or wireless LANs. In a wire-
less ad hoc network, mobile nodes equipped with limited energy are self-organizing
and self-configuring. There does not exist a permanent center node for the system. So
only distributed algorithms are feasible. The dynamic topology due to the node mobil-
ity causes frequent route failure. To enable the network to route efficiently and con-
serve the energy of mobile nodes, virtual backbone mechanism has been proposed.
Mobile backbone is a collection of mobile clusterheads and gateways to maintain the
connectivity of the network and guarantee the full coverage. A clusterhead set is a
dominating set in graph theory that covers all other nodes in a graph. To connect all
clusterheads in the dominating set, gateway nodes are introduced. Clusterheads and
gateway nodes together make the ad hoc network’s virtual backbone, which is a con-
nected dominating set, or CDS for short.

It has been proven that the problem of finding a minimum connected dominating
set (MCDS for short) is NP-complete, because it needs globally complete information
about the topology. Some heuristic centralized methods [4,6] have been proposed, but
all these cannot be applied to ad hoc networks whose topology constantly changes.

* Partially supported by National Natural Science Foundation of China (No. 60502047), Natu-

ral Science Foundation of Fujian Province of China (No.A0440001).

510 Z. Lin et al.

Therefore, the task of distributedly generating MCDS in an ad hoc network is even
more challenging and harder because of the absence of global network topology.

Recently, many different distributed algorithms have been proposed to generate the
dominating set and find gateways, and eventually construct the CDS. These so-called
white-gray-back distributed algorithms can be characterized as global, quasi-global,
quasi-local and local [2,5,8,9]. The global MCDS algorithm requires the global in-
formation to determine which node has the maximum degree, while the quasi-global
method, proposed by Wan et al, is based on a spanning tree, rooted at an arbitrary
node. Based on the lowest ID, Lee and Gerla proposed the local method, in which the
node with the lowest ID becomes a clusterhead and colors itself black. Quasi-local
clustering algorithm proposed by Wu requires 2-hop neighbors connectivity informa-
tion and the result cannot guarantee minimum because of redundancy.

In this paper, a new distributed clustering algorithm is proposed with the idea of
coloring in graph theory. This coloring-based algorithm only requires 1-hop informa-
tion and can rapidly cluster into groups with less complexity of time and message.
The rest of this paper is organized as follows. Section 2 reviews some representative
dominating set methods in recent years and compares their performance. Section 3
describes the basic mathematical assumptions in this paper. In Section 4, the new
distributed, coloring-based backbone construction algorithm (CBCA for short) is
proposed to construct the maximum independent set. The set is proved to be a mini-
mum dominating set. The node that is not in the minimum dominating set can deter-
mine whether it is a gateway according to CBCA. Section 5 analyzes CBCA’s
performance. Finally in Section 6, the main contribution of this paper is summarized.

2 Related Works

As mentioned in the previous section, recently existing algorithms take a white-gray-
black progressing approach, in which all nodes are initially colored white and finally
colored black. These algorithms can be characterized into four categories [2,5,8,9].
The global approach proposed by Sivakumar and Das is based on the maximum node-
degree. In the 1st step, if a node has the maximum degree in the network, it first an-
nounces itself as a root and is colored black and all its neighbors are colored gray. The
algorithm then selects a gray node that has the maximum white neighbors. This gray
node is colored black and all its 1-hop neighbors are colored gray. The preceding step
is repeated until no white node is left. The resulting set of black nodes dominates the
network.

Wan and Alzoubi proposed a quasi-global method aimed at finding a minimum
connected dominating set. This spanning tree based approach consists of 4 phases. In
the first phase, a spanning tree is constructed according to a distributed leader election
strategy. In the 2nd phase, every node will determine its level in the spanning tree.
Accordingly, with the level-based spanning tree, a maximal independent set, that is a
minimum dominating set, is formed and the nodes in the set are connected in the next
2 phases. The connected nodes form a MCDS. We point out that these 4 steps cannot
be applied to the mobile ad hoc network due to its mobility.

The local approach is also a lowest-ID based algorithm. Lee and Gerla divided this
approach into the following 2 steps: (1) A node colors itself black if all its neighbors’

 A Coloring Based Backbone Construction Algorithm in Wireless Ad Hoc Network 511

IDs are higher than its ID. (2) All neighbors of the black node color themselves gray
and join the cluster. These two steps are repeated until there is no white node left.
This problem with this ID-based approach is that the node with minimal ID will be
forced to act as a dominating node, which will rapidly run out its energy.

In [9], Wu and Li proposed that the set in which every node has two unconnected
neighbors forms a connected dominating set. Because the set obtained with this
method is not minimal, they have to prune some redundant nodes. Obviously, this
quasi-local algorithm requires 2-hop connectivity information.

Based on these 4 representative methods, some new modified algorithms [3,7,10]
were proposed but they are quite similar to these 4 methods. In this paper we will
present a new MCDS algorithm based on coloring algorithm. We assume each node
has the same transmission power and our target is to find a MCDS with a lower cost
than that of previously proposed.

3 Preliminaries and Notations

A wireless ad hoc network is usually modeled as a unit disk graph (UDG), in which
nodes are assumed to have the same transmission range. The construction of mobile
backbone in a wireless ad hoc network is then the same as forming MCDS in UDG,
which is shown to be NP-hard Clark et al [1].

Given a unit disk graph G=(V,E), a subset S is a dominating set if and only if every
node in G S is connected to at least one node in S. If the dominating set S is con-
nected, S is called connected dominating set (CDS). A CDS with a minimum size is
called MCDS.

A subset S is an independent set (IS) if and only if EvuSvu ∉∈∀),(,, . S is maxi-

mal if ,SVu −∈∀ u has a neighbor in S; S is also called maximum independent set

(MIS) or dominating independent set (DIS).

Lemma 3.1. An MIS is a minimum dominating set (MDS).

Proof: Assume that S is MIS but not a minimum dominating set. The subset S-{x},
where x belongs to S, is not an MIS. That means that S-{x} cannot fully dominate the
other vertices. This contradicts the definition of MIS. So S is a minimum dominating set.

Lemma 3.2. Any node in an MIS can find at most one or two nodes to connect one of
the other closest nodes in the MIS (means two or three hops away from its neighbor in
the MIS). [8]

Proof: Suppose that a node x in an MIS has to find at least 3 nodes a, b and c to con-
nect another closest node y in the MIS and a, b and c do not belong to MIS (x-a-b-c-
y). Since b does not belong to the MIS, then it must be adjacent to at least one of the
nodes z in the MIS, which means that there exists another closest node z in the MIS
such that x-a-b-z. This contradicts our assumption.

A coloring of an undirected graph G = (V, E) is a function C: V N such that for all
u,v ∈V, if C(u) = C(v), then (u,v)∉E; that is, no adjacent vertices have the same

512 Z. Lin et al.

color. The set in which all nodes are the same color will be called a coloring division.
The statement in the following Lemma is obviously true.

Lemma 3.3. All the nodes colored with the same color form an independent set in the
graph; or in other words, a coloring division set is an IS.

Based on coloring divisions, we can generate an MIS, which can dominate the net-
work. If a coloring algorithm can be modified to color the network in a distributed
manner, then we can distributedly construct an MIS. Further more, according to
lemma 3.2, if we want to minimize the size of MCDS, we must guarantee that an MIS
member is only 2-hop away from its MIS neighbor after the coloring algorithm.

For reader’s convenience, the terms and variables used in the rest of this paper are
summarized in Table 1.

Table 1. Notations & Variants

MDS The Minimum Dominating Set
MCDS The Minimum Connected Dominating Set
Gateway The Vertex that connects at least 2 clusterheads
N(i) The Set of 1-hop neighbors of node i
c The Color Value
i.c The Color number of node i
Color_1_ID The node ID whose color number is 1.
Timer The node shot time-slot that can expire
i.T The initial Timer value of node i
Vi The vertex set in which node color number is i

4 The CBCA Algorithm

The CBCA algorithm to establish backbone for an ad hoc network is based on color-
ing. In the algorithm, every node has a color number variable C, initialized to 0. To
enable the algorithm to run in an asynchronous manner, we assign a shot time-slot to
every node, which is denoted by T and Timer. Every node uses equation (1) to com-
pute the value of T.

T = random(degree×ID) (1)

Equation (1) guarantees that all nodes are different from each other by using random
number, which belongs to [0,1]. The degree in (1) represents the number of the node’s
neighbors.

After the distributed algorithm, one of the coloring divisions is an MIS, such that
the member of the MIS is 2-hop away from one of its MIS neighbors. And based on
the color number information of its neighbors, the connected node will be determined.
To achieve this goal, an arbitrary node is selected to start the backbone construction
algorithm and this node is colored number “1”. After coloring, the root node scatters
its color number to its neighbor. When receiving a color number from its neighbor, a
node runs the following algorithm to determine its color:

 A Coloring Based Backbone Construction Algorithm in Wireless Ad Hoc Network 513

Clusterhead Election Algorithm:
1 A neighbor m receives c value sent by node n(n.c).
2 m.Timer=m.T;
3 Start m.Timer and waiting for Timer expiration.
4 Color_1_ID=0;
5 Color=0;

6 For()(mNi∈∀) do {
7 If(i.c>color) then
8 Color=i.c;
9 If(i.c=1) then
10 Color_1_ID=i;
11 }
12 If (Color_1_ID=0) then
13 m.c=1;
14 Else
15 m.c=Color+1;
16 If(m.c>1) then
17 Compute T=random(m.c * degree * ID)
18 Send the color of itself to its neighbors

Theorem 4.1. All nodes with color number “1” form an MIS. We call it the division
set V1.

Proof: Initially, a node n is colored by number 1 and all its neighbors N(n) will be
colored by other numbers. According to the algorithm, every node will first search the
information of its neighbors before it determines its color number. If there are no
neighbors colored by number 1, then the node will first color itself number 1. That is,
the algorithm guarantees that the number of nodes colored by number 1 is maximal.
Thus, V1 is an MIS.

Theorem 4.2. The shortest-hop path between any two complementary subsets A and
B of set V1 is of two-hop distance.

Proof: Let us assume that the shortest-hop path is 3-hop distance. Then there exist
two nodes (x and y) that connect A and B, but do not belong to V1. From Figure 1, we
can see that a-x-y-b is the shortest path. The algorithm begins from one node (without
loss of generality, assume that this beginning node is now in set A) and is scattered
over the network. That means that before node b is colored by number 1, the node y
has already been colored by 1. This contradicts the assumption.

A B

a bx y

Fig. 1. The Assumption Model

514 Z. Lin et al.

Theorem 4.2 shows that the distributed algorithm needs much fewer inter-nodes to
connect the nodes colored by number 1. From Theorem 4.2, we can easily draw the
following conclusions:

Lemma 4.2.1. Every node dominated by 2 nodes in V1 is a gateway candidate.

Lemma 4.2.2. A node in the MIS needs only one node to connect to neighboring
nodes in the MIS.

Lemma 4.2.3. The algorithm needs only |V1|-1 gateway nodes.

So far, all proposed methods to compute MCDS proceed with at least 2 steps, because
they have to produce MDS before determining the gateways. This may not be neces-
sary, and may not adapt to the fast mobile environment, where a clusterhead may
have left before the gateway is generated. In our algorithm, the gateway nodes are
determined in the process of computing MDS. The network elects gateways according
to the following algorithm. It combines both election of gateway candidates and elec-
tion of clusterheads.

Gateway Election Algorithm - Gateway Candidates:
1 As soon as a gateway candidate finds that it has

been dominated by two clusterheads, then it imme-
diately starts the Timer.

2 m.Timer=m.T;
3 Start m.Timer and waiting for Timer expiration.
4 m.c=1;
5 Send m.c value and its dominating nodes informa-

tion to its clusterhead neighbors to announce it-
self as a gateway

Gateway Election Algorithm - Clusterheads:
1 A clusterhead m receives c value(c=1) sent from

its dominated node n.
2 If(m.degree=1) then
3 m.c=n.c
4 Change the information of node n and itself and

broadcast the information to its neighbor to tell
the gateway candidate to be a normal dominated
node.

If a dominating node has only 1 degree, then it must be dominated by a gateway-
clusterhead node. So line 2 is to prune itself from the dominating set and guarantee
that the CDS is minimal. Line 3 changes the color of node m to previous color of
node n before node m changes the information of node n.

5 Performance Analysis

In this section, we study the performance of our algorithm CBCA and compare it with
the previously proposed methods.

Lemma 5.1. The size of the MIS is at most 4×opt+1, where opt is the size of optimal
MCDS. [1]

 A Coloring Based Backbone Construction Algorithm in Wireless Ad Hoc Network 515

Lemma 5.1 claims that the optimal MIS has ratio at most 4. According to Lemma
4.2.3, the size of the MCDS is 2|V1|-1. We can reach the following conclusions.

Theorem 5.1. The size of the MCDS is at most 8×opt+1.

Proof: V1 is a MIS. Since |MIS| 4×opt+1, and |MCDS|=2|V1|-1, we have
|MCDS| 8×opt+1. So our algorithm has a performance ratio of at most 8.

Theorem 5.2. The time complexity of the algorithm is O(), where is the maxi-
mum degree and the message complexity is O(n), where n is the number of nodes .

Proof: The main part that decides the time complexity is the one that the node checks
the color information of its neighbors. In our implementation, a node has to search the
color values of its neighbors before coloring itself (line 6~11), so the time complexity
of the algorithm is O().

The whole algorithm consists of 3 elemental messages: (1) a node broadcasts at
most messages to its neighbors to tell them its color value; (2) a gateway candidate
broadcasts at most messages to its dominators to announce itself as a MCDS mem-
ber; (3) When the announcement arrives, the dominators have to broadcast the an-
nouncement and change information to its neighbors, so all these 2 steps messages are

. We can conclude that the message complexity is O(n).

Theorems 5.1 and 5.2 give a performance analysis of the algorithm on size ratio, time
complexity, and message complexity. Table 2 compares our method with previously
proposed methods. From the table, we can see that our method with only 1-hop local
information is better than other methods at time and message complexity.

Table 2. Comparisons of the algorithms. m denotes the number of the edges in the network.

 Ratio Time Message Information need
[2] Θ (log n) O(n) O(n) global

[5] O(n) O(n) O(n) 1-hop
[8] 8opt-2 O(n) O(nlog n) quasi-global
[9] O(n) O(n) Θ (m) 2-hop

CBCA 8opt+1 O() O(n) 1-hop

6 Conclusion

In this paper, we have studied the problem of constructing MCDS in a wireless ad hoc
network. We have proposed a localized, coloring-based, and one-step distributed
MCDS construction algorithm. Our method has a performance ratio of at most 8. The
main reason we can get a less time and message complexity than other methods is that
we only require 1-hop neighbors knowledge. In our future work, we will continue to
study the maintenance of MCDS in a mobile environment. We will also investigate
MCDS’s performance in routing.

516 Z. Lin et al.

References

1. B.N. Clark, C. J. Colbourn and D. S. Johnson, Unit Disk Graphs, Discrete Mathematics,
86(1990) 165-177

2. B. Das and V. Bharghavan, Routing in Ad-Hoc Networks Using Minimum Connected
Dominating Sets, International Conference on Communications, Montreal, Canada, June
1997

3. M. Min, Fe. Wang, D. –Z. Du and P. M. Pardalos, A Reliable Virtual Backbone Scheme in
Mobile Ad-Hoc Networks, Proceedings of the 1st IEEE International conference on Mo-
bile Ad Hoc and Sensor Systems , Oct., 2004, FL, USA

4. S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Algo-
rithmica, 20(4), April (1998) 374-387

5. C. R. Lin and M. Gerla, Adaptive Clustering for Mobile Wireless Networks. IEEE Journal
on Selected Areas in Communications, 15(7), Sep, (1997) 1265-1275

6. M. V. Marathe, et al., Simple heuristics for unit disk graphs, Networks, vol. 25, (1995)
59-68

7. I. Stojmenovic, M. Seddigh, Dominating Sets and Neighbor Elimination Based Broadcast-
ing Algorithms in Wireless Networks, IEEE Transactions on Parallel and Distributed Sys-
tems, 13(1), (2002) 14-25

8. P, -j. Wan, K.M. Alzoubi and O. Frieder, Distributed Construction of Connected Dominat-
ing Sets in Wireless Ad Hoc Networks, IEEE INFOCOM,2002

9. J. Wu and H. Li, On calculating Connected Dominating Set for Efficient Routing in Ad
Hoc Wireless Networks, Proc. Of the 3 International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, August (1999) 7-14

10. J. Wu and H. Li, Domination and its Applications in Ad Hoc Wireless Networks with
Unidirectional Links, Proc. of International Conference on Parallel Processing , Aug.
(2000) 189-200

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 517 – 526, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Route Error Reporting Schemes for On-Demand
Routing in 6LoWPAN

Won-Do Jung1, Shafique Ahmad Chaudhry1,
Young-Ho Sohn2, and Ki-Hyung Kim1,*

1 Graduate School of Information and Communication,
Ajou University, Suwon, Korea

{yarang, shafique, kkim86}@ajou.ac.kr
2 Dept. of Computer Engineering,

Yeungnam University, Gyungsan, Korea
sohn@yumail.ac.kr

Abstract. Due to their rapid growth and new paradigm applications, wireless
sensor networks are morphing into low power personal area networks
(LoWPANs), which are envisioned to grow radically. To achieve higher
degrees of pervasiveness these LoWPANs must be connected to the wired
networks where most of information resources reside. Integration of IPv6 with
LoWPANs poses many challenges; the hardest of them, probably, is the
difference in packet size. Solution to this problem demands new packet format
definition, packet header compression, and a fragmentation and reassembly
layer. Header compression techniques suggest different schemes including
removal of source node’s address from the packet header. In this paper we
analyze the effects of eliminating the source address from the packet header and
then propose solutions to propagate the route error message (RERR) to the
source even without having the source address. We make use of MAC layer
address for sending the RERR to the previous hop node, back tracking the route
hop by hop, eventually to the source. The simulation results show that the
proposed solutions deliver RERRs to the source even without the source
address.

1 Introduction

Wireless sensor networks are being utilized in wide variety of embedded applications.
These applications include consumer appliances, home automation, monitoring and
control in industrial environments, personal area networks (PANs), and environmental
monitoring and sensing. As a new paradigm PANs are morphing into low power
personal area networks (LoWPANs). Valuable efforts are underway to consider the
outreach of LoWPAN to peer networks and contemporary standardization activities.

The wireless standard IEEE 802.15.4 [1] describes the specifications for
LoWPANs. The standard defines the transmission and reception on the physical radio
channel (PHY), and the channel access, the PAN (personal area network)

* Corresponding author.

518 W.-D. Jung et al.

maintenance, and reliable data delivery (MAC). LoWPANs are low power, low
bandwidth, and low cost networks. LoWPANs have small packet size. The maximum
physical layer frame size is 127 octets. They support IEEE 64-bit extended as well as
16-bit short media access control address. Devices in a LoWPAN are deployed in ad-
hoc fashion and support star and mesh topologies.

While IEEE 802.15.4 provides specifications for physical and link layers, ZigBee
[2] is striving for defining the upper layers over IEEE 802.15.4 especially for sensor
networks. Meanwhile 6LoWPAN [4], a working group of the IETF [3], standardizes
the use of IPv6 over IEEE 802.15.4. The internet draft [5] describes the overview of
6LoWPAN. It portrays the problems, assumptions and goals for transmitting IPv6
over IEEE 802.15.4 networks. It defines two main goals: first, the provision of the
fragmentation and reassembly in the adaptation layer below the IP layer (i.e. sub-IP
layer) and second, the header compression for IPv6 over IEEE 802.15.4. To achieve
the above mentioned goals, a frame format for IPv6 transmission over IEEE 802.15.4
networks is presented in [6]. This work shows the forming of IPv6 link-local
addresses and statelessly auto-configured addresses on IEEE 802.15.4 networks. It
also describes a simple header compression scheme for IEEE 802.15.4. One
interesting thing is that the working group is considering the use of source addresses
in the adaptation layer as optional.

For the routing aspects, LOAD [10] has been proposed in 6LoWPAN. As a
simplified version of AODV [7], LOAD enables multi-hop routing between IEEE
802.15.4 devices to establish and maintain routes in 6LoWPAN. However, it does not
mention any mechanism for sending the route error (RERR) message to the originator
in case of a link failure.

In this paper we analyze the effect of omitting the source address from the
adaptation header and propose back-propagation mechanisms to propagate RERR
messages to the originator. We make use of the MAC layer address for the previous
hop node and use it to send RERR messages, back tracking the route hop by hop,
eventually to the originator. Our mechanism can also be used, with minimum
modifications, to propagate the RERR to all the affected nodes in the network. We
analyze how data rates and transmission patterns affect the RERR propagation when
originator’s address is not known. Results show that our proposed mechanisms work
well as compared to the existing mechanisms for the RERR delivery where the source
address is present in the packet header.

Rest of the paper is organized as follows. We summarize the related work in
section 2. In Section 3 we will elaborate the problem by discussing the issues
involved in transmission of IPv6 over LoWPAN and the effects of not having the
source address in IPv6 packets over IEEE 802.15.4. We propose our solutions in
Section 4 followed by some evaluation results in Section 5. We mention future
research directions and conclude in Section 6.

2 Related Work

We state that there is not much published work in this area. However in this section
we summarize the available significant efforts for routing in 6LoWPAN.

 Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN 519

The Ad hoc On-Demand Distance Vector (AODV) [7] is the most widely used
routing protocol for mobile ad-hoc networks. It has been considered as a strong
candidate for 6LowPAN because of its simplicity for finding routes. It is a loop-free
protocol that conveys the route failure errors to the affected nodes so that nodes can
mark the lost link as invalid. Another important feature is the use of the destination
sequence number for each route entry which helps the node to select the better path,
in case there are multiple routes to the same destination.

Slimmer versions of AODV have also been proposed. AODVjr, a trimmed version
of AODV, has been proposed in [8]. This version removes sequence numbers, hello
messages, gratuitous request reply, hop count, RERR and precursor lists from original
AODV. AODVjr is much lighter than AODV yet gives performance comparable to
AODV. TinyAODV [9] is another example of such work.

LOAD is a simplification of AODV for IEEE 802.15.4. The mesh is established by
layering routing capability underneath IP layer that enables it to create a mesh
underneath and unbeknownst to IP. The simplification suggestions include support of
only those AODV control message types i.e. RREQ, RREP and RERR, and
elimination of hello packets. LOAD assumes the use of either one of the two different
addresses for routing: the EUI-64 address and the 16-bit short address of the
6LoWPAN device. The format of RERR is simplified to include only one unreachable
destination while the RERR of AODV may include multiple ones. LOAD assumes to
have originator’s address and does not discuss the situation where RERR reporting
could be done without having originator address.

3 Problem Description

The integration of IPv6 with IEEE 802.15.4 networks brings some challenges. The
most important issue probably is the difference in packet sizes in the two
technologies. The maximum transmission unit for IPv6 is at least 1280 octets and it
therefore cannot be mapped onto IEEE 802.15.4 frame which has a maximum frame
size of 127 octets at physical layer. This size includes the MAC layer header of 25
octets that gives a frame size equal to 102 octets at MAC layer which in turn may
include a maximum of 21 bytes for security, at link layer level, leaving the minimum
frame size of 81 octets at higher layers. Adding more to the irony, IPv6 header is 40
octets that leaves 41 octets for upper layer protocols, say UDP. UDP uses 8 bytes
header that would leave only 33 octets for application data. This situation demands
for definition of packet formats to be transmitted over IEEE 802.15.4, Header
compression mechanisms and mechanisms for packet delivery in link-layer mesh.

The document [6] describes transmission of IPv6 over LoWPAN. Taking this
document into account lets consider two different scenarios for the single-hop and the
multi-hop packet transmission. In the single-hop packet transmission(the destination
and the source node are in one-hop), the destination and source IP addresses in IPv6
header can be compressed and decompressed by utilizing the layer 2 destination and
source addresses (EUI-64). In the multi-hop packet transmission, the layer 2
destination and source addresses cannot be utilized for the compression and
decompression because they are just hop-by-hop destination and source, not the

520 W.-D. Jung et al.

B

G

C D E

F

A

B

G

C D E

F

A

(a)

(b)

Originator node

Intermediate node

Originator

Connection / Link

Alternate link

Destination node

C

B

D

I

EA

H

G

F

A

(c)

Fig. 1. Routing scenarios

originator and the final destination. This is why final destination field should be
included in the adaptation layer. By utilizing the final destination field (which does
not change hop-by-hop manner), the destination IP address can be compressed in the
IPv6 header. In addition, the routing could happen at the adaptation layer, not in the
IP layer.

The case of the originator address is quite attention-grabbing. Because the working
group is now considering the originator address as optional in adaptation layer. Notice
that the layer 2 source address is not the originator address, but the previous hop
node’s address. If, in case of link failure, route error message is not sent to the
originator it may keep sending the packets without realizing that packets are being
dropped. This situation can degrade the overall network performance and throughput.

Consider the scenario shown in figure 1(a). In this scenario A is the originator and
E is the destination, and route includes nodes B, C and D i.e. A --> B --> C --> D -->
E. In case, the link between C and D is broken as shown in figure 1(b), C could not
report the broken link to the originator by utilizing Route Error message (in AODV)
as the data packet does not have the originator address at the adaptation layer.

The route error message reporting to the originator is necessary in the Mesh
routing because it might incur some performance drops in communication. The
originator might send multiple packets through the broken route without being
notified of the error. If the error is never reported to the originator the packets will be
discarded and originator will never know that they are not being delivered.

Route error reporting can easily be made possible by adding the originator address
in the adaptation layer. This is the originator's 64 bit link-layer address. It can be
considered that the originator address is retrieved from the IPv6 source address at the
IPv6 layer. If the packet is unfragmented, the adaptation layer could extract the
originator address from the IPv6 source address. However if the packet is fragmented,
interior fragments does not have the IPv6 header as a payload. The extraction of the
IPv6 source address at the IPv6 layer could not be possible in that case. Certain
provisions can be made to accommodate or support 16-bit short addresses as well.

4 Back Propagation of Route Errors

We contend that the route error can be sent to the originator even without having the
originator address in the adaptation layer. We propose three schemes, to propagate the
RERR message to the originator, named unicast back propagation, broadcast back
propagation and routing table aware propagation.

 Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN 521

Communication Link

RERR Propagation RouteNetwork node

Originator

Destination node

3

5

6

4

2

1

RERR (d)

RERR (d)

RERR (d)

P(d)

P(d)

P(d)

1

1

2

1

2

3

3

A

C
B

Communication Link

RERR Propagation RouteNetwork node

Originator

Destination node

Fig. 2. Unicast back propagation Fig. 3. Broadcast back propagation

4.1 Unicast Back Propagation

The main idea is to propagate the route error message using the hop-by-hop backward
traversal. The node which finds a link break must notify its predecessor node about
the link failure. The predecessor deletes that route entry from its routing table and
notifies its preceding node when it receives next data packet for the same destination.
Thus the route error will be propagated back to the originator. If there are n hops
between the originator and the node that first detects the link breakage, it will take n
steps to notify the originator. The propagation process is shown in Fig. 2. We assume
that the communication path between the originator and the node noticing a link
failure remain intact during the propagation process. Simulation results confirm that it
shows almost similar performance to the case where the sources address is available.
The basic algorithm is depicted in Fig. 4.

Legend: P(p,d) : Data packet P, received from previous hop node ‘p’ for the destination ‘d’
E(d,n) : Route entry for destination node ‘d’ , node ‘n’ is the next hop node
RERR(d): Route error message notifying a link failure for node ‘d’

Begin Proc
If a node receives P(p,d)

If there is an E(d,n) in Routing Table
Send P(d) to n
If a link failure was notified by MAC Layer

//Initiate the RERR reporting procedure
Unicast RERR(d) to p
Discard P(d)

End If
Else //there is no E(d,n) in Routing Table

Unicast RERR (d) to p
End if

End if
If a node receives RERR(d)

Discard RERR(d)
End if

End Proc

Fig. 4. Unicast-back propagation algorithm

522 W.-D. Jung et al.

4.2 Broadcast Back Propagation

It works similar to the unicast back propagation except the failure detector node
broadcasts the route error message to its single hop neighbors. The neighbors update
their routing tables by deleting this destination’s route entry. In case any of these
neighbors receives a packet for the very destination it will broadcast the route error

Legend: P (p,d) : Data packet P, received from previous hop node ‘p’ for the destination ‘d’
E(d,n) : Route entry for destination node ‘d’ , node ‘n’ is the next hop node
RERR(d): Route error message notifying link failure for node ‘d’

Begin Proc
If a node receives P(p,d)

If there is an E(d,n) in Routing Table
Send P(d) to n
If a link failure was notified by MAC Layer

//Initiate the RERR reporting procedure
Broadcast RERR(d) in one hop
Discard P(d)

End If
Else //there is no E(d,n)

Broadcast RERR(d) in one hop
End If

End if
If a node receives RERR(d)

Delete E(d,k) from Routing Table
End If

End Proc

Fig. 5. Broadcast back propagation algorithm

Legend: P (p,d) : Data packet P, received from the previous hop node ‘p’ for the destination ‘d’
E(d,n) : Route entry for the destination node ‘d’ , node ‘n’ is the next hop node
RERR(d,h) :Route error message notifying a link failure for the destination ‘d’ where ‘h’ is

the hop count from the node initiating the RERR to ‘d’
HC(n,d) :Hop count from node ‘n’ to the destination ‘d’

Begin Proc
If a node receives P(p,d)

If there is an E(d,n) in Routing Table
Send P(d) to n
If a link failure was notified by the MAC Layer

//Initiate the RERR reporting procedure
Broadcast RERR(d,h) in one hop
Discard P(d)

Else //there is no entry E(d,n) in Routing Table
Broadcast RERR(d,h) in one hop

End if
End if

End if
If a node receives RERR(d,h)

If (there is an E(d,n) in Routing Table) AND (HC(n,d) > h)
Delete E(d,k) from RT
Broadcast RERR(d,h) in one hop

Else
Discard RERR(d,h)

End If
End if

End Proc

Fig. 6. Routing table-aware back propagation algorithm

 Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN 523

message and thus the route error will be propagated back. The process is depicted in
Fig.3 and the algorithm is presented in Fig. 5. It may take the same time as the unicast
back propagation mechanism to notify the originator but it generates more traffic.
This scheme works well in the situation where multiple nodes are forwarding data
through the same link. Such a scenario is shown in Fig. 1(c) where nodes A, F, G and
B are the originators and E is the destination. In such case, the broadcast of route
errors from B can stop any further packet loss for nodes A, F, G and H.

4.3 Routing Table Aware Propagation

This technique tries to exploit the conviction that if route error is propagated to all the
potentially affected nodes then the future packet loss, which could occur by sending
packets on failed link, can be saved. Fig. 7 shows that when a node finds a link failure
it broadcasts the route error message to its single hop neighbors. All the nodes that
have the route entry for the destination, upon receiving this route error message, will
delete the route entry for this specific destination and broadcast the message again
towards the nodes closer to the originator. The algorithm is described in Fig. 6.

5 Simulation and Evaluation

We have evaluated our propagation schemes using ns-2 simulations. We have
modified AODV to incorporate our schemes. Though simpler versions of AODV
have been suggested for 6LoWPAN but we use the original version because the
relevant parts of AODV and its slimmer versions are similar. We have simulated our
schemes for a scenario of one hundred 6LoWPAN nodes. The simulation setup
details are given in Table 1. We have examined many metrics including delivery
ratio, throughput, end-to-end average delivery time, and number of route error
messages in order to analyze the impact of the back propagation. The results show
that our algorithms improve the throughput and packet delivery ratio as compared to
the situation when there is no provision for RERR propagation, in case of route
failures, when a source address is not present. However, the use of these schemes is a
tradeoff between putting a source address in the packet header and the system
performance.

5.1 Delivery Ratio

It is defined as the percentage of packets delivered to the destination over total
packets transmitted. Fig. 7 shows the effectiveness of our schemes, especially unicast
back-propagation mechanism. It shows that the performance of unicast back
propagation is close to that of AODV. Packet delivery ratio improves with the use of
back propagation as compared to the case where no mechanism for propagating the
route error message is present. This improvement can be explained by the fact that
RERR message delivery to the originator stops further packet loss and thus improves
the delivery ratio.

524 W.-D. Jung et al.

Table 1. Simulation setup

PARAMETER Measurements
Area 117m * 117m
Total number of nodes in simulation 100
Total time of simulation 100s
Node's transmission range 15m
Protocol AODV
Traffic type CBR
RREQ packet size 36
RREP packet size 40
Inter-packet transmission delay 0.05 ~ 0.5s
Node transmission power 0.28J

Delivery Ratio

0

10

20

30

40

50

60

70

80

90

100

0.05 0.1 0.2 0.5

Inter Packet Delay (Sec)

aodv

broadcast back

propagation
nosource

rtaw are

unicast back propagation

Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.05 0.1 0.2 0.5

Inter Packet Delay (Sec)

aodv

broadcast back
propagation
nosource

rtaware

unicast back
propagation

Fig. 7. Packet delivery ratio Fig. 8. Throughput

5.2 Throughput

Throughput is the total number of packets delivered to the destination during the
simulation time. Our schemes show almost same performance as AODV when the
data rate is low. The performance of back propagation deteriorates a little when the
transmission rate is high. It can be explained by the fact that there can be more data
packets in the queue which are not delivered when a link failure occurs, and
throughput decreases. Fig. 8 shows that unicast back propagation gives better
performance than other propagation schemes. The main reason is that it generates less
RERR traffic. The routing table-aware back propagation shows the lowest throughput
because it generates the highest RERR traffic. However, the throughput is always
better than having no mechanism for RERR notification.

5.3 End to End Average Delivery Time

Average end-to-end delivery time for our schemes is higher than AODV for low data
rates, but the performance improves for higher data rates. When data rate is low, the
propagation of RERR takes more time because each notification to the previous nodes
needs more time, which increases the recovery time, especially in the absence of

 Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN 525

E2E avg time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.05 0.1 0.2 0.5

Inter Packet Delay (Sec)

aodv

broadcast back

propagation
nosource

rtaw are

unicast back propagation

Number of rerr

0

500

1000

1500

2000

2500

3000

0.05 0.1 0.2 0.5

Inter Packet Delay (Sec)

aodv

broadcast back

propagation
nosource

rtaw are

unicast back propagation

Fig. 9. End-to-end average delay Fig. 10. Number of RERR messages

originator address. This increase in recovery time increases the average delivery time.
Fig. 9 shows the end-to-end average delivery time results.

5.4 Number of RERR Messages

Routing table-aware back propagation generates the highest number of RERR
messages. This scheme works well in certain static network environment where the
link states do not change dynamically and thus routing tables maintain their state for a
longer time span. In that case, once a change occurs, all the routing tables are pretty
consistent and this can reduce the further packet loss. However, in highly dynamic
environments it causes a great traffic overhead. Fig. 10 shows that number of RERR
messages generated by the unicast back propagation is lower than AODV. The reason
is that this scheme uses only unicast that generates less traffic of RERR messages. It
shows that the unicast back propagation scheme has very low overhead in terms of
control traffic generation.

6 Conclusion

Rapid growth of low power personal area networks has initiated a new paradigm to
integrate IPv6 with IEEE 802.15.4. Transmission of IPv6 over LoWPAN has many
advantages as well as challenges ahead. Definition of new packet formats and header
compression are the core issues in 6LowPAN. We have analyzed the situation in
which originator address is not provided in the packet header and thus no RERR
message is delivered to the source. We have proposed back propagation mechanisms
to propagate RERR message without having source address. The simulation results
show that unicast back propagation mechanism shows performance almost equal to
the AODV. Other mechanisms, however, show better performance in specific
scenarios. Finally, our mechanisms improve the packet delivery and throughput by a
considerable margin.

References

1. IEEE LoWPAN Standard 802.15.4-2003 http://standards.ieee.org/getieee802/ 802.15.html
2. ZigBee Alliance http://www.zigbee.org

526 W.-D. Jung et al.

3. Internet Engineering Task Force http://www.ietf.org/
4. IPv6 over Low Power WPAN Working Group http://www.ietf.org/html.charters/

6lowpan-charter.html
5. N. Kushalnagar, G. Montenegro, “6LoWPAN: Overview, Assumptions, Problem

Statement and Goals", draft-ietf-6lowpan-problem-01 (work in progress), Oct 2005
6. G. Montenegro, N.Kushalnagar, "Transmission of IPv6 Packets over IEEE 802.15.4

Networks",draft-ietf-6lowpan-format-01 (work in progress), Oct 2005
7. Charles E. Perkins and Elizabeth M. Royer, “The Ad hoc On-Demand Distance Vector

Protocol” In Charles E. Perkins, editor, Ad hoc Networking, pages 173–219. Addison-
Wesley, 2000.

8. Chakeres, Ian and Klein-Berndt, Luke, "AODVjr, AODV Simplified", ACM SIGMOBILE
Mobile Computing and Communications Review pp. 100-101, July 2002.

9. TinyAODV Implementation, TinyOS Source Code Repository http://cvs.sourceforge.
net/viewcvs.py/tinyos/tinyos-1.x/contrib/hsn/.

10. K. Kim, S.D. Park, G. Montenegro, S. Yoo,"6lowpan Ad Hoc On-demand Distance Vector
Routing (LOAD) ", draft-danial-6lowpan-load-adhoc-routing-01 (work in progress) July
2005.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 527 – 536, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Are Low PANs a PAN or an Internet of PANs?

Ki-Hyung Kim* and Ali Hammad Akbar

Graduate School of Information and Communication, Ajou University, Suwon, Korea
{kkim86, hammad}@ajou.ac.kr

Abstract. ZigBee has recently emerged as a widely recognized forum that is
formalizing IEEE802.15.4 devices for interoperability and compatibility
amongst a number of vendors and designers. Under the auspices of IETF
working group of 6lowPAN, efforts are underway to provide interconnectivity
between low powered IEEE802.15.4 devices and wired IPv6 domain. Besides a
plethora of interoperability issues, routing stands out as a challenging
consideration. In this paper, we have discussed the routing approaches adopted
in current ZigBee device specifications and existing work under the 6lowPAN
charter. We describe, through a protocol, how to involve gateways in routing
functionality in 6lowPAN networks. Through NS2-based simulation study, our
performance analysis amenably supports the applicability of our protocol.

1 Introduction

Sensor devices are increasingly being used for monitoring and control applications in
industrial environments by forming networks. Wireless sensor networks have been
found to be of unprecedented applicability both in consumer electronics as well as
home automation.

A relatively fresh wave in sensors-associated technologies has heralded even wider
industrial applications. Efforts such as IEEE802.15.4 standard are geared to reduce
costs, provide device customizability for diverse applications, and make room for
inter-operability. Aimed at low data rate applications, industrial research is exploring
possibilities of reaching at consensus and uniformity under the name and brand of
ZigBee. A substantial cut is already being experienced in capital and recurrent costs of
industrial systems by deploying IEEE802.15.4 devices that are ZigBee ready in a
broader spectrum of environments [1].

While IEEE802.15.4 devices are considered for internet connectivity, Internet
Protocol version 6.0 had emerged as a more powerful candidate. The merger of two
networking paradigms gives rise to unprecedented issues and challenges. From
address assignment to address management; from device discovery to network
management, and from definition of packet formats to routing considerations, there
are so many issues demanding to be researched into.

In this paper, we focus on the routing considerations in ZigBee and 6lowPAN. We
discuss ZigBee’s support for mesh routing. We also present notable efforts in routing

* Corresponding author.

528 K.-H. Kim and A.H. Akbar

protocol design for 6lowPANs. This leads to our proposal for a gateway assisted
routing framework and suggested enhancements in very recent 6lowPAN routing
scheme proposed by the same author.

The remainder of the paper is as the following. In section 2, we summarize the
work reported so far on IEEE802.15.4, and its inherent support for intra-PAN mesh
routing. In the same section, we present a run-down of 6lowPAN and compare it with
ZigBee. In section 3, we present an application scenario that forms the basis of inter-
PAN routing. Section 4 presents a simple yet efficient scheme for augmenting routing
framework of 6lowPAN through gateways. Section 5 presents gateway assisted
routing protocol. In section 6, we present the performance result. Finally in section 7,
we conclude our work and suggest future directions.

2 Related Work

This section describes the building blocks that form 6lowPAN and the 6lowPAN
issues and considerations. Their respective support for mesh routing and upcoming
challenges in inter-PAN routing are also discussed.

2.1 IPv6

In order to understand the basis of forming an odd combination between
IEEE802.15.4 and IPv6, it is appropriate to consider motivations and envisioned
service areas that have led to the selection of IPv6. The following is a listing of
justifications for IPv6 suitability:

Extremely large address space: IEEE802.15.4 devices are expected to be abundant
and pervasive. For retrieving and sharing contexts and information, these devices
must have access to internet. An exceedingly large address space of Valid IP addresses
can be provided only through IPv6 addressing scheme.

NAT devices obviated: Table driven translation to/from network addresses to local
addresses is no more needed since each device has a unique IPv6 address. It is an
immediate relief for sensor network designers and financiers.

Statelessness mandated in IPv6: Due to abundance and limited lifetime of low cost
IEEE802.15.4 devices, it is a valid assumption that nodes shall not be manually
configured. Similarly, maintaining a robust and extremely scalable configuration
service is not a cost-effective proposition. IPv6 provides an all-encompassing solution
through stateless address auto configuration.

Provision for location aware addressing: In IPv6 classless addressing scheme,
there is greater freedom to tweak address space according to user and network needs.
For example, location aware addressing can be tailored using IPv6 addresses.

2.2 IEEE802.15.4 and ZigBee

ZigBee Alliance is developing a very low-cost, very low power consumption, two-
way, wireless communications standard. The ZigBee stack architecture builds on top

 Are Low PANs a PAN or an Internet of PANs? 529

Physical Layer (IEEE802.15.4)

MAC Layer (IEEE802.15.4)

Network (NWK) Layer

Application Framework ZigBee Device

Application Support Sub layer

Application Layer

Fig. 1. Architecture of ZigBee stack built on IEEE802.15.4 layered model

of the 802.15.4-2003 layers as shown in Fig. 1. The alliance provides the network
(NWK) layer and the framework for the application layer. It includes the application
framework sub layer, ZigBee device object sub layer, and the application support sub-
layer (APS).

IEEE 802.15.4-2003 has two PHY layers that operate in two separate frequency
ranges: 868/915 MHz and 2.4 GHz. The IEEE 802.15.4-2003 MAC sub-layer controls
access to the radio channel. Its responsibilities may also include transmitting beacon
frames, synchronization and providing a reliable transmission mechanism. NWK
layer includes functionalities for joining and leaving a network etc. In addition, the
discovery and maintenance of routes between devices are done at the NWK layer too.
Detailed functionalities of each layer is given in [3].

2.3 6lowPAN

IEEE802.15.4 devices that are implementing the ZigBee stack will form networks that
allow devices to share services within the PAN environment. However, neither of the
documents on IEEE802.15.4 and ZigBee specifies the details for cross-PAN
communication.

In [2], Montenegro defines the frame format that will be used for transmission of
IPv6 packets on top of IEEE 802.15.4 networks.

Sub-IP Adaptation Layer (Segmentation and Reassembly)

Network Layer (IPv6)

Transport Layer (TCP/UDP)

Application Layer

Physical Layer (IEEE802.15.4)

MAC Layer (IEEE802.15.4)

Fig. 2. Incorporated Sub-IP layer in IPv6 stack

530 K.-H. Kim and A.H. Akbar

A minimum IPv6 Maximum Transmission Unit (MTU) is 1280 Bytes. On the
contrary, in the IEEE802.15.4 domain, a payload as low as 81 bytes is available. As
shown in Fig. 2, Montenegro introduces a sub-IP layer that serves as an adaptation
layer in IPv6 stack. This document however stops short of giving any description of
inter-PAN routing. The following is a summary of other important issues that require
being resolved for realizing a 6lowPAN.

Unique Interface Identifier: Since the native addressing schemes in IPv6 domain
and IEEE802.15.4 domain are different, a unique inter-face identifier is signified that
provides mapping to IPv6 addressing scheme. Similarly, a need is highlighted to infer
PAN id from IPv6 prefix such that one PAN maps to a unique IPv6 link.

Header compression schemes: Montenegro in [2] suggests compression schemes
with and without the usage of preliminary context exchange. In order to fully exploit
compression, encoding of IPv6 header fields is also specified.

3 Multi-hop Routing Scenario for 6lowPAN

The motivation of the following scenario is to signify the fact that 6lowPAN routing
needs the concept of routing to extend from intra-PAN to inter-PAN.

Fig. 3 shows an air-condition management system that regulates the temperature of
a building through a 6lowPAN enabled controller. The controller accesses through the
internet, the meteorological station such as www.ncds.noaa.gov for latest weather
forecast. It adjusts the temperature and humidity of the entire building accordingly.
Now, imagine a user, a flu-stricken person approaching room ‘A’. His preferences are
spelled out in his PDA that is part of his PAN, viz. the PAN 3. The prescribed settings
include different HVAC settings as to those in place. However, PAN 3 cannot access
the air-condition system in PAN 1 directly. There is a need to discover routes to PAN
1. As shown in Fig. 3, a route is only possible through PAN 2. A route is discovered
and selected for PAN 1-PAN 3 routing. Finally, inter-PAN communication follows
and user preferences are applied for room A.

Fig. 3. Inter-PAN and cross-PAN communication scenario

 Are Low PANs a PAN or an Internet of PANs? 531

3.1 Routing Support in 6lowPAN and ZigBee

In 6lowPAN environments, limited processing capability, battery constraints, and
low data rate make the choice from existing pool of routing schemes very limited.
AODV [4] has been identified to be a viable choice in reactive routing protocols for
such networks. Basic modifications required for adapting Ad hoc On Demand Distance
Vector Routing (AODV) protocol for 6lowPAN are described in [5].

LOAD [6] and all the routing protocols proposed so far assume no role,
whatsoever, of gateways in routing and data delivery within the 6lowPAN
environment. In this paper, we argue through scenarios that gateways can be utilized
for the same purpose.

In the next section, we state the literal role of gateways in context to the realization
of 6lowPAN; connectivity with global IPv6 network. Subsequently, we look at the
scenarios where the role of gateways may be extended. We finally move onto
interesting application scenarios.

4 Usage of Gateways for 6lowPAN

Can the gateways be used for 6lowPAN routing and data delivery as shown in Fig. 4?
An alternate path to all-the-way-wireless path is available as source>Gateway
X>Gateway Y>Gateway Z>Destination 1, that offers better routing metric. It is
unbeknownst to the source. Such a scenario poses an interesting question; Are Low
PANs a PAN or An Internet of PANs?

In the next sections, we propose modifications to the basic functionality of
gateways. These allow the gateways to be part of routing activity and data delivery
within the lowPAN, thereby increasing routing performance of 6lowPANs.

Fig. 4. Overlapping PANs with multiple gateways

532 K.-H. Kim and A.H. Akbar

5 Gateway-Assisted Inter-PAN Routing for 6lowPANs

As described in section 4, utilizing gateways for inter-PAN routing is expected to
yield paths that are robust and have better network parameters. In this section, we
present a routing protocol that makes gateways usable for hypothesized routing
functionality.

Gateways usually comprise multi-board systems with unlimited power supply.
They are connected through usually a high-speed wired network to IPv6 domain.
Equipped with enough memory size and processing capability, gateways can afford to
implement larger code spaces than IEEE802.15.4 devices. As a precondition, we
assume that multiple gateways are deployed across 6lowPAN for load balancing.

We propose a simple operational strategy that allows a gateway to exhibit desired
functionality.

5.1 Operation

The central idea of gateway-assisted routing pivots around modification to RREQ
packet format used for route discovery. We propose to modify the RREQ packet to
incorporate the hop count from the RREQ source to the default gateway. Any existing
routing protocol can be enhanced to incorporate our functionality that we propose. For
the scope of this paper, we modify RREQ packet format of LOAD [6] as shown in
Fig. 5 (a) to the packet format shown in Fig. 5 (b).

Type
(8)

R
(1)

D
(1)

O
(1)

Reserved
(5)

RREQ ID
(8)

Route cost
(8)

Link layer destination address (16 or 64)
Link layer originator address (16 or 64)

(a)

Type
(8)

R
(1)

D
(1)

O
(1)

HopstoG
twy (5)

RREQ ID
(8)

Route cost
(8)

Link layer destination address (16 or 64)
Link layer originator address (16 or 64)

(b)

Fig. 5. Original and modified RREQ packet formats for LOAD

Table 1 summarizes the description of all the fields in Fig. 5 (a) and (b).
The additional field of HopstoGtwy allows originator of RREQ to notify the

destination about its distance from its default gateway. The destination of RREQ
already knows its distance from its default gateway. On receipt of this information, it
can decide either to form a usual all-the-way wireless path or form a path through the
gateway by sending RREP either through the all-wireless path or wireless-wired-
wired path.

 Are Low PANs a PAN or an Internet of PANs? 533

Table 1. Description of fields of Fig. 5

Field Description
Type 1 for indicating a RREQ message
R 1 Local Repair
D 1 for the 16 bit address of the destination

0 for the EUI-64 address of the destination.
O 1 for the 16 bit address of the destination

0 for the EUI-64 address of the destination.
Reserved Unused
RREQ ID A sequence number uniquely identifying the particular

RREQ when taken in conjunction with the originator
Route cost The accumulated link cost of the reverse route from he

originator to the sender of the RREQ
Link layer
destination address

The 16 bit short or EUI-64 link layer address of the
destination for which a route is supplied

Link layer Originator
Address

The 16 bit short or EUI-64 link layer address of the node
which originated the Route Request

HopstoGtwy Hop distance of the node to default gateway
(Each bit can represent either one hop or a prespecified
range of hops)

5.2 Implications on HopstoGtwy

In our proposal, we are exploiting the presence of 5 reserved bits in RREQ packet
format. This allows us to encode information upto 32 hops if each 5-bit code point
represents a hop. This code-point represents per se fails to encode hop count that may
go up to 128. Nonetheless, this anomaly can be addressed by making the code-point
representation more flexible, e.g., each bit can represent a range of hops. An intuitive
relationship between code-point representation and number of gateways can be
established using Table 2. Network designers can define code-point representation in
a flexible way by utilizing known information such as network diameter in number of
hops and the total number of gateways they plan to deploy.

Table 2. Flexible code-point representation scheme

Number of deployed
gateways

Code-point representation
(Per code point)

HopstoGtwy
representation (in hops)

2 4 128
3 3 96
4 2 64
>4 1 32

5.2.1 Advertisement-Based Gateway Selection for PAN Registration
Since, there are multiple gateways, nodes can select either of the gateways to be
default. Default gateways make RREQ processing both at the sender and receiver

534 K.-H. Kim and A.H. Akbar

more efficient. We propose the gateways to use announcements to advertise their
presence. Announcements help IEEE802.15.4 devices to discover and identify
gateways through their IDs. The scope of gateway advertisement message can be
controlled by specifying the time to live (TTL) field. For two gateways deployment
scenario, we simulate (in later section) for the advertisement scope to be half the
network diameter, measured in number of hops. More specifically, if the network has
a maximum diameter of n hops, advertisement message shall be broadcast to (n+1)/2.
This also justifies the relationship between RouteCostMax of 256 bits and
HopstoGtwyMax of 128 bits.

Incase, a node receives more than one advertisement, we propose that node choose
gateways that are at the closest hop distance to them. Usually, the gateway closer to
the PAN shall be nominated as the default. The information about default gateway can
be as short as gateway-ID in the neighbour table [3].

6 Performance Evaluation

We have implemented our routing protocol in network simulator [NS-2] by modifying
the AODV implementation by University of Uppsala. Table 3 shows the list and
values of parameters we have adopted to adjust.

Table 3. List of parameters for simulation

Parameter Values
Area size of simulation: 380m * 60m
Total number of nodes in simulation: 3hop : 15 30hop : 150
Total time of simulation: 100s
Node's transmission range: 15m
Packet or frame error rate: Relative delivery rate
Data rate: Decide by graph
Data packet size: 70 Bytes
Traffic type: Constant bit rate
RREQ packet size: 36
RREP packet size: 40
Inter-packet transmission delay: Decide by graph
Node transmission power: 0.28J

When a link fails to respond to a data packet (i.e., a node does not generate link
layer acknowledgement), a RERR message is generated. Fig. 6 shows the total
number of RERR messages generated during the simulation time. Gateway-assisted
routing offers robust paths with better link qualities as compared to all-the-way
wireless routes, therefore a significant difference is observed in the count of RERR
messages.

Fig. 7 shows delivery ratio as the total number of packets delivered to the total
number of packets transmitted. Gateway assisted routing shows considerable

 Are Low PANs a PAN or an Internet of PANs? 535

packet send delay(s)

of

 R
E

R
R

All wireless

via GW

Fig. 6. Number of RERRs generated due to link failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.02 0.03 0.04 0.05 0.06

pa c ke t s e nd de la y(s)

Al l wi r e l e s s

via GW

Fig. 7. Delivery ratio of data packets

performance gain at higher data rates because collisions are more common at higher
data rates in wireless domain reducing overall throughput. At lower data rates, i.e.,
when the inter-packet delay increases, the performance of both the schemes seems to
equalize.

7 Conclusion

In this paper, we have presented the considerations, issues, and challenges in routing
over 6lowPAN domain. We have presented previous work on mesh routing in ZigBee
and 6lowPAN for intra-PAN communication. We present work done in the form of
LOAD, a light weight version of AODV for 6lowPAN. We ascertain that lowPANs
form an internet of PANs instead of forming a single PAN due to the inherent working
of underlying physical and datalink layers.

We then move on to discuss the role of gateways in cross 6lowPAN routing, and
determine its feasibility for intra-PAN routing by proposing our scheme. We have
simulated the purported protocol and analyzed the results to support the hypothesis.

536 K.-H. Kim and A.H. Akbar

References

1. Egan, D.: The emergence of ZigBee in building automation and industrial control.
Computing and Control Engineering Journal. vol. 16, iss. 2, (2005) 14-19.

2. Montenegro, G.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. Draft-ietf-
6lowpan-format-00.txt, (work in progress). (2005).

3. ZigBee Specifications, ZigBee Document 053474r06. ver. 1.0 (2005). ZigBee Alliance.
4. Charles, P. Elizabeth B. R. Samir D.: Ad hoc on-demand distance vector (AODV) routing.

(2003). IETF Internet RFC 356.
5. Gabriel, M. Nandu, K.: AODV for IEEE 802.15.4 Networks. Draft-montenegro- lowpan-

aodv-00, (work in progress). (2005).
6. Kim, K, H. Park, S, D.: Gabriel, M. Yoo, S. 6LowPAN Ad Hoc On-demand Distance Vector

Routing (LOAD). Draft-daniel-6lowpan-load-adhoc-routing-01.txt, (work in progress).
(2005).

7. Kim, K, H. Yoo, S. Kim H. Park, S, D. Lee, J.: Interoperability of 6LowPAN. Draft-daniel-
6lowpan-interoperability-01.txt, (work in progress). (2005).

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 537 – 546, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ensuring Secure and Robust Grid Applications – From
a Formal Method Point of View*

Ke Xu, Yuexuan Wang, and Cheng Wu

Department of Automation, Tsinghua University, Beijing, China, 100084
xk02@mails.tsinghua.edu.cn,

{wangyuexuan, wuc}@tsinghua.edu.cn

Abstract. Ensuring the reliability and robustness of complex scientific grid ap-
plications is a critical issue for managing and sharing expensive scientific in-
struments. However, guaranteeing the correct processing of grid applications
under all circumstances is difficult and not fully addressed by existing grid in-
frastructure. Hidden flaws in the applications including unexpected internal
behaviors, dissatisfaction of real-time constraints, incompatibility in service in-
teractions, etc may lead to subtle failures in grid systems. This work tries to en-
hance the trustworthiness of grid applications by investigating existing formal
techniques and their extensions. A formal framework based on extensions of Pi
calculus is proposed which also integrates formal techniques of model checking
and bisimulation analysis to enable the reasoning of grid applications from three
perspectives: data, time and behavior. In addition, both application examples
and our current implementation architecture are also concluded.

1 Introduction

Grid computing is becoming a key infrastructure to manage and share geographically
distributed resources to collaborate on solution of complex scientific and engineering
problems[1]. Consequently, building reliable grid applications, which is regarded as
the realization of pre-planed scientific experiments by the cooperative composition of
grid services, is a critical issue for the efficient large scale sharing of expensive grid
resources. However, compared to the existing works on grid “enabling” techniques
including grid workflow enactment, job scheduling etc, much less efforts have been
made to the grid “ensuring” techniques that ensure the robustness of the developed
grid applications and probe their hidden flaws that can lead to subtle failures in grid
systems. However, special characteristics of grid systems impose additional chal-
lenges in modeling and analyzing grid applications: (1) Service oriented: In order to
guarantee the trustworthiness of a grid application, not only the complex and dynamic
interactions among services need to be precisely captured, but also these interactions
should be asserted to follow expected behavioral constraints; (2) State / action hybrid:
This feature is best explained by the WSRF specification with a motivation addressed
in [2]. The introduction of stateful resources enables the life cycle management of
resource states, and consequently the connections between system actions and states

* Supported by China ‘‘211 project’’‘‘15’’ construct project (CERS-219899004).

538 K. Xu, Y. Wang, and C. Wu

now need to be considered for grid application reasoning. (3) Dynamic evolution: The
selection of underlying physical services for specific tasks may constantly evolve over
time from run to run of a same grid application.

In this work, a Pi calculus[3] based framework integrating existing formal modeling
and verification approaches and their extensions is proposed to address the above
problem for grid application development. The main contribution of the work can be
concluded as follows: (1) Based on the conclusion of existing reliability issues that
are not fully addressed in current grid infrastructures, we show how existing formal
techniques can be integrated to provide them an effective solution; (2) Pi Calculus and
its possible extensions are evaluated and applied to model and reason grid applica-
tions from data, time and behavior perspectives. A unified formal framework is also
formed to provide a theoretical foundation for our solution; (3) Example applications
and our current implementation prototype is demonstrated to show how our formal
framework can be applied to enhance the trustworthiness of grid applications.

The rest of the paper is organized as follows. Section 2 advocates the application of
Pi calculus in grid application reasoning. In section 3, useful extensions of Pi calculus
and existing formal verification techniques are integrated in a formal framework to
reason about different reliability and consistency aspects in a grid application with
example scenarios. Section 4 shows our current prototype implementation based on
the framework. Section 5 concludes the paper.

2 Why Pi Calculus

Nowadays few will challenge the necessity of providing a formal foundation for com-
plex software systems to clarify its ambiguity and facilitate its reasoning. In grid com-
puting, [4] first successfully provides a precise formal definition of grid system to
unambiguously identify its essential characterizes that differs to traditional distributed
computing systems. In [5], the formalization of a grid workflow enactment model is
proposed with Gamma calculus as a basis for its realization. In this work we choose and
advocate the use of (polyadic) Pi calculus[3] as the formal basis for grid applications. Pi
calculus is reputed for its compositionability and mobility and has already been ac-
cepted as one promising candidate for modeling and reasoning traditional business
processes [6]. By compositionability, it means there is a natural mechanism in Pi calculus
for building system/service by the composition of its sub-components /sub-services. By
mobility, it means Pi calculus is capable of modeling dynamic evolving systems like
grid with its name passing and renaming capability. The dynamic selection of underly-
ing physical service to fulfill a specific task in grid applications and the constant chang-
ing of interactions among grid services are typical mobility issues[3] that Pi Calculus
addresses. As a matter of fact, there have already been existing works that argue the
suitability of Pi calculus as a component composition language[7] and appeals its appli-
cation in the describing and reasoning of web service coordination[8]. The complete
syntax and transition semantics of Pi calculus can be found in [3]. We will introduce in
the next two sections how extensions of Pi calculus, together with existing formal tech-
niques including model checking[9] and bisimulation analysis can be applied and
integrated to reason about the reliability of grid applications according to the three per-
spectives in figure 1.

Ensuring Secure and Robust Grid Applications – From a Formal Method Point of View 539

Temporal

D
at

a

Behavioral

Ensuring Data
Avalability

State Assertion
During Application

Execution

Interaction Satisfies
Pre-defined Protocols

IO Compatibility
Between Interactions

Reasoning Temporal
Behavior of Grid Application

Real-time Constraints on
Application Execution Pi Calculus with State

Manipulation

P
i C

al
cu

lu
s

w
it

h
 S

ta
te

M

an
ip

u
la

ti
o

n

Type System for
Service

Composition

Bisimulation
Analysis

Real-ti
med

Pi C
alculus

Type

Syste
m

Model

Checking

Fig. 1. A Fomal Framework for Reasoning Grid Applications

3 Formal Framework for Ensuring Reliable Grid Applications

3.1 An Overview

In figure 1, our formal solution framework based on Pi calculus extensions and the
integration of existing formal verification techniques is proposed to address the ensur-
ing aspects that are not yet fully analyzed in existing grid middlewares in three per-
spectives (data, behavioral and temporal). Data perspective ensures that in specific
execution step of the application (e.g. when certain service is invoked or finished),
indispensable states are well preserved (e.g. necessary data in specific format have
been staged in). Behavioral perspective concerns whether the interaction among ser-
vices follows desired protocols in a grid application, e.g. whether the inputs of a ser-
vice can be provided in a pre-defined order by all its preceding services. In temporal
perspective, we consider the necessary temporal constraints put on the global behav-
ior of a grid application, e.g. certain resource must be always accessible within some
time intervals or before specific operations. Although the aspects concluded in
figure 1 may not be complete, in our experience we consider them as most common
requirements in building reliable grid applications that are out of the concern of exist-
ing grid middleware. Correspondingly in the framework, the internal behavior of grid
applications and its interconnection with system states and data is precisely captured
with state operators that are extended into original Pi calculus. In addition, existing
works on timed Pi calculus and type systems for component composition are also
integrated to handle the analysis of real time behavior of grid applications and the
reasoning of the correct composition of grid services.

After a specific grid application is formally modeled with the extensions of Pi cal-
culus foundations, all possible behaviors and interactions in grid application can be
deducted into a transition system with also the encoding of related information of
data, time and resource states. The deduction ensures that expected states will always
hold in specific execution steps of the grid application and the access of grid re-
sources through service invocation is following expected protocol since these correct-
ness requirements have been encoded in the semantics of Pi calculus models. Besides,
it is based on the deducted transition system that other formal verification techniques
including model checking and bisimulation analysis can further be integrated to ana-
lyze the global property of the grid applications. Model checking approach is applied

540 K. Xu, Y. Wang, and C. Wu

to verify that the invocation of different grid services and the access of different grid
resources comply with pre-defined temporal constraints. On the other hand, bisimula-
tion analysis is used to testify the consistency between the concrete implementation of
the grid application with its abstract designs so as to ensure that all the user require-
ments that are addressed in their designs are truly implemented.

3.2 Reasoning Grid Applications with Pi Calculus Extensions

3.2.1 Managing Life Cycles of System States
The introduction of stateful resources into web services facilitates the management of
dynamic interactions among grid services. Figure 2 shows an example of typical
states that are considered in a grid service. Enabling the management of system states
imposes more challenges in reasoning about the composition of services in grid since
historical state information is now accessible to instruct the behavior of service inter-
action. In Pi calculus, the life cycle management of system states can be modeled by
extending specific operators for state creation, insertion and destruction.

Start Stage In Active

Pending Failed

Stage Out

Clean

Done

 Fig. 2. State Transitions for Services in Grid Systems

A system state is defined as the valuation of a set of variables, S: V D, where V
is the set of system variables and D defines the universe in which V range over.
Therefore, input/output actions π in Pi calculus can be further equipped with a pair
{Op, S}, where Op indicates a specific state operator and S indicates the new state
value that is to be operated on the current system state. In order to enable the life
cycle management of system states, at least two types of state operations are needed,
that is, state creation (+) and state destruction (-). An additional state update operator
can also be defined by the sequential combination of state destruction and creation
(destroy first and then create). Without loss of generality, we assume the state associ-
ated with an action has only one variable v and the current system state is
SS:{v1,…,vn} D. Their formal semantics can thus be defined as follows.

1 1

1 1 1 1

1

1 1

:{ ,..., } (1,...,) :{ ,......, } ({1,..., })

{ ,......, , } { ,..., , ,..., , }
:{ ,......, } ({1,..., })

{ ,..., ,

n i n i

n i i n

n i

i

SS v v D v v i n SS v v D v v i n
CREATE UPDATE

S v v v S S v v v v v
SS v v D v v i n

DESTRUCT
S v v v

− +

−

→ ≠ = → = ∈
+ = + =++ =

→ = ∈
− = 1, }i nv+

With this extension, a service in grid can be formalized as:

1

(, , , , , , ,) (

{ , }.({ , }. | { , }..... .
n

i i
n

Service start invoke stagein stageout clean done exceptionIn exceptionOut new ack

start s pending stagein s StagingIn ack ack s Pending ack n
=

=
+ = ++ = ++ =∏ (

, { , } | .({ , }. | { , }. |
. . { , }) { , }.)) .)

ew t f

invoke t f s Active t stageout s StagingOut ack clean s Cleaning ack

ack ack done s Finish f s Failed exceptionOut exceptionIn exceptionOut

< > ++ = ++ = ++ =
++ = + ++ = +∏ ∏

Ensuring Secure and Robust Grid Applications – From a Formal Method Point of View 541

The implementation of Service models the state transitions in figure 2 with a vari-
able s. A service is either entered properly via start or an exception is received via
exceptioIn and propagated out to its successors to cancel their execution. It can be
invoked to generate its output when all needed inputs are provided. An advantage of
modeling both service behavior and states is that it is easy to assert secure service
executions in each step of the grid application. For example, suppose the above Ser-
vice needs to stage in and stage out data from the same data storage resource. It is
required whenever Service gets its needed data from the storage, the finished result of
Service should always be sent to the storage so that users can be aware of this infor-
mation. This pseudo application can be implemented as follows with an assertion
clause for ensuring that the variable GotResult is true whenever the process of Service
transits to 0 (empty process) indicating the finishing of the service.

1

, ((......, , ,......) | (,))

(,) { , }.
{ , }.

n

PseudoApp new stagein stageout Service stagein stageout Storage stagein stageout

where Storage stagein stageout stagein stagein GotResult false
stageout GotResult true Stor

=
= + =

++ = (,)
Assert Whenever 0

age stagein stageout
GotResult true Service= →

The PseudoApp fails to satisfy such assertion since the interaction of action sta-
geout may be missed when the execution of Service is Failed. This reminds us that in
order to build a reliable grid application satisfying this assertion, the service must also
send out a failure notice to the data storage when its invocation is failed so that user
can be aware of the failure by revising its implementation to:

(......, ,......, ,) ... { , }. .)) ...)Service stageout exceptionIn exceptionOut f s Failed stageout exceptionOut= + ++ = +∏

3.2.2 Type System for Reasoning Grid Service Composition
Reasoning about the complex interactions among different services is critical for the
assurance of service compatibility with desired I/O type, amount and quality (e.g.
precision, size) during their composition. Type system for Pi Calculus is a natural
answer to this issue. The type system introduced here is similar to [8], which is de-
signed for the replacement and composition of service components, only except that
ours is built upon the state extension in 3.2.1. By introducing type signatures in Pi
calculus, an output : , ()a y t s post< > indicates sending a value y of type t via port a,

while an input (: , ())a x t s pre indicates receiving a value of type t via port a. A post /

pre-condition s(post) / s(pre) is associated with an output / input action respectively.
These conditions are formulated as a range of the valuation of system states defined in
3.2.1. Consequently, the following rule ensures that in service composition, the input
of a service must be satisfied by the output of other services with the same type signa-
ture and the constraints imposed on the inputs should be less strict than those on the
outputs. The disobeying of this rule is called a type mismatch. We call
Type(t11,t12,…,t1n,s(post)) is a sub-type of Type(t21,t22,…,t2n,s(pre)) if t1i =t2i (i=1,2,..,n)
& s(post) s(pre). A grid application is thus well-typed if the interaction between
service input/output always forms a type pre-order during the deduction of its model.

1 2(: , ()) : , ()
' '

1 2
' '

2 1

, () ()
| { : / : } |

a x t s pre a y t s post

P P Q Q
TYPE COMM t t s post s pre

P Q y t x t P Q
τ

< >

→ →− = →
→

542 K. Xu, Y. Wang, and C. Wu

To illustrate the use of the type system, recall the service implementation in 3.2.1.
Suppose there are two workstations A and B with different CPU powers to provide the
same computation services (as denoted by a same service entrance of start). The re-
quested task, however, must be selected to run under predefined hardware conditions
in order to ensure its performance. This can be formalized as:

(, , , ,...) ((1.5){ ,{ , 2 }}.......

(, , , ,...) is exactly the same as
A A A

B B B

Service start invoke stagein stageout new ack start CPU G s pending CPU G

Service start invoke stagein stageout Service

Ser

= < + = =

(,) . (3)
(, , , ,...) |

(,, , , ,...) | (,
A A A

B B B

viceSel request start request start CPU G

ServiceSelection new start Service start invoke stagein stageout

Service start invoke stagein stageout ServiceSel request s

= >
=

)tart

The ServiceSelection now automatically ignores the alternative path for delivering
the request to ServiceA since its CPU is 2GMhz and only runs applications
requesting less than 1.5GMhz CPU frequency, which does not satisfy the
requirement.

3.2.4 Modeling and Reasoning Time in Grid Applications
When real time aspects need to be considered in grid applications, a timed version of
Pi calculus can be extended to capture the semantics. The typical need for modeling
time in the grid applications includes the reasoning of execution time-out when spe-
cific deadline is imposed. In our previous work[10], a real timed Pi calculus is pro-
posed which is able to block process execution when time-out signals are detected. In
[10], time information associated with actions in Pi calculus is modeled as { , }[]c dda d ,

where d indicates the duration of the action, dd for additional deadline imposed on the
action and c indicates an implicit local clock recording the current system time (which
can also be implicitly associated with a process, denoted by { }cP). Now recall the
previously modeled PseudoApp. With the integration of real-timed semantics, time
information can further be encoded and analyzed in the model.

{, 6}

{ }

(,) [0]{ , }. [1]{ , }.

(,)

, ((..., , ,...) | (

c

c

Storage stagein stageout stagein GotResult false stageout GotResult true

Storage stagein stageout

PseudoApp new stagein stageout Service stagein stageout Storage

+= + = + =

= { },))
Assert Whenever 0

cstagein stageout
GotResult true Service= →

The action of stagein is transient since its execution time is 0. The missing speci-
fication of {c, dd} indicates there is no deadline requirement and the value of the
local clock is implicitly computed with time elapses. The action of stageout costs 1
time frame and before it is started, the local clock of process Storage implicitly
advances at least 0 time frames because of the execution of stagein. Most impor-
tantly, it is required by the deadline specification that stageout must be finished
within 6 time frames after stagein is finished. This demands that not only the Stor-
age must always get the result of the Service when it is done, but also the Service
must generate the result within 6 time frames during its interaction with Storage.
Since otherwise the process will be blocked from execution and an error for dead-
lock will be reported.

Ensuring Secure and Robust Grid Applications – From a Formal Method Point of View 543

3.3 Reasoning Global Behavior of Grid Applications

3.3.1 An Application Example
The above work shows how grid applications can be formally modeled to reason
about their reliability issues including state assertion, type compatibility and time-out
alarms. In this section, we further consider formal verification techniques including
model checking and bisimulation analysis to reason about the global behavior of grid
applications. Before introducing the two techniques, an example scenario of studying
material rupture characteristics in our equipment grid[11] is first illustrated. The rec-
tangles in figure 3 indicate different service activities which perform specific tasks by
accessing the expensive resources in grid. Each service activity is guarded by its input
pins (denoted by columns). When a service activity is finished, its output pins are
simultaneously generated. The formal implementation of this application can be
quickly built based on the result in the previous section. The detailed implementation
of each service activity can be referred in section 3.2 and is thus omitted here.

Invoking resources including including Scan Electron Microscope, high volume data storage and graphical processors via service interfaces

Stretch
Material

Stabilize
Angle

Scan and
CCD Data
Collection

Store in
Local

Storage

Structural
Analysis

Visual
Portal

Tune
Control

Parameters

| (, 2 , 2) | (2 ,) | |

(, 2 , 2) | (2 ,) | | (, 2 ,

MaterialAnalysis Stretch Outpins doneSch Stch Stab Stch Scan Inpins Stch Stab startStab Stabilize

Outpins doneStab Stab Struc Stab Tune Inpins Stch Scan startScan Scan Outpins doneScan Scan Struc

=

2) | (2 , 2 ,) | | (, 2 ,

2) | (2 ,) | | (, 2) | (2 ,

Scan Store Inpins Stab Struc Scan Struc startStruc StructuralAnalysis Outpins doneStruc Struc Tune

Struc vis Inpins Scan Store startStore Store Outpins doneStore Store Tune InPins Struc Tune Stor

1 2 1 2

2 ,

2 ,) | | (, 2) | (2 , 2 ,) |

(, ,... ,) (. | . | | . |n n
n

e Tune

Stab Tune startTune TunePara Outpins soneTune Tune Vis Inpins Tune Vis Struc vis startVis VisualPortal

InPins in in in start new ack in ack in ack in ack ack ack sta=

1 2 1 2

)

(, , ,...) .(| | ... |)n n

rt

OutPins done out out out done out out out=

Fig. 3. An Example Grid Application for Studying dynamic Material Characteristics

3.3.2 Model Checking Temporal Constraints and Validating Grid Application
Model checking is an automatic verification technique which has been successfully
applied in checking hardware/software designs. Its idea is to search system state space
and verify its compliance with pre-defined properties which are usually specified with
temporal logics[9] like CTL, LTL, etc. Consequently, desired behavior in grid applica-
tions can be encoded into logical property and be automatically verified to ensure its
satisfaction. For example, in the previous application, it is expected that the final
result of material studying must always be reachable to the users through the visual
portal. Besides the service of “Store in Local Storage” must be invoked strictly after
when the angle is stabilized and the CCD data are collected in order to ensure the
quality of the final stored graphical data. Note that although the example seems to be
trivial, complex implementation details of each service activity under their simple
notations can still make manual reasoning an infeasible solution. Here LTL is used to
capture the above requirement into two logical formulas:

544 K. Xu, Y. Wang, and C. Wu

G (StretchStatus=Active --> F VisualPortalStatus=Active) /* Formula 1: Result Reachability
G (StoreStatus!=Active) | (StoreStatus!=Active U StabilizeStatus=Active) &

(StoreStatus!=Active U ScanStatus=Active) /*Formula 2: Execution Sequencing

The automatic deduction of the Pi calculus model for the application results in a
small state space of 898 states and 1929 transitions. Model checking result shows that
both the two properties are failed. The counter-example generated for Formula 1 tells
us that it is possible for “VisualPortal” to skip its execution if any of its previous
service activity throws an exception. The counter-example for Formula 2 shows that
“Store in Local Storage” can be actually activated before “Stabilize Angle”. This
reminds us to fix the application by, e.g. adding a control relation between “Store in
Local Storage” and “Stabilize Angle” so as to ensure their precedence relation.

Moreover, in a typical scenario of building grid applications, an abstract process
with no physical implementation details is usually designed first to capture functional
requirements in the application[12]. This abstract model is then refined into a concrete
executable one to implement the application. However, a serious issue here is how to
ensure the consistency or equivalence between the abstract design and its concrete
implementation. In other words, how to make sure that our implementation really
“implements” what we wanted? Bisimulation analysis is an important tool in process
algebra to verify the equivalence between different models, which is a natural solution
to the above concern. Without detailed consideration of service implementation, dy-
namic service selection, service interaction and real time constraints, the abstract
requirement model of the example application can be simply formalized as follows:

1 2 3 .((.(1| 2)) |

(.(. 1| 2)) | (2. 2.(.(1| 3))) |

(1. 1. 1.(.

MaterialAnalysisAbstract new ack ack ack invokeStretch invokeStabilize ack ack

invokeScan invokeStore ack ack ack ack invokeStruct ack ack

ack ack ack invokeTune ack

τ

τ τ τ

= +

+ + +

3)) | (3. 3.()))ack ack invokeVisualτ τ τ+ + +

On the other hand, the concrete implementation of the application is formalized in
MaterialAnalysis in 3.3.1. The bisimulation test can be run directly on the two Pi
calculus processes and the result shows that the application implementation in section
3.3.1 is truly consistent with this abstract specification (without state information).

4 Application and Current Implementation

Based on the above formal framework, a prototype (GridPiAnalyzer), which is itself
encapsulated as a grid service, has been implemented to enable the automatic analysis
of grid application reliabilities. GridPiAnalyzer takes the service flow script of either
a user designed abstract workflow for specific task or a refined concrete grid work-
flow with detailed service information as its input. Figure 4 provides its architecture
with the 6 main components. Considering that existing grid workflows have their own
input scripts, the Transformation Adapter provides a set of standard model transfor-
mation interface and a transform engine to enable their automatic mapping to the
input models that GridPiAnalyzer accepts (BPEL4WS extended for WSRF); The Pi
Formalizer then automatically generates the formal semantics of these inputs based
on the result in 3.2; The Design Validator receives Pi calculus models directly from
Pi Formalizer and tests their equivalence based on bisimulation relations. Note this

Ensuring Secure and Robust Grid Applications – From a Formal Method Point of View 545

capability is provided by the integration of MobilityWorkBench[13] in our current
implementation and hence the equivalency test is now only carried out when no state,
type or time information is considered. The GridPi Deductor automatically deduces
the results of Pi Formalizer into finite state machines based on different Pi calculus
semantics in 3.2, during which the State Assertion, Type-mismatch Checking or Time-
out Detection are also checked whenever necessary. The Property Specifier solves the
issue of reducing the complexity of formula specification for temporal reasoning of
grid applications by replacing the rigid temporal operators with natural languages (in
IEEE standard of PSL[14]) and the Property Patterns[15]. For example, instead of writ-
ing the logical formulas manually in 3.3.2 (which is unreasonable for end-users), they
can now be expressed as the combination of GloballyResponse and GloballyPrce-
dence property patterns respectively. Property Specifier will be responsible for auto-
matically interpreting their underlying logical formulas. Once the state space for grid
application and desired properties are generated, the GridPiVerifier assembles the
two into the acceptable format of NuSMV2[16] engine for the temporal reasoning of
grid application. Besides, GridPiVerifier also filters the trace of counter-examples so
as to make this information directly understandable by end users.

Fig. 4. Implementation Architecture of GridPiAnalyzer Service

The advantage of GridPiAnalyzer is its automaticity and intuitiveness. That is, the
whole grid application analysis requires little user intervention and expertise knowl-
edge since GridPiAnalyzer effectively hides the complexity of formal methods from
end-users. We have applied our prototype in the equipment grid for studying material
rupture structures[11]. In our experience with different problem scales, the analysis can
be finished for applications of size 102 to 103 services (state space scales from 1000 to
over 180000) within a reasonable time (from seconds to 10 minutes) on a Pentium4
1.5G RAM machine. This performance is acceptable for us since in our project the
management of equipment sharing for material structure studying demands no strict
need for real time service responses and equipment accessing.

546 K. Xu, Y. Wang, and C. Wu

5 Conclusion

This work investigates the serious issue of ensuring the reliability and robustness of
grid application development from a formal method perspective. The Pi calculus with
its different extensions and existing model checking and bisimulation analysis are
investigated and integrated to address different reliability issues in grid application
development. A formal framework is also proposed based on which our prototype of
GridPiAnalyzer for the reasoning and verification of grid applications is implemented.
Although GridPiAnalyzer enjoys the advantage of automaticity and intuitiveness, our
future work still needs focusing on its performance tuning and testifying its effective-
ness in more different grid applications so as to make it a more sophisticated solution.

References

1. Hai J, Yuan P.P., Shi K. Grid Copmuting2. Publishing House of Electronics Industry.
2004.

2. Foster I, Frey J, et al. Modeling Stateful Resources with Web Services, Globus Alliance,
2004.

3. Davide S, Davide W. The Pi-calculus: a theory of mobile processes, Cambridge University
Press, 2001.

4. Németh Zs, Sunderam V. Characterizing Grids Attributes, Definitions, and Formalisms,
Journal of Grid Computing, 1(1), 2003: 9-23.

5. Németh Zs. Definition of a parallel execution model with abstract state machine, Acta Cy-
bernetica, 15(3), 2002: 417-455.

6. Michael H. Essential Business Process Modeling, O’Reilly Press, 2005.
7. Oscar N, Theo D.M. Requirements for a composition language, In Lecture Notes in Com-

puter Science, 924, 1995: 147-161.
8. Pahl C. A Pi-Calculus based Framework for the Composition and Replacement of Compo-

nents, In Electronic Notes in Theoretical Computer Science, 66(4), 2002.
9. Clarke E. M, Grumberg O, Jr., Peled, D. A. Model Checking. MIT Press, Cambridge,

Mass, 1999.
10. Xu K, Liu L.C., Wu C. Time Pi Calculus and Weak-timed Bisimulation Analysis, Com-

puter Integrated Manufacturing Systems, 2005, In Press.
11. Wang Y.X, Wu C, Xu K. Study on -Calculus Based Equipment Grid Service Chain

Model. Lecture Notes in Computer Science, 3779, 2005: 40-47.
12. Thomas F, Jun Q, Stefan H. Specification of Grid Workflow Applications with AGWL:

An Abstract Grid Workflow Language, IEEE International Symposium on Cluster Com-
puting and the Grid, 2005.

13. Victor, B. A verification tool for the polyadic Pi calculus. Ph.D. Thesis, Uppsala Univer-
sity, Sweden, 1994.

14. Geist D. The PSL/Sugar specification language for all seasons, Lecture Notes in Computer
Science, 2800, 2003: 3.

15. Property Specification Patterns, 2005, http://patterns.projects.cis.ksu.edu.
16. Cimatti A, Clarke E, et al. NuSMV 2: an OpenSource tool for symbolic model checking.

Lecture Notes in Computer Science, 2404, 2002: 359-364.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 547 – 556, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Supporting the OpenMP Programming Interface
on Teamster-G

Tyng-Yeu Liang1, Shih-Hsien Wang2, Jyh-Biau Chang2, and Ce-Kuen Shieh2

1 Department of Electrical Engineering, National Kaohsiung University of Applied Sciences,
No.415, Chien-Kung Road, Kaohsiung, Taiwan, R.O.C

lty@mail.ee.kuas.edu.tw
2 Department of Electrical Engineering, National Cheng Kung University,

No. 1, Ta-Hsueh Road, Tainan, Taiwan, R.O.C
{sanwangx, andrew, shieh}@hpds.ee.ncku.edu.tw

Abstract. An easy programming interface is a key factor to affect user’s desire to
exploit distributed resources for resolving their problems. Recently, much effort
has been put into enabling MPI, RPC, and RMI for grid computing. However,
these programming interfaces are not as easy as shared memory. To simplify the
programming on the grid environment, we recently have developed a
grid-enabled software DSM system called Teamster-G. However, users still must
be familiar with the multithreaded programming toolkit and aware of the adopted
consistency protocol. To further minimize user’s programming load, we are
devoted to supporting the OpenMP programming interface on Teamster-G in this
study. Furthermore, we propose a novel loop scheduling algorithm called
Profiled Multiprocessor Scheduling (PMS) for addressing the problem of load
balance. We will describe the design and implementation of the OpenMP
interface on Teamster-G, and discuss the preliminary performance of the
OpenMP programs in this paper.

1 Introduction

OpenMP [1] is a standard of the shared memory programming interface. It provides a
set of directives including parallel region, work sharing, and synchronization, and
several data scope attribute clauses such as private or shared in conjunction with
directives to explicitly direct the shared memory parallelism. When users want to
parallelize their problems, they only need to add proper directives and clauses at the
front of the program blocks which must be parallelized. Using the OpenMP compiler,
the sequential programs can be automatically transferred to the C source codes
composed of the OpenMP run time functions, and then the transferred sources codes
can be compiled by the gcc compiler to be the multithreaded execution files with
linking the OpenMP run time library. Therefore, users can easily develop the
multithreaded programs on SMP machines by exploiting the OpenMP interface.

In recent years, computational grid has successfully provides a novel method for
distributed computing. Such a system integrates geographically-distributed resources
on wide area network to form a single unified resource, and provides users with a

548 T.-Y. Liang et al.

uniform and cost-effective way to share and aggregate resources for solving their
problems without caring about the problems of resource discovery and allocation.
Many projects [2][3] have provided a core infrastructure for easily building a
computational grid. Furthermore, several high level problem-solving environments
[4][5] have been developed based on these core infrastructures. On the other hand,
many studies [6][7][8] were dedicated to the grid-enabled implementation of Message
Passing Interface (MPI), Java or Remote Procedure Call (RPC) to provide a familiar
programming interface for users to develop applications on computational grids.
Currently, computational grids have been applied to data-intensive, high performance
or high throughput computing.

However, the growth of grid-computing applications is slow although computational
grids have many advantages. The main reason is that the existing programming toolkits
are not easy enough since they require programmers to explicitly use function calls for
data communication. In contrast, software distributed shared memory (DSM) [9]
allows users to exploit share variables to write parallel programs in the distributed
environment. When processes/threads access the same shared variables on different
nodes, data consistency will be automatically maintained by the DSM library. As a
result, users can put attention on the development of program algorithm but data
communication. However, for performance consideration, most of modern software
DSM systems adopt the weaken consistency protocols [10][11]. Users must be aware
of the consistency protocol and properly set data synchronization points in their
programs, otherwise they may get wrong results. As to this problem, supporting the
OpenMP programming interface on software DSM systems to hide these problems is a
promised solution.

As previously discussed, we have developed a grid-enabled software DSM system
called Teamster-G in our previous study. To further minimize the programming load of
users, the main goal of this study is to support the OpenMP programming interface on
Teamster-G. We have developed an OpenMP compiler and an OpenMP run time
library for Teamster-G based on the Omni compiler and its run time library. In addition,
we have developed a user-level thread library called Distributed Pth to minimize the
overhead of parallelization. On the other hand, we also propose a loop scheduling
algorithm called Profiled Multiprocessor Scheduling (PMS) to address the load balance
problem for the OpenMP programs.

The rest of this paper is organized as follows. Section 2 is the background related to
Teamster-G and the Omni compiler. Section 3 and Section 4 detail the design
considerations and implementation of the OpenMP programming interface on
Teamster-G, respectively. Section 5 discusses our experimental results of performance
evaluation. Section 6 is the related work, and Section 7 gives the conclusions of this
paper and our future work.

2 Background

The goal of this study is to enable the OpenMP programming interface on Teamster-G
for grid computing. To simplify our work, we adopt the Omni compiler and the Omni
run time library to be a basis of our implementation. Teamster-G [12] is a grid-enabled

 Supporting the OpenMP Programming Interface on Teamster-G 549

software DSM system which extends the library of Teamster to exploit the services
provided by the Globus toolkit. This system supports users with not only a shared
memory programming interface but also a transparent service of resource allocation to
resolve their problems in the grid environment. Basically, Teamster-G is composed of
three main components, i.e., TGrun, TGRB (Teamster-G Resource Borker), and
TGCM (Teamster-G Cluster Manager). TGrun provides an interface for users to submit
and monitor their programs to remote resources for execution. TGRB is responsible for
allocating user applications onto remote resources for execution by cooperating with
the gatekeeper of each cluster, i.e., GRAM. TGCM manages the resource of a cluster,
and distribute the work of remote programs onto the local nodes. When a user wants to
submit his programs through TGrun, TGRB will organize a virtual cluster for each user
according to the resource demand of the user. After resource allocation, users can
consecutively submit their programs to their own virtual dedicated clusters for
execution. In addition, Teamster-G adopts a two-level consistency protocol to
minimize the cost of maintaining data-consistency over WAN.

The Omni compiler [13] is a part of RWCP Omni compiler that is developed to
allow the researchers to build the code transformer. This compiler is used to transform
the OpenMP programs into the multi-threaded programs with the Omni run time library
called OMP. Basically, the OpenMP programs are first translated into X-object codes,
and then the transformed X-object codes are translated back to the C source codes by
the Exc Java toolkit using the OpenMP run time functions to carry out the OpenMP
directives. The next step is to compile the C source code to be the executable binary
codes by using the gcc compiler and linking the OMP library which is implemented
based on the kernel-level POSIX thread.

3 Considerations

Source Compatibility and program performance are two main considerations in our
work. When source compatibility is maintained, users can easily port their OpenMP
applications from SMPs to computer clusters without any source code modification. On
the other hand, to prevent performance gradation, it is necessary to minimize the cost of
program parallelization. Furthermore, the computational power of processors in a
computer cluster is not promised to be as identical as that in a SMP machine. Therefore,
dynamic load balance is essential to obtain a good program performance in a cluster.

3.1 Source Compatibility

To maintain source compatibility, there are three problems that must be addressed. The
first is that the memory allocation of global variables. In SMPs, global variables
declared in user programs are shared between threads even when they are not assigned
with an initial value by programmers. However, Teamster-G allocates the global
variables without initial values into the private space. Consequently, these global
variables will be impossible to be shared among threads on different nodes. The second
is the function of memory allocation. In SMPs, users can call the function, i.e, malloc()
to allocate a block of shared memory for data communication between threads.
However, this function allocates memory at the private space in Teamster-G.

550 T.-Y. Liang et al.

Therefore, in order to allow users to allocate memory at the shared memory address, the
memory allocation function must be modified or replaced. The third is the functions of
the OMP library. For examples, omp_get_num_threads is used to return the total
number of threads in a program. In Teamster-G, this function must be modified to
summate the number of threads allocated at each one of the execution nodes, and then
return the summation value. That implies that it is necessary to develop an OMP library
dedicated for Teamster-G.

3.2 Program Performance

The OMP run time library is originally implemented based on the kernel-level Pthread.
However, in order to minimize the cost of program parallelization and support thread
migration or resource reallocation, using a user-level thread to implement the OMP
library is necessary. For the sake of compatibility, we choose GNU Pth [14] that is a
portable thread package supporting the UNIX-compatible systems. However, this
thread package does not support the distributed systems. Therefore, it is necessary to
develop a Pth library dedicated for Teamster-G.

Recently, Y. Sakae [15] proposed a loop partition algorithm called profiled
scheduling to address the load balance problem of loop applications. The main concept
of this algorithm is to assign a same amount of iterations in a loop structure to program
threads for execution, and then profile the execution time of threads. According to the
profiled thread execution time, the execution time of each node can be estimated by
Equation (1), and the amount of iterations distributed to each node can be decided by
Equation (2). After loop re-partition, the threads located at the same node will evenly
share the iterations distributed to their execution node.

x

Sy
yx

x N

T

T x∈= ,

(1)

where Tx is the execution time of node x Sx is the set of threads located at node x Tyx
is the execution time of thread y on node x, and Nx is the number of threads located at
node x.

I

T

T
W n

x x

x
x ×=

=1

1

1

,

(2)

where Wx is the number of iterations distributed to node x, n is the number of execution
nodes, and I is the total number of iterations in a loop structure.

Compared to the scheduling methods based on thread migration [16], the cost of the
profiled scheduling is cheaper. However, the profiled scheduling algorithm may make a
mistake in the estimation of the execution times of execution nodes when the number of
threads assigned to a node is more than that of processors of the node. Therefore,
Equation (1) must be revised by simultaneously considering both of thread number and
processor number per node.

 Supporting the OpenMP Programming Interface on Teamster-G 551

4 Implementation

According to the previous considerations, the work of our implementation consists of
the modification of the Omni compiler, the development of a distributed OMP library, a
user-level distributed Pth thread library and a load balance mechanism.

4.1 Modification of the Omni Compiler

After tracking the compiling process, we find that the Omni compiler uses Ident objects
and XobjectsDef objects to be the descriptors of data variables in user programs. The
Ident object is used to describe the type, name and address of a variable. If a variable is
not initialized, the field of XobjectDef will be filled with a NULL value; otherwise the
field will be filled with an initial value. According to this observation, we modify the
Omni compiler to automatically set an initial value in the XobjectDef field of each
variable that is not initialized by programmers. As a result, all the variables in the
transformed C source codes will be initialized, and then these variables will be
allocated by Teamster-G at the shared memory space.

On the other hand, Teamster-G provides a function called pRelease_new() for
memory allocation. In order to achieve source compatibility, we define a macro, i.e.,
#define malloc pRelease_new, in the omp.h head file. Since all the OpenMP
programs originally must include this head file, the malloc() function will be
automatically be replaced by the pRelease_new() function without any modification
in source codes.

4.2 Distributed OMP Library

We have developed a distributed version of the OMP library for Teamster-G. For
example, the parallel directive is mapped to the _ompc_do_parallel() function. When
the parallel directive is put at the front of a program block, the program block will be
replaced with the _ompc_do_parallel() function after the OpenMP program is
transformed by the Omni compiler. The replaced program block will be packed into a
working function. The name of the working function will be the parameter of the
_ompc_do_parallel() function. When the _ompc_do_parallel() function is performed
during the execution of the program, the function will fork a number of threads to
execute the same working function with assigning a different working data set. In order
to parallelize the OpenMP programs on a cluster, the _ompc_do_parallel() function is
modified to broadcast the name of the working function to the other nodes. Each node
forks a number of threads and then binds these threads with the working function to
share the work of the parallel region according to the received function name.

4.3 Distributed Pth Library

The Distributed Pth library mainly consists of the functions of thread management
and thread synchronization. In our implementation, five scheduling queues including
new, ready, waiting, suspend and dead for each processor at a node. Threads forked
in a parallel region are evenly distributed to the ready queues of processors, and then
each thread scheduler fetches the threads from its ready queue for execution. If the

552 T.-Y. Liang et al.

ready queue is empty, the scheduler will fetch threads from the other queues in the
same node. In addition, the global thread scheduler that manages all of program
threads uses a data structure called LoadMap to store the information of threads,
including thread state, and returned value, the identifier of the execution node, and
the address of thread control block. When the master thread of a user program intends
to join a slave thread, the identifier of the slave thread will be sent to the global
scheduler. If the state of the slave thread is THREAD_TERMINATED, the return
values of the salve thread is sent back to the main thread, and the main thread can
continue its work; otherwise, the main thread will be blocked, and the state of the
slave thread will be marked as THREAD_JOIN, and store the location of the main
thread, and the TCB address of the main thread. After the slave thread finished its
work, its identifier will be sent to the global scheduler, and its return value will be
sent to the main thread and then the main thread is resumed to continue its work.
However, if the state of a slave thread is not marked as THREAD_JOIN, the global
scheduler only updates the state of the slave thread as THREAD_TERMINATED,
and stores the return value in LoadMap. On the other hand, the lock and barrier of the
Pth library is mapped to distributed-queue lock and hierarchical barrier in
Teamster-G.

4.4 Load Balance Mechanism

We proposed a novel loop scheduling algorithm called Profiled Multiprocessor
Scheduling (PMS) to address the load balance problem for user applications executed
on the grid environment. The PMS algorithm is similar to the profiled scheduling
algorithm while it uses the following equation to evaluate the execution time of each
node. Since this equation simultaneously considers the number of processors and the
number of threads in each node, it can prevent the error happening in the profiled
scheduling algorithm.

×= ∈

x

x

x

Sy
yx

x P

N

N

T

T x , (3)

where Px is the number of processors in node x.
We have implemented a load balancing mechanism in Teamster-G based on the

PMS algorithm. When a thread starts to work for one iteration, the thread scheduler
will record the start time of this thread. Until the thread arrives at the end of the
iteration such as a barrier, the thread scheduler will record the arrival time and
calculate the escaplsed time between the start time and the arrival time. All the
calculation results made by each node will be sent to the root node. The root node will
estimate the execution time of each node by using Equation 3, and calculate a new
loop partition pattern. After broadcasting the new loop partition pattern, each node
will receive the number of iterations it must work for, and evenly distribute the
appending iterations to its local threads for parallel execution by adjusting the start
iteration variable and the end iteration variable of the working function binding to
each thread.

 Supporting the OpenMP Programming Interface on Teamster-G 553

5 Performance

We have implemented a set of test applications to evaluate the efficiency of the
modified Omni compiler and the PMS algorithm. The parameters of the test
applications and our experimental environment are shown in Table 1.

Table 1. The parameters of the test applications and the experimental environment

Application Cluster I Cluster II

N-body EP Node(0,1,2,3) Node(4,5)

8192
particles
200 loops

Class C

Pentium III Xeon
500Mhz * 4

512 MB SDRAM
100Mps Fast Ethernet

Pentium III Xeon
700Mhz * 4

512 MB SDRAM 100Mps
100Mps Fast Ethernet

5.1 Effectiveness of the Modified OpenMP Compiler

We use both of the programming interfaces of Pthread and OpenMP to implement the
test applications in order to evaluate the effectiveness of the modified Omni compiler.
We ran the applications in Cluster I. Table 2 shows that the performance of the test
applications implemented by OpenMP is very close to that of the same applications
implemented by Pthread. This implies that the modified OpenMP compiler can
effectively translate the OpenMP programs.

Table 2. Effectiveness of the modified OpenMP compiler

 Pthread OpenMP
N-Body N = 1 N = 2 N = 4 N = 1 N = 2 N = 4

Exec. Time(sec) 1084.904 545.320 280.611 1082.898 544.918 281.926
Speed up 1 1.989 3.866 1 1.987 3.841

EP N = 1 N = 2 N = 4 N = 1 N = 2 N = 4
Exec. Time(sec) 1759.850 881.439 442.048 1760.953 882.428 443.563

Speed up 1 1.997 3.970 1 1.996 3.970

5.2 Effectiveness of Load Balancing

When we evaluated the performance of loop scheduling algorithms on load balance, we
used two different thread mapping patterns to run the test applications. The first
mapping pattern is to assign only one thread onto each processor while the second one
is to assign two threads onto the first processor of the first node, and one thread onto the
other processors. In addition, we use two nodes located at Cluster I and two nodes
located at Cluster II to execute the test applications. In this performance evaluation, the
work of the test applications is initially and evenly distributed to program threads, i.e.,
static scheduling. After profiling the information necessary for load balancing, two

554 T.-Y. Liang et al.

different scheduling algorithms including profiled and PMS are applied to re-partition
the work of the test applications to program threads.

Fig.1 shows that both of the profiled scheduling algorithm and the PMS algorithm
can effectively minimize the cost of load imbalance in both of the test applications no
matter which thread mapping is applied. In addition, the profiled algorithm is as
effective as the PMS algorithm when the first thread mapping pattern is used. That is
because the first mapping of program threads to processors is one-to-one, and the
profiled algorithm can estimate the execution time of a node as precisely as the PMS
scheduling. However, the PMS algorithm is more effective than the profiled algorithm
in load balancing when the second thread mapping pattern is used. The reason is that
the PMS algorithm considers simultaneously the number of threads and the number of
processors during the estimation of node execution time. Therefore, it can prevent the
mistake made by the profiled algorithm, and significantly improve the performance of
the test applications.

 (a)N-body (b) EP

Fig. 1. Effectiveness of load balancing

6 Related Work

Several past work also were dedicated to the implementation of the OpenMP
programming interface on software DSM system such as TreaMarks [17], SCASH[18],
JIAJIA [19], and COMPaS[20]. The implementation of TreadMarks is similar to our
work. However, TreadMarks does not provide completed source compatibility for the
OpenMP programs that are originally written on the SMP platform. SCASH exploits
the Exec Java toolkit to translate the OpenMP programs into the multithreading
programs. In addition to the support of the OpenMP interface, it also provides a set of
extended OpenMP directives for co-allocating shared data in the same data pages to
minimize the cost of data consistency maintenance. However, this will result in the

 Supporting the OpenMP Programming Interface on Teamster-G 555

programs are not compatible since these directives are not the standards of OpenMP.
JIAJIA implements a compiler called AutoPar to analyze the correctness of parallel
programs, and automatically adjust computation granularity to make a compromise
between parallelism and parallelization cost. Compared to the previous DSM systems,
COMPaS exploits the Omni compiler to insert the message passing calls into source
programs for maintaining data consistency instead of using the DSM library.

Compared with the previous work, our work in this paper is focused on a
computational grid but a computational cluster. Our work can provides completed
source compatibility for the applications developed on SMPs. In addition, the previous
work usually implemented the OMP library based on the kernel-level Pthread while we
develop a user-level distributed POSIX thread library for the implementation of the
OMP library. On the other hand, thread migration was a common method adopted by
the previous DSM work for load balancing. However, we exploit loop repartition
instead of thread migration to achieve load balance in order for the minimization of
overhead.

7 Conclusions and Future Work

In this paper, we have successfully implemented the OpenMP programming interface
on Teamster-G for grid computing. The complexity of programming on the grid
environment is effectively reduced by our work. Since source compatibility is
maintained in our implementation, users can seamlessly apply their OpenMP programs
that are developed on SMPs to the grid environment. As a result, the kinds of
grid-computing applications will be enriched rapidly. Furthermore, we proposed a
novel loop scheduling algorithm, i.e., PMS to address the problem of load balance for
user applications executed on the grid environment. Our experimental results show that
the proposed scheduling algorithm is more effective for improving the performance of
user applications than the other algorithms.

Grid resource is dynamic and non-dedicated. That implies that it is difficult to
promise an amount of available resources for grid users. Therefore, reconfiguring the
resource allocated for user applications is essential to obtain a good program
performance in the grid environment. We will develop an effective reconfiguration
scheme for the OpenMP programs in future.

References

1. Mitsuhisa Sato, OpenMP: Parallel Programming API for Shared Memory Multiprocessors
and On-Chip Multiprocessors, Proceedings of the 15th International symposium on System
Synthesis (ISSS '02), (2002) 109-111.

2. I. Foster. “Globus Toolkit Version 4: Software for Service-Oriented Systems”. IFIP
International Conference on Network and Parallel Computing, LNCS 3779, (2005), 2-13.

3. Rajkumar Buyya and Srikumar Venugopal, The Gridbus Toolkit for Service Oriented
Grid and Utility Computing: An Overview and Status Report , Proceedings of the First
IEEE International Workshop on Grid Economics and Business Models, (2004), 19-36.

556 T.-Y. Liang et al.

4. Frey J., Tannenbaum T., Livny M., Foster I., Tuecke S., “Condor-G: A Computation
Management Agent for Multi-Institutional Grids”, Proceedings of 10th IEEE International
Symposium on High Performance Distributed Computing, (2001) 55-63.

5. David Abramson, Rajkumar Buyya, and Jonathan Giddy, “A Computational Economy for
Grid Computing and its Implementation in the Nimrod-G Resource Broker , Future
Generation Computer Systems (FGCS) Journal, Volume 18, Issue 8, (2002), 1061-1074.

6. Nicholas T. Karonis, Brian R. Toonen, Ian. Foster, “MPICH-G2: A Grid-enabled
implementation of the Message Passing Interface”. Journal of. Parallel Distributed.
Computing, 63(5), (2003), 551-563.

7. K. Seymour, H. Nakada, S. Matsuoka, D. Dongarra, C. Lee, and H. Casanova, “GridRPC: A
Remote Procedure Call API for Grid computing”. ICL Technical Report ICL-UT-02-06,
Innovative Computing Laboratory, Department of Computer Science, University of
Tennessee, (2002).

8. Von Laszewski, G., Foster, I., Gawor, J., Smith, W., and Tuecke, S., “CoG Kits: A Bridge
between High Performance Grids Computing and High Performance Grids”, ACM 2000
Grade Conference, (2000). http://www/globus.org

9. K. Li. “IVY: A Shared Virtual Memory System for Parallel Computing”. Proceedings of the
1988 International Conference on Parallel Processing (ICPP'88), (1988), 94-101.

10. C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, W.
Zwaenepoel, “TreadMarks: Shared Memory Computing on Networks of Workstations”.
IEEE Computer, 29 (2), (1996), 18-28.

11. Brian N.Bershad,Matthew J.Zekauskas,and Wayne A.Sawdon, "Midway: Shared Memory
Parallel Programming with Entry Consistency for Distributed Memory Multiprocessors",
Tech.Report, CMU-CS-91-170, Carnegie-Mellon University, (1991).

12. Tyng-Yeu Liang, Chun-Yi Wu, Jyh-Biau Chang, and Ce-Kuen Shieh, “Teamster-G : A
Grid-enabled Software DSM System”, Proceedings of DSM2005 included in
CCGRID2005, vol. 2, (2005), 905-912.

13. Kazuhiro Kusano, Shigehisa Satoh, Mitsuhisa Sato: Performance Evaluation of the Omni
OpenMP Compiler. ISHPC 2000, (2000), 403-414.

14. Ralf S. Engelschall. GNU Pth - The GNU Portable Threads. http://www.gnu.org/software/pth/
15. Y. Sakae, S. Matsuoka, M. Sato and H. Harada. “Preliminary Evaluation of Dynamic Load

Balancing Using Loop Re-partitioning on Omni/SCASH”. Proceedings of the 3th
IEE/ACM International Symposium on Cluster Computing and the Grid/DSM (DSM2003:
Distributed Shared Memory on clusters workshop in CCGRID), (2003), 463-470.

16. Kritchalach Thitikamol and Pete Keleher, Thread Migration and Communication
Minimization in DSM systems, Proceedings of the IEEE, volume: 87, (1999), 487-497.

17. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel. “TreadMarks: Shared Memory Computing on Networks of Workstations”.
IEEE Computer, 29 (2), (1996), 18-28.

18. Y. Ojima, M. Sato, H. Harada and Y. Ishikawa, “Performance of Cluster-enabled OpenMP
for the SCASH Software Distributed Shared Memory System”, Proceedings. of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID'03).

19. Z Feng, C Guoliang, Z Zhaoqing, “OpenMP on Networks of Workstations for software
DSMs”, Journal of Computer Science and Technology, vol.17, Issue 1, (2002), 90-100.

20. Y.Tanaka, M. Matsuda, M. Ando, K. Kazuto and M. Sato, "COMPaS: A Pentium Pro
PC-based SMP Cluster and its Experience". IPPS Workshop on Personal Computer Based
Networks of Workstations, LNCS 1388, (1998), 486-497.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 557 – 566, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Key Techniques of Software Sharing
for on Demand Service-Oriented Computing*

Xiaoshe Dong, Yinfeng Wang, Fang Zheng, Zhongsheng Qin,
Hua Guo, and Guofu Feng

School of Electronics and Information Engineering, Xi'an Jiaotong University,
Xi'an, 710049, China

wangyf@mailst.xjtu.edu.cn

Abstract. In this paper a software sharing system is developed in the grid envi-
ronment to enforce On Demand Computing policy and maximize the usage of
both hardware and software resources. The system adopts the constellation
model for resource management and combines the sharing and scheduling of
both hardware and software license resources to address the ever-increasing
demands of software resource sharing in Grid and for Service-oriented comput-
ing. The system's ability to sustain the software's legacy GUI helps reduce the
complexity of system integration and enhance usability.

1 Introduction

On Demand strategies claims that IT resources will be delivered dynamically to users
according to their demands. In this fashion, any computing devices, networks and data
can be conveniently shared and exchanged. Utility Computing also adopts the "a pay-
as-you-use" model. On Demand can satisfy user's requests of resources flexibly and is
a feature of Service-oriented computing (SOC) [1].

At present, three notable technologies, Web Service, P2P, and Grid, all show their
own advantages in implementing On Demand SOC. Web Service defines the interface
by which applications can interoperate with each other. Heterogeneous resources can
be encapsulated as standard services to provide uniform resource abstraction and
facilitate resource management. P2P has good flexibility, scalability, and self-
management functionality in specific fields such as file sharing and mutual-benefit
service. Members connect with each other as peers and can use each member's com-
puting power, storage, network and other services.

Grid provides users the ability to get access to potentially unlimited amount of
computing and storage resources from a single point, and is capable of constructing
dynamic virtual organizations (VOs) to meet various requests of service. Open Grid
Services Architecture (OGSA) and Web Service Resource Framework (WSRF) are
the building block of grid computing. As infrastructure abstraction level [1], the grid
can be regarded as the infrastructure of SOC.

* This research is supported by the"863" project, "CNGI" and "211"project of China.

558 X. Dong et al.

On Demand SOC can maximize the value of IT resources to users. Resources are
valued neither by how powerful computing and storage capabilities they could pro-
vide, nor by whether they implement a beautiful User Interface or complicated func-
tion, but by whether their services can satisfy users' real demands and help them to
succeed.

This paper proposes a software sharing system in the Grid environment, by which
software and hardware resources can be shared to the maximum degree. By sharing
software licenses and hardware resources, the system lets users transparently use the
computing facilities in Grid. By efficiently scheduling both software license and
computing resources, the system ensures users' QoS requests and achieve the goal of
quick response and on demand computing. This paper analyzes the major existing
models of software licensing, proposes a licensee-based resource scheduling mecha-
nism and approaches of dynamically organizing resources, and discusses some chal-
lenges confronted by software sharing.

2 Key Issues in Software Sharing

From the perspective of On Demand SOC, software sharing should achieve the fol-
lowing goals:

1) Utility: Make full use of software licenses and hardware resources;
2) Heterogeneity: Implement resource sharing and interoperating among a broad

range of distributed, heterogeneous high performance computing platform and
various license models;

3) Transparency: Automatically discover, schedule and reserve both software and
hardware resources for users;

4) Minimum Overhead: Integrate software into the Grid without modifying the
software and provide support for software's legacy user interface to save user's
time in studying new interface.

To achieve those goals the following key issues must be addressed:

2.1 Eliminate the Bottleneck of License Management

Existing License Management systems, such as FLEXlm [2], iFOR/LS [3] and LSF
License Scheduler [4], adopt the Client/Server architecture. The computers that run
application software are treated as the clients and the License Management (LM)
system as the server. Licenses are shared among clients under centralized control of
LM systems. These LM systems work well in a small/medium scale environment (e.g.
within an enterprise). But in Grid, the license sharing system is required to manage
much more licenses than in an enterprise, and respond to thousands of concurrent
requests of licenses. The complexity, heterogeneous and dynamic nature of Grid is
much more intensive to satisfy by the traditional, centralized-control LM systems.
Therefore, a reliable resource management model is needed so as to efficiently im-
plement organizing resources dynamically.

 Key Techniques of Software Sharing for on Demand SOC 559

2.2 Hardware and Software Combined Scheduling

Existing LM systems can only manage software licenses, but does not take computing
environments as manageable objects in which users have valid licenses to run applica-
tions. In this way, users can login and choose which hardware environment to run
their applications. This approach of resource selection, which is nontransparent to
users, makes well-known powerful hardware heavily loaded and the entire system in
poor load balance. To accelerate task processing and improve resource usage, hard-
ware resource should be combined with software license sharing for scheduling, en-
sure provide better service and speedup response time.

2.3 Sustaining Software's Original User Interface

To hide the details of resource allocation to users, the Web-based user interface is
adopted by most license sharing systems. However, the application's user interface is
typically re-implemented in a Web-based way as well. It not only introduces burden-
some and inefficient work but isn't adaptive to the increment of software resources
in grid.

2.4 General Interface of Software Sharing

Software sharing system includes not only software registration, discovery and execu-
tion management, but also software license management. A flexible description of
software resources is necessary and the platform-independent language XML is a
suitable tool. However, there is no open standard or protocol for license management
at this time. The license management and control model including user-lock, node-
lock, site-lock and the floating license [5]. These mechanisms should be abstracted to
a series of standard interfaces to support different operations.

Fig. 1. Execution process of the floating license software

As shown in figure 1 [6], the Fluent execution software can generally execute on
any computing platform. Therefore, the goal of software sharing system is to combine
the sharing of software license and hardware resource, and to implement the dynamic
binding of software license and the hardware resources at runtime. The system makes
full use of resources in the grid environment and maintains the applications' original
GUI in a more efficient way. Ultimate goal is achieve on-demand computing.

560 X. Dong et al.

3 The Key Technologies of the System

The typical architectures involve hierarchy, P2P and hybrid. Meanwhile, in VOs,
sharing relationship among participants is peer-to-peer in nature [7][8], how would
the grid concept benefits from the P2P technology to provide the dynamic VO, open
& standard interface and QoS assurance [9] is very important.

Fig. 2. Layered Service-oriented Computing Architecture

Service is not lonely for it originates from resource. We purpose the layered SOC
architecture depicts in figure 2 and use Constellation model [10] for Resource (ser-
vice) organization and management. Map the constellation model to the Session layer
for providing QoS guarantee of the application service.

3.1 Constellation Model

We consider that in the Constellation model there are steady nodes that can provide
reliable services. Such node is called the fixed star, to which other nodes can register
their services. The connections among the fixed stars are P2P alike, but are different
from hybrid architecture (e.g. the JXTA [11]). The basic manageable unit in other
architecture is service; while in the constellation model it is the solar system [10].
Using solar system as the basic manageable unit helps to address the instability of
QoS aroused by the conflicts between different organization policies, and security
issues in the dynamic resources organization.

Different from the dynamic characteristics of P2P system, grid is essentially from
the closed communities that require resource organization in grid conforms to the
local management policy. In the Constellation Model, the local resources are organ-
ized into different solar systems according to their positions. Furthermore, according
to the requirements of applications, the solar systems are dynamically organized into
Professional Application constellation [12]. In the software sharing system, after the
information service centers are organized into Professional Application constellations,
they negotiate through the SLA protocol and route the jobs.

 Key Techniques of Software Sharing for on Demand SOC 561

3.2 Information Service Center and Job Management

Figure 3 depict that the user commits request through Portal. After the user manage-
ment module does the user authentication, Information Service (IS) Center estimates
whether the license request can be satisfied in local environment. If can be, it notices
the License Server to reserve corresponding number of licenses.

If the request cannot be satisfied, it begins to discovery in the whole grid environ-
ment [13]. When the selected execution environment needs license authorization to
execute software; checkout the reserved license from the known License Server and
start the application software.

Job scheduler distributes the jobs according to the information of local resources.
Once jobs cannot execute locally because of the conflicts among execution environ-
ments, the Job queue route queued jobs to the execution environments managed by
other Information Service Centers to execute.

Fig. 3. Using Information Service Center to organize resources

3.3 Scheduling

The first step in the software sharing system for resource scheduling is the scheduling
of license resources .The second step is the scheduling of execution environment in
order to speed up user jobs execution and increase the resources utilization.

562 X. Dong et al.

The process of scheduling is exampled as follows:
Assume the set of user jobs is A={a1 ,…, a M}, and there are M jobs. The execution

environments are depicted as S = { s1 ,…, sN }, while the number is N. As the result,
the number of possible ways for scheduling of resources is NM .

One limitation condition is that ri - the requirement for licenses should less than the
current available licenses:

ri Licenseavailable i = 1,…,M (1)

And for assurance of the requirement for the execution environment, such as the
CPU, I/O and bandwidth, it should satisfy that the hardware resources of execution
environment sj are no less than the requirement:

Hardwarej (ai @ sj) j =1,…,N , ai A (2)

License
reservation

Submit Job

License
satisfied

License missing

License reservation
over user require time

Reject Job

 Discovery
Execution
Hardware

Check
execution
software

Reserve
Hardware

Check
Execution
software

Job Execution
Management

Waiting
provisioning

Job
Running

Deploy software

Result
Return

Need update

Need update

Hardware reservation
 over user require time

Hardware missing

Fig. 4. Scheduling policy of software sharing

The policy for execution environment scheduling is:

1) Search the static information to find resources which can satisfy user's require-
ments;

2) Based on the 1) results, related constellations will give the scheduling methods
according to their current load and so on.

After comparison among different scheduling methods, system will get the best
one.

3.4 Sustaining Legacy GUI

X window is the traditional way for users to remotely use the GUI of application
installed on the specified HPC server. This approach is considered unsafe, and more
and more grid systems now provide Web-based interface to users [6]. The Web-based

 Key Techniques of Software Sharing for on Demand SOC 563

interface avoids the direct interaction between users and servers, therefore, the
server's account is unnecessary and security is enhanced as well; lets the internal
system take charge of resource selection, which makes users unaware of the underly-
ing details and helps to implement load balance.

The Web-based interface, however, has a great difficulty in integrating the soft-
ware's original GUI due to the users' indirect access to the application. The current
method is to re-implement the GUI of the application in Web pages, which isn't adap-
tive to the increment of software resources in grid.

The details of software sharing system maintaining the GUI of applications are
showed in the Figure 5. The system queries IS Center for corresponding resources as
user request. After obtaining licenses and selecting the execution environment, the
system establishes the link between the license server and the execution environment.
The execution environment fetches licenses from license server and startups the Flu-
ent software.

Fig. 5. Workflow of maintain the GUI

By starting Fluent software with the command-line option "-display user's local
IP:0", an X window session between the Fluent software running on the execution
environment and X Server on user's local machine (e.g. X11 or Exceed) is created.
Hence, users can use Fluent's own GUI.

4 Tests and Evaluation

4.1 Test Environment

We constructed a testbed using the hardware resources of National High Performance
Computing Center (Xi'an) and software GOS2 (http://www.cngrid.org). Each cluster
uses OpenPBS as its job management system. The ANSYS software is deployed on
all these clusters. Three workstations are equipped with ANSYS License server soft-
ware and each of them can provide at most 5 floating licenses. An IBM Xeon server is
used as GOS2 portal and provides a Web-based interface for users to submit jobs.

We use an automated load-testing tool to complete this test. Traditional batch
mode does not use license sharing scheduling, while web online mode schedule the

564 X. Dong et al.

Fig. 6. Testing Environment

Table 1. User scenarios

Step Traditional mode Web mode
1 Randomly choose a server for comput-

ing, and login to it
Login to the Web portal

2 Randomly choose a license server Submit the job
3 Initialize the execution environment Wait for the result of the job
4 Submit the job Download the result
5 If encountered an error,

wait 90s ~ 145s. Then go to 3
Logout

6 Process the result
7 Logout

job among the resources based on the workload and software sharing policy. We
defined 100 virtual users for each mode. These users concurrently access the servers.
The behavior of a single user in each mode is defined in table 1.

4.2 Test Result and Analysis

In this test, successful job submission means that the license request of the job can be
satisfied, while a job submission failure occurs when there aren't enough licenses to
meet the job's license request. The purpose of the test is mainly to determine the rate
of successful submission in the two different modes.

Fig.7 (next page) depicts the number of the virtual users who has already logged on
the server. From the left figure, all these users have logged on the server, and ran-
domly choose one of three license servers to checkout license resource. Supposed
when a user successful submitted a job only occupied one license. There are only five
vacant licenses on each license server, the user cannot forecast when and which li-
cense server has vacant licenses, so, user has to try to submit job again after a short
interval. The interval value is set between 90s and 145s. When the license is enough,
the user only submits once, and then it can successfully execute. But when the license
is insufficient, the user even has to re-submit 34 times for a successful execution.

 Key Techniques of Software Sharing for on Demand SOC 565

Count of User Job Submittion Under Telnet (Average)

Elapsed scenario time hh:mm
01:5001:4001:3001:2001:1001:0000:5000:4000:3000:2000:10

30

25

20

15

10

5

Count of User Job Submittion Under Web (Average)

Elapsed scenario time mm:ss
11:0010:0009:0008:0007:0006:0005:0004:0003:0002:0001:00

10

9

8

7

6

5

4

3

2

1

Fig. 7. Counts of User job submission of traditional (left) and web (right) mode

As the right figure 7 shows the average count of the total submitting action of each
web online user of the 100 virtual users in a short interval, considered the status of the
network and the job expiration, the average count of the submitting action is mostly
below 4 times.

0

200

400

600

800

1000

1200

1 2 3 4

Su
bm

is
si

on
 n

um
be

rs

Web Mode Tel ent Mode

Fig. 8. Group test result

After 4-group test, the results show traditional mode affecting the usage of the re-
sources and compelling the user has to re-submit job more times. In reality, once the
server always denies users, the latter will not keep trying. This will lead to another
poor load balance result: many resources are available later but no one knows. Using
software-sharing system, it can gather many heterogenic resources, and allow the user
to login the system from any portal and access all these resources if he is allowed.

The software-sharing system has all the advantages such as increases the usage of
the resource and avoids some disadvantage of the traditional mode. But because the
system has to schedule the jobs, execute, and return the result instead of the users, the
time of executing small-scale jobs is less than the traditional mode's. In contrast, the
load balancing can be achieved so the large-scale job will benefit from this software-
sharing system.

566 X. Dong et al.

5 Conclusion and Future work

Based on the characteristics of current License Management (LM) system, grid and
SOC, we propose a software sharing system to solve some disadvantages of current
LM systems, including poor scalability and lack management of hardware resources.
Additionally, the system is compatible with software's original interfaces. Software
sharing systems is a means not only to force software vendors to migrate to On De-
mand SOC, but also to provide a Win-Win resource sharing solution.

Most software has a life cycle of only a few years, and requires frequent upgrades,
which makes users wonder whether they can virtually benefit from their investment
on software licenses or not. Therefore, On Demand SOC is inevitable. It can drive
vendors to migrate to On Demand SOC that includes the customer demands, the mar-
ket pressure and open source community support as well.

The software sharing system is compatible with current LM systems' C/S architec-
ture, and adopts Constellation Model to organize resources and obtain good scalabil-
ity. Taking hardware resources as the object to share speeds up the processing of
users' tasks and provides better QoS, as well as improves resource usage.

Future work includes 1) study the security and failure recovery mechanisms within
software sharing system; 2) optimize system performance.

References

1. Michael N.Huhns and Munindar P. Singh: Service-Oriented Computing: Key Concepts
and Principles. IEEE Internet Computing, (JANUARY • FEBRUARY 2005), pp.75-81

2. http://www.macrovision.com/services/support/software_licensing.shtml, "FLEXlm End
User Guide" version 9.5, (August 2004)

3. http://docs.hp.com/en/B3782-90716/ch05s12.html, "iFOR/LS Quick Start Guide", HP Part
No. B2355-90108, Printed in USA (June 1996)

4. "Policy Driven VCS License Management with Platform Global License Broke", The
Synopsys Verification Avenue Technical Bulletin Vol. 3, issue 1, (March 2003)

5. http://www.macrovision.com/pdfs/art1.shtml Richard Mirabella, "License Management:
How developers control software licensing"

6. Xiaoshe Dong, Yinfeng Wang, Guohua, Zhengfang,Yang Shuncheng and Wu Weiguo.
"Floating License Sharing System in Grid Environment. " SKG2005, Beijing, pp857-863.

7. Domenico Talia and Paolo Trunfio: Toward a Synergy Between P2P and Grids. IEEE
Internet Computing, (JULY•AUGUST 2003), pp.94-96

8. J. Joseph, M. Ernest, C. Fellenstein: Evolution of grid computing architecture and grid
adoption models, IBM SYSTEMS JOURNAL, VOL 43, NO. 4, (2004), pp.624-645

9. I.Foster. What is the Grid? A three Point Checklist. GRIDToday 1(6), July 21,2002
10. Yinfeng Wang, Xiaoshe Dong et al.A Constellation Model for Grid Resource Manage-

ment.APPT2005, LNCS 3756, pp. 263-272
11. Bernard Traversat, et al.: Project JXTA 2.0 Super-Peer Virtual Network. (May 25, 2003)
12. Xiaoshe Dong, Yinfeng Wang et al.: The Campus Resource Management Based on Con-

stellation Model in the ChinaGrid. ISPA Workshops 2005, LNCS 3759, pp. 249-256
13. Yinfeng Wang, Xiaoshe Dong et al.: A Constellation Resource Discovery Model Based on

Scalable Multi-tape Universal Turing Machine. GCC 2005, LNCS 3795, pp. 633-644

Embedding a Middleware for Networked

Hardware and Software Objects�

David Villa, Felix Jesús Villanueva, Francisco Moya, Fernando Rincón,
Jesús Barba, and Juan Carlos López

Dept. of Technology and Information Systems,
University of Castilla-La Mancha,

School of Computer Science. 13071 - Ciudad Real. Spain
{David.Villa, FelixJesus.Villanueva, Francisco.Moya,

Fernando.Rincon, Jesus.Barba, JuanCarlos.Lopez}@uclm.es

Abstract. In this paper we present a novel approach to the design of
ubiquitous computing environments based on an ultra low-cost imple-
mentation of standard distributed object middlewares suitable for net-
worked hardware and software components of the system.

We prove the feasibility of our approach with a set of prototypes sup-
porting basic interoperability with CORBA and ZeroC ICE. In some
cases, the resulting embedded prototypes are two orders of magnitude
smaller than previous implementations of small objects. They are suit-
able for embedding into the smallest microcontrollers in the market, or in
the tiniest embedded Java virtual machines, or even in a low-end FPGA.

1 Introduction

A useful ubiquitous computing environment must be able to perceive stimuli
from the physical world and react on them. The perceived value of an ubiq-
uitous system is mainly due to its ability to create and to support end-user
services, based on information from the environment. In this paper we face the
problem of developing effective communication mechanisms among a large set
of heterogeneous devices including, but not limited to, desktop computers, em-
bedded computers, small microcontrollers, customized FPGA devices, etc. We
are mainly concerned with the implementation of minimum cost devices able to
support the large variety of device and network technologies currently deployed
in the target environments.

Our approach departs from many previous heterogenous device network ar-
chitectures by requiring each device to be autonomous, in the sense that our
devices and basic services will work even when all available service gateways
fail. We believe this is the easiest way to achieve better robustness, reliabil-
ity and fault tolerance at a minimum cost. Intermediate elements such as the
gateways advocated by e.g. OMG Smart Transducers [3] or OSGi [6] should be

� This research is supported by FEDER and JCCM, under Grant PBC-05-009-1, and
by Spanish Ministry of Education, under Grant TIN2005-08719.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 567–576, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

568 D. Villa et al.

avoided in most applications. It should be possible to implement autonomous
services whose correct operation does not depend on the correct operation of
any gateway.

Therefore our main goal is to allow embedded devices to offer their capabil-
ities as standard distributed objects. These objects should be able to hide the
heterogeneity of underlying technologies such as transport protocols and network
architecture.

The seamless communication of heterogeneous distributed components is
usually approached in software environments by using a unifying element, the
communication middleware. Unfortunately, current implementations of standard
object oriented middlewares (DCOM, Java RMI, Jini, EJB, CORBA, Web Ser-
vices, .NET Remoting, ZeroC ICE [26], etc.) require too much computing re-
sources for many of our target devices.

2 Related Work

Many previous initiatives have been oriented towards the miniaturization of
existing middlewares. Indeed, the Object Management Group [1] published the
MinimumCORBA specification [8], a lightweight version of its popular CORBA
architecture [2]. MinimumCORBA removes the most expensive features of the
communication engine keeping a good degree of interoperability with standard
CORBA objects.

As stated in [17] there are three main approaches to the minimization of dis-
tributed object implementations: 1) Remove costly features but keep genericity,
2) adapt the middleware to specific devices, 3) use proxies.

The first approach is used in dynamicTAO [10] and its descendants: LegORB
[12] and UIC-CORBA [9]. LegORB is a modularized ORB with the ability
to be dynamically configured. The monolithic library of TAO [7] is decom-
posed in a set of independent functional components that may be omitted
from the target application. It is reported that a client-only CORBA appli-
cation under 20 KB may be built on a HP Jornada 680 running Windows
CE, and a 6 KB client-only may be built on a PalmPilot running PalmOS 3.0
(see [13]).

UIC (Universally Interoperable Core) define a component based middleware
skeleton. Each component encapsulate a small set of features and may be dy-
namically loaded depending on the running platform, device and network used.
UIC, as its name states, may be used to implement communication engines
for different middlewares besides CORBA, such as Java RMI or DCOM.
A CORBA static server is reported to be 35 KB on a SH3 running
Windows CE.

A similar commercial product is e*ORB [14], a modular communication en-
gine with real-time features able to run on a HP iPAQ or a Texas Instruments
TMS320C64X DSP.

Another representative of the first approach to the development of small
communication engines is MicroQoSCORBA [11]. A customized communication

Embedding a Middleware for Networked Hardware and Software Objects 569

engine may be generated from a set of predefined pieces in order to implement
servers and clients suited to a specific application and device (it has been tested
on SaJe [24] and TINI [23]).

nORB [15] implements a set of pluggable transport protocols, including some
environment-specific protocols (ESIOP in CORBA terminology). It borrows
many ideas from MicroQoSCORBA, such as the simplified version of the GIOP
standard protocol, called GIOPLite.

A representative of the second approach to the development of small foot-
print middlewares is TINIORB [18], a MinimumCORBA communication engine
customized for the TINI device from Dallas Semiconductor. PalmORB [19] is
another example of this approach.

The third alternative requires a mediating host to allow interoperability with
objects in a standard middleware. This is the approach used in UORB [17] and
one of the integration alternatives proposed in SENDA [21].

Another interesting proposal of the same type is [22]. This work shows how a
set of small 8 bit microcontrollers may be published as a set of CORBA objects.
The host runs a proxy object for each connected device and communications
between each device and a the mediating host use a specialized protocol.

All these previous works follow the same basic rules: Remove dynamic invo-
cation and dynamic instantiation features, simplify the interface definition lan-
guage (OMG IDL in the case of CORBA) removing complex or variable length
data types, remove some fields from the communication protocol, remove or
simplify the types of messages used in the protocol, do not support indirect ref-
erences, do not support common services, modularize the communication engine
and instantiate only those components that are actually used.

It should be noted that the above mentioned communication engines require
a lot of support utilities: data type marshalling, communication primitives, op-
erating system, etc. Therefore, the actual resource requirements may be orders
of magnitude larger than cited.

Even the smallest of the previous distributed object implementations is much
larger than feasible on our target environment. Requiring a TINI (around 30
euro) for each device in the ubiquitous system would lead to astronomical prices
for useful systems. Just thinking of a RMI-enabled Java virtual machine for each
bulb or switch in a building is reserved to millionaires.

We need something much smaller, self-contained, and specially much cheaper,
but with a similar set of features.

3 The Smallest Object

Instead of reducing the features provided by the middleware even more, let’s
think the other way. We will define the smallest implementation of a distributed
object. From that point we will consider the overhead introduced for each addi-
tional feature when the application constraints allow them.

From the perspective of the ubiquitous system it is important that each de-
vice looks like a distributed object. But it is not essential that they are actual

570 D. Villa et al.

distributed objects. If devices are able to generate coherent replies when they
receive predefined request messages then the system will work as expected. For a
given communication middleware these request an reply messages are completely
specified by the communication protocol (GIOP in the case of CORBA).

If the device is just an application-specific GIOP server it will be seen as a
normal object from the rest of the network but there is a huge advantage for
resource savings. The object may get rid of the whole communication engine
and its API. There is no need for object adapters, marshalling routines, etc.
We just need to implement the message handling code for those messages whose
destination is an object placed at the device. Therefore we propose a generated
ad-hoc implementation for each device.

In this paper we proposed PicoObjects as a materialization of the above imple-
mentation strategy. In summary PicoObjects provide a toolset for the automated
generation of code able to replace a standard communication engine in low-end
computing resources.

Code generation must be performed with careful consideration of the con-
straints imposed by the target platform. Generated code is obviously different
for each platform but it will also differ for servers with a different set of objects,
even when the platform and the interfaces of the objects are the same.

It is worth to note that a server implemented using this technique will only
reply to messages directed to its resident objects. Messages handled by the com-
munication middleware (such as object location in CORBA) will be silently
discarded. It is always possible to include these messages as the methods of a
special object if needed.

A communication middleware will usually expose two different interfaces to
access every service in the system: At a programming level it provides a stan-
dardized application programming interface. It abstracts communication details,
protocols, etc. At a network level it provides a common protocol (GIOP in the
case of CORBA) allowing seamless communication among communication en-
gines running on different machines.

A picoObject lacks a local communication engine. The server program must
include code to perform communication primitives and manage its registered
objects. Nonetheless for the rest of the network a picoObject behaves as an usual
object. It provides a network level interface without significative differences with
respect to a standard object. We may say that a picoObject implements a virtual
communication engine.

Although it is already implicit in the context, it is worthy to note that a
picoObject implement only the server-side of the communication middleware.
This is consistent with the idea of developing remote interfaces for each device.
The devices behave as small servers.

4 Functionality Scaling

The main goal of picoObjects is the implementation of the essential features
needed for a device to expose a standard object behaviour in the network. From

Embedding a Middleware for Networked Hardware and Software Objects 571

this point we intend to define and develop mechanisms to scale the functionality
of the device depending on the constraints imposed by the target platform. Our
initial targets range from an eight bit microcontroller to a standard PC.

Although the proposed model allows an implementation at almost any con-
ceivable scale, our main targets were the smallest available computing devices.
It may be argued that generating the message handling code for a whole com-
munication middleware do not offer any particular advantage over a stantard
middleware. Even in this case there may be constraints in the target system
that make our approach more advisable (reliability, real-time constraints, secu-
rity, etc.).

We define the minimum set of features using the considerations of section 2,
adding a few additional constraints: a) On one hand we always follow the stan-
dard message format for the communication protocol. Using modified protocols
(such as GIOPLite in the case of MicroQoSCORBA) implies the need for a me-
diating element (bridge) responsible for the transformation of messages to allow
seamless interoperability. This would contradict our intention to make devices
immediately available on the network. b) We will only support the simplest pro-
tocol version whenever interoperability is not compromised. c) Resident objects
are always on. There is no way to activate or deactivate objects.

5 A Strategy for Small Objects

The simplest way to achieve a coherent behaviour for each picoObject is by
means of message matching automata. In this context, the allowed message set
for a given object constitute a BNF grammar defined by: a) The message format
for the middleware communication protocol. b) The object identity, that is to
say, object identifiers. It should be noted that several object identities may be
backed by a single piece of code. This technique is usually called default servant
in CORBA parlance. c) Concrete interfaces or set of interfaces provided by the
object. It includes name, arguments and return value for each method. d) The
marshalling procedure (CDR in case of CORBA). e) Standard interfaces inher-
ited from the communication engine (CORBA::Object in case of CORBA). And
f) Constraints of the target platform.

We first define the set of lexical elements (tokens): compulsory fields in each
message with a known format and size, object names, method names, interface
names. Then we generate the rules describing how these tokens may be combined
together (the BNF grammar). This information is enough to automatically gen-
erate a complete functional parser. The whole development flow is shown in
figure 1.

Every picoObject must include a set of user procedures (object method im-
plementations) that must be filled by hand (as in any traditional middleware).
When the grammar parser of a PicoObject identifies a whole request message the
corresponding user procedure is automatically invoked and a reply message is
generated. If the parser fails to identify a valid method request then the message
is discarded and the picoObject looks for a new syncronization point.

572 D. Villa et al.

Fig. 1. Development flow of a picoObject

Input and output messages may be handled on-the-fly using a custom byte-
stream processor. This is a very convenient solution for devices with severe mem-
ory constraints (just a few hundreds of program memory words and a dozen of
general purpose registers). In this scenario there is no room to even store the
incoming message. The request message is processed as the bytes arrive and the
reply message is also generated partially from replication of the incoming data.
The last part of the reply message is generated by the user procedure for each
method.

In order to lower the memory requirements for token parsing we reduce them
using a digital signature, a CRC code or just a checksum. Therefore, even when
tokens may be arbitrarily long, the picoObject compiler substitutes it by a length
and a single byte checksum. When the picoObject is parsing a request it may just
incrementally calculate the input message checksum and check it when the length
matches. Actually we do not need to check at every token boundary whether
calculated and stored checksums match. If we arrange the set of implemented
messages for a given object as a lexical tree then we just need to check at every
forking point in order to decide the branch to follow.

Our strategy is quite different with respect to previous middleware mini-
mization approaches such as MicroQoSCORBA. MicroQoSCORBA tries coarse
grain code minimization by building a custom implementation from predefined
libraries. PicoObjects use a finer grain code minimization strategy by completely
generating the message parsing code for each application.

The above approach has been applied to a pair of existing middlewares:
CORBA and ZeroC ICE, leading to picoCORBA and picoICE respectively.
The constraints imposed by each particular middleware lead to slightly different
design decisions. As illustration of the applicability of this work we will sum-
marize in the following sections the features and design decisions of each proto-
type.

Both prototypes were developed in Microchip PIC assembler, Java on a stan-
dard embedded PC, Java on an embedded Dallas Semiconductors TINI device,
C on a standard embedded PC, and VHDL on a Xilinx Virtex E FPGA.

Embedding a Middleware for Networked Hardware and Software Objects 573

6 PicoCORBA

CORBA is now a mature distributed object architecture and a lot of effort
has been devoted to embedded CORBA implementations. Most of this previous
work is influenced by MinimumCORBA, a reduced footprint specification which
removes complex CORBA features keeping a good degree of interoperability with
standard CORBA. MinimumCORBA objects are completely standard compliant
and they may also be built on full CORBA engines. PicoCORBA goes much
further with respect to removing features. PicoCORBA objects are not portable
at all since they are usually implemented using a specific assembler language.
Even if we use C or any other low level programming language there is no
enforcement of any standard mapping since there is no need to link against
a common library. The picoCORBA prototype is able to parse a byte stream
coming from the network and generate a response. The transport protocol may
range from TCP over Ethernet, through SLIP, SNAP, LonTalk, or any other
reliable transport protocol.

As described above, there are two key points in which we should check the
calculated checksum against the expected checksum: when we receive the ob-
ject identity and when we must choose among the implemented methods. In
order to simplify this procedure even further, we assume that the length of the
identity string (object key field) of every picoObject is exactly the same. This
assumption do not introduce interoperability problems at all. Object identities
will appear in the generated object references and clients are required to use it
without modifications when sending requests.

CORBA standard mandates the implementation of GIOP communication
protocol to ensure interoperability across the network. PicoCORBA is currenly
GIOP 1.0 conformant. This does not introduce interoperability problems since
the CORBA standard dictates that any updated GIOP protocol must be back-
wards compatible.

GIOP dictates that peers which initiate a connection determine the byte order
used. With GIOP 1.0 the client is always the initiator and therefore the server
is required to adapt to the requested byte order. PicoObjects are supposed to
stay in a controlled environment and therefore implementing a single byte order
may be acceptable. If this simplification cannot be afforded then picoCORBA
objects must implement little endian and big endian versions of all the messages,
virtually doubling the resources needed.

Any CORBA object implements a standard interface called CORBA::Object
defining a set of common methods. Fortunately some of these methods are al-
ready handled by the remote proxy or by the communication engine at the client
side. Therefore there is no need to implement all of them as possible GIOP mes-
sages. We identified the bare minimum set of common methods to non existent
and is a. The former allows the client to know whether the object is willing to
answer requests. The latter offers minimal introspection capabilities. Both of
them are implicitly implemented in every generated picoObject even when no
explicitly stated.

574 D. Villa et al.

Table 1. Size of a small server on embedded middlewares

Embedded middleware Minimal server

TAO 1738 KB
nORB 567 KB
UIC/CORBA 35 KB
JacORB (Java) 243 KB
ZEN (Java) 53 KB
MicroQoSCORBA (TINI) 21 KB

picoCORBA (C) 7 KB
picoCORBA (Java) 5 KB
picoCORBA (TINI) 4 KB
picoCORBA (PIC12C509) 415 words

A few limitations apply to the set of implemented messages. Experimental re-
sults show that interoperability is not compromised against all tested implemen-
tations of CORBA (TAO, OmniORB, MICO, JacORB, JDK1.4, ORBit2). We
ignore the contents of the field requesting principal for every incoming mes-
sage which is already deprecated. Reply messages reproduce two fields from their
matching request messages: service contextwhich encapsulates engine specific
data and request id which matches requests and replies. Field reply status
always contains NO EXCEPTION since picoCORBA does not currently support
exceptions or indirect proxies (location forward). We ignore cancel request mes-
sages. This is explicitly allowed by the CORBA specification. PicoCORBA does
not implement Locate request or Close connection messages. Locate requests
may be used by the client to optimize bandwidth when using indirect proxies.
PicoCORBA objects are “always on”. Therefore there is no need to ever gen-
erate Close connection messages. Finally PicoCORBA ignores any unhandled
message. In particular it ignores any malformed messages and error reporting
messages.

An implementation of a fully operative servant, able to handle method in-
vocations for a set of 64 X10 objects fits on 415 program memory words of a
Microchip PIC12f675 and requires less than 16 eight-bit registers. That is two
orders of magnitude smaller than any other previous implementation of small
embedded middlewares (see table 1).

7 PicoICE

ZeroC, Inc. developed a high quality distributed object framework called ICE
(Internet Communication Engine) built upon the experience of CORBA but free
of legacy or bureaucracy constraints. It implements a feature set unparalleled in
any other distributed object platform (object persistence, object migration, au-
thentication, security, replication, deployment services, firewall gateways, etc.).
A summary of the differences between ICE and CORBA is available at the ICE
home page [26].

Embedding a Middleware for Networked Hardware and Software Objects 575

Despite the current lack of support for embedded platforms, ICE offers a few
advantages over CORBA to reduce resource comsumption even further. ICE
protocol is simpler than GIOP for a number of design decisions: 1) messages are
always little endian so we do not need to care about byte ordering, 2) there is
support for unreliable transports such as UDP (much easier to implement in a
low cost embedded device), 3) there are less types of messages and some of them
may not be implemented without compromising interoperability, 4) unprocessed
message fields may easily be skipped because they are usually preceded by the
field total length, 5) there are no data alignment requirements for messages
on-the-wire.

The picoICE prototype is fully conformant with the ICE protocol specification
for connection-oriented transports and connection-less transports. Any reliable
or unreliable transport protocol may be used in combination of picoICE objects.
An implementation of a fully operative servant, able to handle method invoca-
tions for a set of 64 objects fits on 478 words of program memory in a Microchip
PIC12f675 microcontroller and needs less than 16 eight bit registers. That is
three orders of magnitude smaller than the ZeroC ICE implementation, and two
orders of magnitude smaller than the ZeroC Embedded ICE implementation.
Currently we support TCP and UDP transports over Ethernet or WiFi through
a Lantronix XPort device. A picoObject may also be connected to SLIP (serial
line IP) serial port.

As in the case of CORBA, ICE requires that every object implement a set of
common methods. The picoICE prototype supports ice ping, ice id, ice ids
and ice isA. These methods add minimal introspection capabilities and the
ability to remotely test the existence of an object. These features may be removed
if not needed.

8 Conclusions and Future Research

In this paper we propose an alternative implementation of distributed objects for
low cost embedded devices such as eight bit microcontrollers or FPGAs. Results
show that resource consumption is two orders of magnitude than previously
published data on small middlewares implementation.

As they are currently implemented, picoObjects exhibit ultra-low latency,
since the reply messages are composed on the fly while the object is still receiving
the request. This makes them specially suitable for real-time operation even on
low bit-rate networks. Exact figures of latency depend on the transport protocol
used, which is currently independent of the picoObjects.

As the basic prototypes still evolve, we are now developing high level tools
to deploy a picoObject network. We are also extending the concept to support
other middlewares.

PicoObjects are being used as major components of SENDA, a middleware-
based infrastructure for modeling, development, and deploying of next generation
home services [21].

576 D. Villa et al.

References

1. OMG (Object Management Group), http://www.omg.org/
2. Object Management Group, The Common Object Request Broker: Architecture and

Specification, ed. 2.3, June 1999. Available in http://www.omg.org/, document id:
98-12-01.

3. Object Management Group, Smart Transducers Interface Specification, ed. 1.0,
January 2003. Available in http://www.omg.org/, document id: 03-01-01.

4. OMG, General Inter-ORB Protocol 2.3, Available in http://www.omg.org/ (Doc-
ument id: 98-12-01), June 1999.

5. Sun Microsystems, Jini Architecture Specification, ed. 1.2, available online at
http://www.sun.com/.

6. Open Services Gateway Initiative, OSGi Service Platform, ed. 2.0, October 2001,
available online at http://www.osgi.org/.

7. The ACE ORB, available online at http://www.theaceorb.com/.
8. Object Management Group, Minimum CORBA Specification, ed. 2.3, August 2002,

available online at http://www.omg.org/, document id: 02-08-01.
9. M. Román, Fabio Kon, Roy H. Campbell, Reflective Middleware: From Your Desk

to Your Hand, 2001.
10. Fabio Kon, F. Costa, G. Blair, Roy Campbell. The Case for Reflective Middleware.
11. Haugan, Olav. Configuration and Code Generation Tools for Middleware Targeting

Small, Embedded Devices, M.S. Thesis, Dec 2001.
12. Manuel Roman, M. Dennis, Mickunas, Fabio Kon and Roy Campell. LegORB and

Ubiquitous CORBA, Feb 2000.
13. LegORB, available online at http://choices.cs.uiuc.edu/2k/LegORB/.
14. OpenFusion e*ORB, available online at http://www.prismtechnologies.com/.
15. V. Subramonian, G. Xiang. Middleware Specification for Memory-Constrained Net-

worked Embedded Systems, 2003.
16. C. Gill, V. Subramonian. ORB Middleware Evolution for Networked Embedded

Systems, 2003.
17. Rodrigues, G., Ferraz, C., A CORBA-Based Surrogate Model on IP Networks, 2001.
18. J. Morena, F. Moya, J.C. López. Implementación de un ORB para Dispositivos

Empotrados, Sep 2002.
19. M. Roman, A. Singhai, Integrating PDAs into Distributed Systems: 2K and Pal-

mORB, HUC 1999.
20. M. Connolly, CORBA Middleware for a Palm Operating System, Sep 2001.
21. F. Moya, J.C. López. SENDA: an alternative to OSGi for large-scale domotics,

Networks, The Proceedings of the Joint International Conference on Wireless LANs
and Home Networks (ICWLHN 2002) and Networking (ICN 2002), World Scientific
Publishing, pp 165-176, Aug, 2002.

22. W. Nagel, N. Anderson. A Protocol for Representing Individual Hardware Devices
as Objects in a CORBA Networt, July 2002.

23. Tiny Internet Interface. Available online at http://www.ibutton.com/TINI/
index.html

24. SaJe, Real-Time Native Java Execution. Available online at http://
saje.systronix.com/.

25. E. Gamma, R.H., R. Johnson, J. Vlissides, Design Pattens, Elements of Object-
Oriented Software. 1995, Addison-Wesley.

26. ZeroC, Inc., ICE Home Page, available online at http://www.zeroc.com/.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 577 – 586, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Mechanism of Authenticating a MAP
in Hierarchical MIPv6*

Jonghyoun Choi and Youngsong Mun

School of Computing, Soongsil University,
Sangdo 5 Dong, Dongjak Gu, Seoul, Korea

wide@sunny.ssu.ac.kr, mun@computing.ssu.ac.kr

Abstract. In Mobile IPv6, when a Mobile Node (MN) moves from home net-
work to the foreign network, it configures a new Care-of-Address (CoA) and
requests the Home Agent (HA) to update its binding. This binding process re-
quires high signaling load. Thus, Hierarchical Mobile IPv6 (HMIPv6) has been
proposed to accommodate frequent mobility of the MN and reduce the signaling
load in the Internet. A Mobility Anchor Point (MAP) is a router located in a
network visited by the MN. The MN uses the MAP as a local HA. The absence
of any protections between MN and MAP may lead to malicious MNs imper-
sonating other legitimate ones, impersonating a MAP. In this paper, we propose
a mechanism of authenticating MAP and MN in HMIPv6. The performance
analysis and the numerical results presented in this paper show that our pro-
posal has almost same as the performance of the HMIPv6 without security in
spite of security process load.

1 Introduction

The Internet users desire high quality of service at anywhere. Mobile device users
have increased by growing of mobile device and wireless techniques. Mobile IPv6 [1]
proposed by Internet Engineering Task Force (IETF) provides a basic host mobility
management scheme. Mobile IPv6 specifies routing support to permit IPv6 hosts to
move between IP subnetworks while maintaining session continuity. whenever an
MN moves from home network to the foreign network, it configures a new Care-of-
Address (CoA) and requests the HA to update it’s binding. This binding allows an
MN to maintain connectivity with the Internet as it moves between subnets. However,
binding process requires high signaling load. Thus, HMIPv6 has been proposed [3] to
accommodate frequent mobility of the MN and reduce the signaling load in the Inter-
net. In HMIPv6, when an MN moves into new Access Router (AR) domain, the MN
may perform one or two types of binding update procedures: either the global binding
update and the local binding update (intra-MAP) or the local binding update (Inter-
MAP). A Mobility Anchor Point (MAP) is a router located in a network visited by the
MN. The MN uses the MAP as a local HA. One or more MAPs can exist within a

* This research was supported by the MIC(Ministry of Information and Communication),

Korea, under the ITRC(Information Technology Research Center) support program super-
vised by the IITA(Institute of Information Technology Assessment).

578 J. Choi and Y. Mun

visited network. The absence of any protections between MN and MAP may lead to
malicious MNs impersonating other legitimate ones, impersonating a MAP. Any of
these attacks will undoubtedly cause undesirable impacts to the MN's communication
with all correspondent nodes [2]. In this paper, we propose a mechanism of authenti-
cating MAP and MN in HMIPv6.

2 Overview of Hierarchical Mobile IPv6 system

The HMIPv6 protocol separates mobility management into intra-domain mobility and
inter-domain mobility. A MAP in HMIPv6 treats the mobility management inside a
domain. Thus, when an MN moves around the sub-networks within a single domain,
the MN sends a BU message only to the current MAP. When the MN moves out of the
domain or moves into another domain, Mobile IPv6 is invoked to handle the mobility.

The basic operation of the HMIPv6 can be summarized as follows [8].

Fig. 1. The basic Operation of the HMIPv6

In HMIPv6, the MN has two addresses, a Regional CoA (RCoA) on the MAP's
link and an on-link CoA (LCoA). When an MN moves into a new MAP domain, it
needs to configure two CoAs: an RCoA and an LCoA. After forming the RCoA based
on the prefix received in the MAP option, the MN sends a local BU to the MAP. This
BU procedure will bind the MN's RCoA to its LCoA. The MAP then acts as an HA.
Following a successful registration with the MAP, a bi-directional tunnel between the
MN and the MAP is established. After registering with the MAP, the MN registers its
new RCoA with it’s HA by sending a BU that specifies the binding (RCoA, Home
Address) as in Mobile IPv6. When the MN moves within the same MAP domain, it
should only register its new LCoA to its MAP. In this case, the RCoA remains
unchanged.

 Mechanism of Authenticating a MAP in Hierarchical MIPv6 579

3 Mechanism of Authenticating MAP

In this paper, we propose mechanism of authenticating MAP without handicap of
security processing cost. In order to authenticate MAP or MN, each other, [2] recom-
mend IPsec with IKE. Fig.2 shows message flow of general HMIPv6.

When an MN moves into new AR domain without changing MAP, an MN needs
not to perform both IKE phase 1 and Global BU. IKE phase 1 consists of the ex-
change of three sets of two messages and IKE phase 2 consists of one sets of two
messages and one message from initiator to responder.

Fig. 2. Message flow of general HMIPv6. The left figure shows message flow of Inter-MAP
movement and the right figure shows message flow of Intra-MAP movement.

In this paper, we propose new mechanism of authenticating MAP. We assume that
two links of HA-MAP and HA-MN are secure and the HA has already known an MN’s
public key. Fig.3 shows message flow of proposed mechanism. Our proposed mecha-
nism is similar to RSA system. However, our proposed system must obtain peer’s pub-
lic key from Certificated Agent (CA). Thus HA acts as CA in our proposed system.

Fig. 3. Message flow of proposed mechanism

When an MN moves into new MAP domain, our proposed system operates as follows:

1. An MN detects movement by receiving router advertisement message from
New AR.

2. An MN configures LCoA and RCoA.

580 J. Choi and Y. Mun

3. An MN sends a local BU with Home Address (HoA) to the MAP for binding
new LCoA to new RCoA.

4. A MAP sends request MN’s public key to HA and obtain MN’s public key
5. A MAP sends Ack. message together with MAP’s public key and digital sig-

nature encrypted by MN’s public key obtained from HA.
6. An MN sends a global BU with MAP’s address to the HA for binding new

RCoA to HoA.
7. An MN receives Ack. message with MAP’s public key.
8. An MN sends Local BU together with digital signature encrypted by MAP’s

public key obtained from HA.

We recommend 5 second as the lifetime of tentative Local BU. The Second Local
BU can extend the lifetime. If a MAP could not receive the second Local BU within 5
second, lifetime of tentative Local Binding shall be expired. After step 5, a MAP can
authenticate an MN. After step 8, a trust relationship between MN and MAP is con-
tracted. When an MN moves new AR domain without changing MAP, the proposed
system operates just step 8.

4 Performance Analysis

4.1 Mobility Model

In this paper, we use hexagonal cellular network model, as shown in Fig. 5. Each
MAP domain is assumed to consist of the same number of range rings, R. Each range
ring r (r 0) consists of 6r cells. The center cell is innermost cell 0. The cells labeled
by 1 formed the first range ring around cell “0,” the cells labeled by 2 formed the
second range ring around cell 1 and so on. Therefore, the number of cells up to ring
R, N(R) is calculated in Eq.(1).

Fig. 4. System model of HMIPv6 Fig. 5. Hexagonal cellular network architecture

 Mechanism of Authenticating a MAP in Hierarchical MIPv6 581

In terms of user mobility model, random-walk mobility model is taken into consid-
eration as commonly used mobility model. The random-walk model is appropriate for
pedestrian movements where mobility is generally confined to a limited geographical
area such as residential and business buildings [4].

1
2

)1(6
16)(

1

++=+=
=

RR
rRN

R

r

 (1)

In terms of random-walk mobility model, we consider the two-dimensional
Markov chain model used in [5]. In this model, the next position of an MN is equal to
the previous position plus a random variable whose value is drawn independently
from an arbitrary distribution [5]. In addition, an MN moves to another cell area with
a probability of 1−q and remains in the current cell with probability q. In the cellular
architecture shown in Fig. 5, if an MN is located in a cell of range ring r (r > 0), the
probabilities of movement resulted in an increase or a decrease in the distance from
the center cell are given by

r
rp

6
1

3
1

)(+=+ and
r

rp
6
1

3
1

)(−=− (2)

We define the state r of a Markov chain as the distance between the current cell of
the MN and the center cell. This state is equivalent to the index of a range ring where
the MN is located. As a result, the MN is said to be in state r if it is currently residing

in range ring r. The transition probabilities 1, +rrα and 1, −rrβ represent the probabili-

ties of the distance of the MN from the center cell increasing or decreasing, respec-
tively. They are given as follows:

if r = 0
−

−
= ++

)()1(

)1(
1,

rpq

q
rrα

if 1 r R

(3)

)()1(1, rpqrr
−

− −=β if 1 r R (4)

where q is the probability that an MN remains in the current cell.
Let Pr,R be the steady-state probability of state r within a MAP domain consisting

of R range rings. As Eq.(3) and Eq.(4), Pr,R can be expressed in terms of the steady
state probability P0,R as follows:

 ∏
−

= +

+=
1

0 ,1

1,
,0,

r

i ii

ii
RRr PP

β
α for 1 r R (5)

With the requirement
=

=
R

r
Rrp

0
, 1, Pr,R can be expressed by

∏
=

−

= +

++
= R

r

r

i ii

ii
RP

1

1

0 ,1

1,
,0

1

1

β
α

 (6)

where 1, +rrα and 1, −rrβ are obtained from Eq.(3) and Eq.(4).

582 J. Choi and Y. Mun

4.2 Cost Functions

In order to analyze the performance of HMIPv6 [2] and proposed mechanism, the
total cost, consisting of security association(SA) establishment cost, location update
cost and paging cost, should be considered. In normal HMIPv6, we divide the total
cost into SA establishment cost, location update cost and packet delivery cost. In
proposed mechanism, we divide total cost into new SA establishment cost, location
update and packet delivery cost. CSA, Cnew-SA, Clocation and Cpacket denote new SA estab-
lishment cost, location update and packet delivery cost, respectively. Then, the total
cost of HMIPv6 (Ctotal), the total cost of HMIPv6 without any security (Ctotal_nosec) and
proposed mechanism (Cnew-total) can be obtained as follows:

packetlocationSAtotal CCCC ++= (7)

packetlocationSAnewtotalnew CCCC ++= −−
 (8)

packetlocationnototal CCC +=sec_
 (9)

4.2.1 Location Update Cost
Cg and Cl denote the signaling costs in the global binding update, the global binding
update of proposed mechanism and the local binding update, respectively. In the IP
networks, the signaling cost is proportional to the distance of two network entities. Cg
and Cl can be obtained from the below equations.

MAPCNCNHA

CN

PCPCNPC

))cb(f(N2))eb(f(2

+⋅++

+⋅+⋅⋅⋅++⋅+⋅⋅= τκτκgC (10)

MAPPC)ef(2 +⋅+⋅⋅= τκlC (11)

where and are the unit transmission costs in a wired and a wireless link, respec-
tively. As Fig. 4, b, c, e and f are the hop distance between nodes. PCHA, PCCN and
PCMAP are the processing costs for binding update procedures at the HA, the CN and
the MAP, respectively. NCN denotes the number of CNs that is communicating with
the MN.

In terms of the random walk mobility model, the probability that an MN performs
a global binding update is

1,RR,p +⋅ rrα . Specifically, if an MN is located in range ring R,

then the boundary ring of a MAP domain composed of R range rings and performs a
movement from range ring R to range ring R + 1. The MN then performs the global
binding update procedure. In other cases, except this movement, the MN only per-
forms a local binding update procedure. Hence, the location update cost of normal and
proposed mechanism per unit time can be expressed as follows:

T

CC
C lRRgRR

location

⋅⋅−+⋅⋅
= ++)p1(p 1,RR,1,RR, αα (12)

where T is the average cell residence time.

 Mechanism of Authenticating a MAP in Hierarchical MIPv6 583

4.2.2 Packet Delivery Cost
The packet delivery cost, Cpacket, in HMIPv6 can then be calculated as follows:

MNCNHAMAPpacket CCCC −++= (13)

In Eq.(13), CMAP and CHA denote the processing costs for packet delivery at the MAP
and the HA, respectively. CCN-MN denotes the packet transmission cost from the CN to
the MN.

In HMIPv6, a MAP maintains a mapping table for translation between RCoA and
LCoA. The mapping table is similar to that of the HA and it is used to track the cur-
rent locations (LCoA) of the MNs. All packets directed to the MN will be received by
the MAP and tunneled to the MN’s LCoA using the mapping table. Therefore, the
lookup time required for the mapping table also needs to be considered. Specifically,
when a packet arrives at the MAP, the MAP selects the current LCoA of the destina-
tion MN from the mapping table and the packet is then routed to the MN. Therefore,
the processing cost at the MAP is divided into the lookup cost (Clookup) and the routing
cost (Crouting). The lookup cost is proportional to the size of the mapping table. The
size of the mapping table is proportional to the number of MNs located in the cover-
age of a MAP domain [4]. On the other hand, the routing cost is proportional to the
logarithm of the number of ARs belonging to a particular MAP domain [4]. There-
fore, the processing cost at the MAP can be expressed as Eq.(15). In Eq.(15), s de-
notes the session arrival rate and S denotes the average session size in the unit of
packet. and are the weighting factors.

Let NMN be the total number of users located in a MAP domain. In this paper, we
assume that the average number of users located in the coverage of an AR is K.
Therefore, the total number of users can be obtained as follows:

KNN ARMN ×= (14)

))log((

)(

ARMNs

routinglookupsMAP

NNS

CCSC

βαλ
λ

+⋅⋅=

+⋅⋅=
(15)

In MIPv6, using the route optimization, only the first packet of a session transmits the
HA. Subsequently, all successive packets of the session are directly routed to the MN.
The processing cost at the HA can be calculated as follows:

HAsHAC θλ ⋅= (16)

where HA refers to a unit packet processing cost at the HA.
Since HMIPv6 supports the route optimization, the transmission cost in HMIPv6

can be obtained using Eq.(17). As mentioned before, and denote the unit transmis-
sion costs in a wired and a wireless link, respectively.

SebaecSC ssMNCN ⋅⋅+++++⋅−⋅⋅=− λκλτ))()()1(((17)

584 J. Choi and Y. Mun

4.2.3 SA Establishment Cost
In Fig.2, general MIPv6 system operates IKE procedure before Local BU. IKE proce-
dure consists of two phases. Thus, SA establishment cost of general MIPv6, CSA, can
be calculated as follows:

T

CC
C lSARRgSARR

SA
_1,RR,_1,RR,)p1(p ⋅⋅−+⋅⋅

= ++ αα (18)

CSA_g denotes SA establishment cost of Inter-MAP movement and CSA_l denotes SA
establishment cost of Intra-MAP movement. CSA_g and CSA_l can be calculated as
follows:

SA

SASA_

PC10)ef(9

PC3))ef()ef(2(PC7)ef(23

⋅+⋅+⋅⋅=

⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅⋅⋅=

τκ
τκτκτκgSAC

(19)

SA

SA_

PC3)ef(3

PC3)ef()ef(2

⋅+⋅+⋅⋅=

⋅+⋅+⋅+⋅+⋅⋅=

τκ
τκτκlSAC

(20)

In Fig. 4, e and f are the hop distance between nodes. PCSA are the processing costs
for security parameters calculation.

In proposed mechanism, as Fig.3, an additional message for SA establishment is
only one pair between MAP and HA. Local BU for confirmation message does not
influent proposed system to perform handoff. Therefore, Cnew_SA and Cnew_SA_g can be
obtained as follows:

T

C
C gSAnewRR

SAnew
__1,RR,

_

p ⋅⋅
= +α (21)

SA_ PC2)(2 ⋅+⋅⋅= bC gSA κ (22)

Is Fig. 4, b is the hop distance between nodes. PCSA are the processing costs for calcu-
lating security parameters.

5 Numerical Results

This section presents performance analysis of proposed mechanism as compared with
general HMIPv6 and HMIPv6 without security. The parameter values for the analysis
were referenced from [4], [6] and [7]. They are shown in Table 1.

Table 1. Numerical simulation parameter for performance analysis

parameter α β γ
HAθ τ κ a b c

value 0.1 0.2 0.05 20 1 2 6 6 4
parameter d e f NCN PCHA PCMAP PCCN PCSA

Value 1 2 1 2 24 12 6 24

 Mechanism of Authenticating a MAP in Hierarchical MIPv6 585

Fig. 6. Total cost as a function of average cell residence time (T) of MN

Fig.6 shows the variation in the total cost as the average cell residence time is
changed in the random-walk model. The total cost becomes less as the average cell
residence time increases. This must be true because an MN becomes static by residing
in a cell longer, the frequency of location update to HA become reduced. To compare
with HMIPv6, proposed mechanism reduces the total cost by from 58% to 25% ap-
proximately. To compare with HMIPv6 without security, our proposed mechanism
just gains the total cost by from 4% to 20% approximately.

In HMIPv6, the MAP needs to lookup the destination MN on mapping table and to
calculate security parameters. The cost for this lookup and calculating procedure
depends on the number of MNs in a MAP domain. Therefore, the packet delivery cost
increases as the number of MN in the MAP domain increases. In Eq.(14), the number
of MN is KN AR × .

 (a) T = 3 sec (b) T = 9 sec

Fig. 7. Total cost as function of the number of AR in a MAP domain

586 J. Choi and Y. Mun

Fig. 7 shows the impact of the number of AR per a MAP domain on the total cost
in a random-walk model. As shown in Fig. 7, the total cost increases linearly as the
number of AR increases. To compare with HMIPv6, our proposed mechanism re-
duces the total cost by 32% (T=3sec) and 16% (T=9sec) approximately. To compare
with HMIPv6 without security, proposed mechanism just gains the total cost by 6%
(T=3sec) and 2% (T=9sec) approximately.

6 Conclusions

HMIPv6 has been proposed to accommodate frequent mobility of the MNs and re-
duce the signaling load in the Internet. However, HMIPv6 focused on the intra-MAP
domain handoff, not on the inter-MAP domain handoff [4]. The absence of any pro-
tections between MN and MAP may lead to malicious MNs impersonating other
legitimate ones, impersonating a MAP. In this paper, we propose mechanism of au-
thenticating MAP in HMIPv6. The performance analysis and the numerical results
presented in this paper shows that our proposal has nearly same performance of the
HMIPv6 without security in spite of security process load. To compare with HMIPv6,
our proposed mechanism reduces the total cost by 32% (T=3sec) and 16% (T=9sec)
approximately. To compare with HMIPv6 without security, proposed mechanism just
gains the total cost by 6% (T=3sec) and 2% (T=9sec) approximately.

References

1. D. B. Johnson and C. E. Perkins, “Mobility support in IPv6,” IETF RFC 3775, June, 2004.
2. Hsham Soliman, Claude Castelluccia, Karim El-Malki and Ludovic Bellier, “Hierarchical

MIPv6 mobility management,” IETF Internet draft, draft-ietf-mipshop-hmipv6-04.txt (work
in progress), Dec. 2004.

3. IETF MIPv6 Signaling and Handoff Optimization (mipshop) WG: http://www.ietf.org/
html.charters/mipshop-charter.html

4. Sangheon Pack and Yanghee Choi, "A study on performance of hierarchical mobile IPv6 in
IP-based cellular networks," IEICE Transactions on Communications, vol. E87-B no. 3
pp.462-469, Mar. 2004.

5. I.F. Akyildiz and W. Wang, “A dynamic location management scheme for next-generation
multitier PCS systems,” IEEE Trans. Wireless Commun., vol.1, no.1, pp.178–189, Jan.
2002.

6. M. Woo, “Performance analysis of mobile IP regional registration,” IEICE Trans. Com-
mun., vol.E86-B, no.2, pp.472–478, Feb. 2003.

7. X. Zhang, J.G. Castellanos, and A.T. Capbell, “P-MIP: Paging extensions for mobile IP,”
ACM Mobile Networks and Applications, vol.7, no.2, pp.127–141, 2002.

8. Jonghyoun choi and Youngsong Mun, “An Efficient Handoff Mechanism with Web Proxy
MAP in Hierarchical Mobile IPv6,” ICCSA2005, LNCS 3480, pp. 271-280, May 2005.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 587 – 596, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Reducing Binding Updates in High Speed Movement
Environment Based on HMIPv6

Dae Won Lee 1, Kwang Sik Jung 2,∗, Sung-Ju Roh 3,
KwangHee Choi 3, and Heon Chang Yu 1

1Dept. of Computer Science Education, Korea Univ.,
1, 5-ka, Anam-dong Sungbuk-gu, Seoul, Korea
{daelee, yuhc}@comedu.korea.ac.kr

2Dept. of Computer Science, Korea National Open Univ., Seoul, Korea
kchung0825@knou.ac.kr

3Dept. of Computer Science and Engineering, Korea Univ., Seoul, Korea
{loadroh, khee}@korea.ac.kr

Abstract. In this paper, we propose a new mobile host protocol that is opti-
mized to provide access to a Mobile IP enabled internet in support of fast mov-
ing wireless hosts. Actually, for fast moving wireless hosts, we need certain
environment for seamless mobile computing that internet mobile users have to
sit down or put laptop computer on some place, and so on. It could be using ve-
hicles: automobile, train, subway, train express (TGV), etc. To address this, we
define high speed movement environment. Then, we make up high speed
movement environment to virtual organization (VO). Finally, we propose opti-
mized hierarchical protocol in high speed movement environment that classifies
global mobility into VO mobility (within a VO) and global mobility manage-
ment. Handoffs in VO are locally managed and transparent to corresponding
host (CH) while global mobility is managed with Mobile IPv6. Our proposed
protocol improves handoff performance and significantly reduces signaling
overhead for fast moving wireless hosts.

1 Introduction

By improved internet technique, wireless internet users are rapidly increased mobile
IPv6. Mobile IPv6 (MIPv6) is designed to manage mobile nodes’ movements be-
tween wireless IPv6 networks by IETF. Using MIPv6, nodes are possible to access
wireless IPv6 networks without changing their IP address. However, if mobile host
(MH) moves frequently, MIPv6 results in high handoff latency and high signaling
costs to update the MH’s location [1]. Thus, many mobility management protocols [2,
3, 4, 5, 6] have been proposed to improve handoff performance and reduce signaling
overhead. Conventional protocols [2, 3, 4, 5, 6] separate local mobility (within do-
main) from global mobility (across domain) management. However, these protocols
have no consideration about moving pattern within reality. Actually, laptop users
access wireless internet in some fixed place such as home, school, library, etc. But
pedestrians with PDA couldn’t keep up using wireless internet. Usually, they stop
walking to access wireless internet, and then walk again. It is just using wireless

∗ Corresponding author.

588 D.W. Lee et al.

internet, not moving with using wireless internet. The case of moving with wireless
internet is a movement through vehicles such as automobile, train, subway, high
speed train (eg. TGV). Using vehicle, it provides certain place to sit down or put lap-
top computer on.
 In this paper, we define high speed movement environment based on two factors:
user group movement and fixed movement path. Then, we propose virtual organiza-
tion (VO). A high speed movement environment is organized by VOs that consist of
domains. By VO, we separate VO mobility (within VO) from global mobility
management. The VO is connected to the rest of internet via one or several intercon-
nection domains that we call virtual mobility anchor point (VMAP). We design hier-
archical architecture and protocol that minimizes signaling overhead by continual
binding update (BU). Also we show our proposed protocol improves handoff per-
formance and reduces packet loss by handoff latency.
 This paper is organized as follows: section 2 reviews the MIPv6 protocol and
HMIPv6 protocol. Section 3 explains hierarchical architecture of high speed move-
ment environment. Section 4 describes our proposed protocol. And then section 5
shows comparison between HMIPv6 and proposed protocol. Finally, section 6 con-
cludes this paper.

2 Related Works

The Mobile IPv6 protocol is specified by the IETF IP Routing for wireless/mobile
hosts working group [1]. When an MH moves from one domain to another, it gets
new care-of-address (CoA). Then, it registers its binding update (BU) with its home
agent (HA) and corresponding hosts (CHs). BU is a mapping between MH’s home
address and MH’s CoA. And HA records BU in its Binding Cache. If any packets
address to the MH, HA intercepts and tunnels them to MH’s CoA using IPv6 encap-
sulation. If CH receives BU, CH can send packets directly to MH’s CoA. MIPv6
suffers from several well known weaknesses such as handoff latency or signaling
overhead, that have led to macro/micro mobility, FastMIPv6, and BETH [2, 3, 4, 5,
6]. Thus, many mobility management protocols [2, 3, 4, 5, 6] have been proposed to
improve handoff performance and reduce signaling overhead.
 HMIPv6 presents an n-level hierarchical mobility management architecture for IPv6.
HMIPv6 defines a domain as the highest level of hierarchical architecture. A domain is
an arbitrary structure, as ISP network, campus network, or a single LAN. A domain is
connected to the rest of internet via one or several interconnection routers that is called
mobility anchor point (MAP). [2] separates local mobility (within domain) from global
mobility (across domain) management. Using n-level hierarchical architecture,
HMIPv6 improves handoff performance that becomes reducing packet loss and signal-
ing overhead. It doesn’t fix anything on router and it is flexible and scalable [2].
 Actually, we can see wireless internet user who is moving by train. But [2] has no
consideration about moving pattern within reality. If we assume that train moves at
60km/h, an MH moves rapidly across many domains that are the highest hierarchy in
HMIPv6 architecture. It causes macro handoff continuously. HMIPv6 has better per-
formance than MIPv6, but it can't tolerate this condition. Therefore, our research need
to study high speed movement by vehicles such as automobile, train, subway or train
express (TGV).

 Reducing Binding Updates in High Speed Movement Environment Based on HMIPv6 589

3 Design of Hierarchical Structure in High Speed Movement
Environment

Within reality, laptop users access wireless internet at some fixed place such as home,
school, library, etc. And, in case of PDA and cellular phone, pedestrians couldn’t
keep up using wireless internet. Usually, they stop walking to access wireless internet
and then resume walking again. It just means usage of wireless internet and doesn’t
move with usage of wireless internet.
 But easily we can see users who use wireless internet in automobile, train, subway,
high speed train (eg. TGV). Using wireless internet within reality, we need certain
environment for seamless mobile computing that internet mobile users have to sit
down or put laptop computer on some place, and so on. It could be using vehicles:
automobile, train, subway, high speed train (eg. TGV), etc. Previous MIP protocols
[2, 3, 4, 5, 6] don't consider high speed movement such as automobile, train, subway,
train express (TGV). There are two factors about moving with vehicle. They are static
route and group movement that are occurred in high speed movement environment. In
this paper, we define high speed movement environment as follows:

Definition 1. High Speed Movement Environment
High speed movement environment has group movement on a fixed route. It is a
movement by vehicles such as automobile, train, subway, high speed train, etc. Thus,
the high speed movement environment is wireless computing environment in which
vehicles move on a fixed route.

The high speed movement environment has a fixed route and it is physically con-
nected. But from the point of network view, it is moving fast from a domain to
another domain. Conventional mobility management protocols [2, 3, 4, 5, 6] are pro-
posed to improve handoff performance and to reduce signaling overhead for pedestri-
ans. Thus they can not be adopted into high speed movement environment.
 In this paper, we construct virtual organization (VO) that consists of domains. We
organize physically distributed domains into one logical VO. Therefore, an MH that is
moving within VO, is in physical domain i, but it is logically in VO.
 [2] defines a domain as the highest level of hierarchical architecture. It separates
local mobility (within domain) from global mobility (across domain) management.
Local mobility does not require binding update signaling to HA. It is managed by
mobility anchor point (MAP), and minimizes handoff delay. Global mobility requires
binding update signaling to HA as MIPv6.
 In this paper, we separate VO mobility (within VO) from global mobility manage-
ment using VO. And we define a VO as the logical highest level of hierarchical
architecture. VO mobility doesn’t require binding update signaling to HA. It is man-
aged by VMAP, and minimizes handoff delay on high speed movement environment.
Global mobility requires binding update signaling to HA as HMIPv6. e extend [2]'s
hierarchical architecture and propose VMAP (virtual mobility anchor point) for ex-
tending hierarchical architecture. A VMAP is a set of MAPs that makes VO, and also
it is logically on MAP. Fig. 1 is an example of hierarchical architecture of VO.

590 D.W. Lee et al.

Fig. 1. Example of hierarchical architecture of VO

4 Design of Hierarchical Protocol in High Speed Movement
Environment

4.1 Overview

In this paper, we separates VO mobility (within VO) from global mobility (across
domain) management. VO consists of domains in high speed movement environment.
And VO is connected to rests of internet via one or several interconnection domains
that we call virtual mobility anchor point (VMAP). The main operations of the pro-
posed protocol are the following:

Global mobility: When an MH enters into a new domain, it gets two CoAs: LCoA
which is a CoA on the link and a GCoA which is a CoA in domain. If visited domain
is in VO, it gets one more CoA: a virtual care-of-address (VCoA) which is a CoA in
VO. Then, the MH sends the following BUs:

In general

• a BU that specifies the binding between its GCoA and its LCoA to the domain MAP. If the
request is accepted, an acknowledgement is sent back to the MH.
• a BU that specifies the binding between its home address and its GCoA to its HA and each
of its external CHs that are outside the domain.
• a BU that specifies that binding between its home address and its LCoA to each of its local
CHs that are within the domain.
In VO

• a BU that specifies the binding between its GCoA and its LCoA to the domain MAP. If the
request is accepted, an acknowledgement is sent back to the MH.
• a BU that specifies the binding between its VCoA and its GCoA to the VMAP.
• a BU that specifies the binding between its home address and its VCoA to its HA and each
of its external CHs that are outside the VO.
• a BU that specifies that binding between its home address and its GCoA to each of its local
CHs that are within the VO.

As a result, send/receive operation is as follows:

In general

• An external CH that sends packets to the MH, uses its GCoA. Packets are intercepted by
MAP and forwarded to the current LCoA of the MH.

 Reducing Binding Updates in High Speed Movement Environment Based on HMIPv6 591

• A local CH that sends packets to the MH, uses its LCoA. Packets are directly delivered to
the MH.
In VO

• An external CH that sends packets to the MH, uses its VCoA. Packets are intercepted by
VMAP and forwarded to the current GCoA of the MH. And packets are intercepted by MAP
and forwarded to the current LCoA of the MH.
• A CH that sends packets to the MH, uses its GCoA. Packets are intercepted by MAP and
forwarded to the current LCoA of the MH.
• A local CH that sends packets to the MH, uses its LCoA. Packets are directly delivered to
the MH.

VO mobility: When an MH moves within the VO, it gets new GCoA on its new
domain. The VCoA remains constantly as long as the MH is roaming locally. Then,
the MH sends the following BUs:

In VO [proposed]

• a BU that specifies the binding between its VCoA and its new GCoA to the VMAP.
• a BU that specifies that binding between its home address and its GCoA to each of its local
CHs that are within the VO. An external CH that sends packets to the MH, uses its GCoA.
Packets are intercepted by MAP and forwarded to the current LCoA of the MH.

4.2 Extended Protocol

4.2.1 Registration Phase
An MH gets several CoAs (LCoA, GCoA, VCoA) and registers each of them with
VMAP, MAP, HA, CH. This registration phase differs in VO mobility and global
mobility.

 VO mobility: When an MH moves within the VO, the MH must find the lowest
domain and find a domain MAP. The MH performs the following operations.

VO mobility

•It gets a new GCoA in each domain from domain1 to domainN,
•It gets a new LCoA on the link,
•It registers the (VCoA, GCoA) binding with VMAP,
•It registers the (GCoA, LCoA) binding with MAP,
•It registers the (home address, GCoA) binding with its CH in VO.

An MH can move anywhere in VO. The packet is delivered to a VMAP that is the
highest hierarchy, and it is directly forwarded to the MH.

Global mobility: When an MH moves globally, the MH performs the following
operations.

Global mobility

• It gets a new GCoA in each domain from domain1 to domainN,
• It gets a new LCoA,
• It gets a VCoA, if it enters by VO,
• It registers the (GCoA1, GCoAN) binding with MAP for i going from 1 to N,
• It registers the (VCoA, GCoAN) binding with MAP,
• It registers the (GCoAN, LCoA) binding with MAP,
• It registers the (home address, GCoAN) binding with its CH in VO,
• It registers the (home address, VCoA) binding with its external CH and HA.

592 D.W. Lee et al.

BUs are only sent outside the domain (HA and external CH), when an MH moves
from one domain to another. Therefore, our protocol using VMAP reduces signaling
overhead on global mobility.

4.2.2 Virtual Organization and Virtual Mobility Anchor Point Discovery
To perform the registration operation in section 4.2.1, an MH needs the following
information: the prefix of the domain the depth of the hierarchy, the network prefix of
MAP, the domain in VO or Not. This information is advertised by a new option that
we extended in the router advertisement message of the IPv6 neighbor discovery [5].
Fig. 2 shows an extended router advertisement message format.
ICMP Fields:

O 1-bit “Virtual Organization” flag. When set, MHs use to notice what the do-
main is in VO.

Fig. 2. Extended RA message format Fig. 3. Call-flow of proposed protocol

4.2.3 Packet Delivery
When a CH sends packets to an MH, the CH uses its VCoA. VMAP intercepts pack-
ets and encapsulates packets to MH’s GCoA. Then MAP intercepts packets and en-
capsulates packets to MH’s LCoA. Then, packets are forwarded to the MH. When an
MH sends packet, it sets the source field of IP header to its LCoA whether a CH is
local, in VO, or external. And using home address option, it specifies its home ad-
dress. Fig. 3 shows the call-flow of proposed protocol.

5 Comparison Between HMIPv6 and Proposed Protocol

In this section, we compare the MIP, HMIPv6 with our proposed protocol respect to
the context described in previous section.

5.1 Handoff Comparison Parameters

We investigate the handoff management on the basic of the simple network in fig. 4
with respect to:

 Reducing Binding Updates in High Speed Movement Environment Based on HMIPv6 593

• handoff management parameters: the interaction with the radio layer, initiator
of the handoff management mechanism, use of traffic bicasting, etc.,

• handoff latency: the time needed to complete the handoff inside the network,
• potential packet losses: the amount of lost packets due to the handoff process,
• involved stations: the amount of MA involved in the handoff management, i.e. that

must update their routing data or process message in the handover mechanism.

 For this comparison, we assume here that ngate is an average number of hops be-
tween an MH and a gateway. The delay between these two hosts is tgate msec. Simi-
larly, nprev is the number of hops between an MH and its domain (delay: tprev msec).
tcross is the average delay between the MH and the so-called crossover node for a
given handoff. This node is the first common network entity located in a path between
the new domain and the old domain and in the path between the new domain and the
gateway. For example, in a four levels hierarchy in Hierarchical Mobile IPv6, ngate
would be equal to four. In general, we can assume that tgate tprev tcross. tHA is the
average time needed to reach the HA with the classical Mobile IP registration
mechanism.
 When investigating performance of handoff mechanisms in micro mobility, we
must consider the important point of movement detection. We have already seen that
the micro mobility approach reduces the registration latency as most of the registra-
tions are limited inside the current domain. Moreover, proposed protocol reduces the
registration latency since most of the registrations are limited to VMAP. However,
detection of the occurrence of a handoff is another important source of delay for real
time application. And, the IP handover management mechanism is useless, if the
movements of the MH are detected too late and packets are already lost. In Mobile IP,
the movement detection is made via two algorithms described in [1]. These algo-
rithms are based on the ICMP router discovery messages. Handoff is detected when
receiving a Mobility Agent Advertisement with a source address located in another
network or when the lifetime expires for the last Mobility Agent Advertisement re-
ceived. With the first algorithm, generally the detection occurs after the time between
two Agent Advertisements. With the second algorithm, it occurs after the lifetime of
the Agent Advertisement. The values of these parameters must be tuned to be adapted

Fig. 4. Simple model to compare handoff mechanisms

594 D.W. Lee et al.

to the local network (their default values are 30 min. for the lifetime and 7-10 min. for
the rate of Agent Advertisement [7]). We will call this latency tmip.

5.2 Handoff Comparison

Hierarchical Mobile IPv6 handoff mechanisms are designed to limit the handoff man-
agement at a “local” level while an MH remains in the same hierarchy. When chang-
ing of domain, the MH must issue a registration request. This registration request
must only reach the first MAP with an existing binding for this MH. This MAP is
obviously the crossover node and the time to reach it is thus tMH-MAP(tcross). When
receiving a regional registration request for an MH for which it already has an entry in
its visitor’s list, the crossover node must send a binding update with a zero lifetime to
the previous address of this MH to remove the old route: this is called deregistration.
As tMH-MAP is the average time to reach the crossover, the total time to reach the cross-
over node and to remove the old route is 2tMH-MAP. When changing of hierarchy, the
MH must perform a classical Mobile IP registration with its HA, the latency is thus
2tHA. The uncertainty time is tmip + tMH-MAP in the first case. In the case of a registration
with the home agent, it is more difficult to evaluate this time interval. Indeed, Hierar-
chical Mobile IPv6 allows to use the soft handoff mechanisms to ensure that the
losses occur only during the time needed to reach the previous AP. If we assume a
handoff between two hierarchies belonging to the same domain, the uncertainty time
is tmip + tprev.

Proposed protocol tries to reduce the handoff latency by using VO to detect the
mobile movements. And our handoff mechanisms are designed to extend handoff
management at “local” level while the MH remains in VO. When changing of do-
mains in VO, the MH must issue a registration request. This registration requests must
only reach the VMAP with an existing binding for the MH. This VMAP is obviously
the crossover node and the time to reach it is thus tMH-VMAP(tcross). When receiving a
regional registration request for an MH for which it already has an entry in its visi-
tor’s list. As tMH-VMAP is the average time to reach the VMAP, the total time to reach
the VMAP and to remove the old route is 2tMH-VMAP. When an MH moves out VO, the
MH must perform a classical Mobile IP registration with its HA, the latency is thus
2tHA. The uncertainty time is tmip + tMH-VMAP in the first case. If we assume a handoff
between VO and domain, the uncertainty time will be tmip + tprev. Table 1 shows
comparison between HMIPv6 and proposed protocol.

Table 1. Comparative chart for handoff parameters

Protocol Handoff type
Move Detection

Latency
Total IP
Latency

Uncertainty
Time

Inside
a hierarchy

tmip 2tMH-MAP tmip + tMH-MAP
Hierarchical
Mobile IPv6 Between

hierarchies
tmip 2tHA tmip + tprev

Inside a VO tmip + tVMAP 2tMH-VMAP
tmip + tVMAP
+ tMH-VMAP

Proposed
Protocol

Outside VO tmip 2tHA tmip + tprev

 Reducing Binding Updates in High Speed Movement Environment Based on HMIPv6 595

Table 2. Comparative chart for high speed movement in VO (n domains)

Protocol Handoff type
Move in VO

Latency
Total IP
Latency

Uncertainty
Time

Hierarchical
Mobile IPv6

Between
hierarchies

tmip 2tHA × n (tmip + tprev) × n

Proposed
Protocol

Inside a VO tmip+ tVMAP 2tMH-VMAP × n
(tmip + tVMAP +
tMH-VMAP) × n

Table 3. Performance analysis parameter

tmip tHA tMH-VMAP tVMAP
15 40 20 02-10

Fig. 5. Effect of Domains in VO on Total IP Latency

For comparison between HMIPv6 and proposed protocol, we assume that an MH
moves fast within VO that consists of n domains. If the MH moves in VO, the pro-
posed protocol doesn’t require any registration to HA/CN. Table 2 shows each pa-
rameter for high speed movement environment. For performance comparison, we
demonstrate some numerical results. Table 3 shows parameters used in our perform-
ance analysis [9].
 As shown in fig. 5, the total IP latency for HMIPv6 increases as the number of
domains in VO increases. For small number of domains in VO, the performance of
the HMIPv6 is better than that of the proposed protocol. These results are expected
since proposed protocol reduces BU to HA when fast movement occurs among do-
mains. Based on the above analysis, our proposed protocol tried to reduce the number
of BUs using VO. Therefore, proposed protocol has better performance than HMIPv6
when fast movement and group movement occur among domains in high speed
movement environment. We conclude that proposed protocol achieves performance
improvements by eliminating unnecessary BU to HA when MHs move within VO.

6 Conclusion

This paper proposes a new mobile host protocol that is optimized to provide access to
a Mobile IP enabled internet in support of high speed mobile hosts. Actually (With
reality), for fast moving wireless hosts, we need certain environment for seamless

596 D.W. Lee et al.

mobile computing that internet mobile users have to sit down or put laptop computer
on some place, and so on. It could be using vehicles: automobile, train, subway, train
express (TGV), etc. To address this, we define high speed movement environment.
Then, we make up high speed movement environment to Virtual Organization (VO)
to separate global mobility into VO mobility (within a VO) and global mobility man-
agement. By global mobility, we proposed improved hierarchical protocol in high
speed movement environment. Proposed protocol has two advantages. First, it im-
proves handoff performance, since VO handoffs are performed locally. This increases
the handoff speed and minimizes packet loss during transition. Second, it reduces the
signaling overhead from BU on internet since the signaling messages corresponding
to local mobility do not cross the whole internet. It means that HA/CH doesn’t know
that the MH moves or not. From the point of HA/CH view, the MH stays in VO. To
construct VO, Also, it does not require any modification to the router, therefore it is
easy to exploit. Comparison results show that our protocol has superior performance
to the HMIPv6 in high speed movement environment.

References

1. D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6”, Internet draft (work in
progress), draft-ietf-mobileip-ipv6-24.txt, June 2003.

2. H. Soliman, C. Castelluccia, K. E. Malki, and L. Bellier, “Hierarchical MIPv6 mobility
management (HMIPv6)”, Internet Engineering Task Force draft-ietf-mobileip-HMIPv6-
04.txt, July 2001.

3. R. Ramjee, T. La Porta, S. Thuel, K. Varadhan, L. Salgarelli, “HAWAII: a domain-based
approach for supporting mobility in wide-area wireless networks”, IEEE/ACM Trans. Net-
working, vol. 10, pp. 396-410, June 2002.

4. A. T. Campbell, J. Gomez, S. Kim, Z. Turanyi, C-Y. Wan, A. Valko, “Cellular IP”, Internet
Engineering Task Force, draft-ietf-mobileip -cellularip-00.txt, January 2000.

5. C. Williams, “Localized Mobility Management Requireme-nts’, Internet Engineering Task
Force draft-ietf-mobileip-lmm-requirements-04.txt, October 2003.

6. J. Kempf, “Leveraging Fast Handover Protocols to Support Localized Mobility Manage-
ment in Mobile IP”, Internet Engineering Task Force draft-kempf- mobileip-fastho -lmm-
00.txt, June 2003.

7. Narten, T., Nordmark, E., and Simpson, W., “Neighbor Discovery for IP Version6. (IPv6)”,
RFC 2461, December 1998.

8. R. Chakravorty and I. Pratt. “Performance issues with general packet radio service”, Journal
of Communications and Networks, 4(2), December 2002.

9. Jiang Xie, Akyildiz, I.F. “A novel distributed dynamic location management scheme for
minimizing signaling costs in Mobile IP”, IEEE Transactions on Mobile Computing, (3), pp.
163-175, 2002.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 597 – 608, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Low-Overhead Non-block Checkpointing
Algorithm for Mobile Computing Environment

Bidyut Gupta, Shahram Rahimi, Rishad A. Rias, and Guru. Bangalore

Computer Science Department, Southern Illinois University,
Milcode 4511, Carbondale, IL 62901-4511, USA

{bidyut, Rahimi, rrias, gbangal}@cs.siu.edu

Abstract. In this paper, we have proposed a new approach toward designing a
low-overhead non-blocking single phase synchronous checkpointing algorithm
suitable for distributed mobile computing environment. The algorithm produces
a reduced number of checkpoints. To achieve this reduction in the number of
the checkpoints we have used very simple data structure. Each process
independently takes its decision whether to take a checkpoint or not. It makes
the algorithm simple, fast, and efficient. The algorithm has been shown to be
suitable for distributed mobile computing environment.

1 Introduction

Checkpointing / rollback-recovery strategy has been an attractive approach for
providing fault-tolerance to distributed applications [1]-[6]. A checkpoint is a
snapshot of the local state of a process, saved on local nonvolatile storage to survive
process failures. A global checkpoint of an n-process distributed system consists of n
checkpoints (local) such that each of these n checkpoints corresponds uniquely to one
of the n processes. A global checkpoint M is defined as a consistent global checkpoint
if no message is sent after a checkpoint of M and received before another checkpoint
of M [1]. The checkpoints belonging to a consistent global checkpoint are called
globally consistent checkpoints (GCCs).

There are two fundamental approaches for checkpointing and recovery. One is the
asynchronous approach and the other one is the synchronous approach [2]. In the
asynchronous approach, processes take their checkpoints independently. So, taking
checkpoints is very simple as there is no coordination needed among the processes
while taking the checkpoints. After a failure occurs, a procedure for rollback-recovery
attempts to build a consistent global checkpoint [2]. However, in this approach
because of the absence of any coordination among the processes there may not exist a
recent consistent global checkpoint which may cause a rollback of the computation.
This is known as domino effect. In the worst case of the domino effect, after the
system recovers from a failure all processes may have to rollback to their respective
initial states to restart their computation again.

Synchronous checkpointing approach assumes that a single process other than the
application processes invokes the checkpointing algorithm periodically to determine a
consistent global checkpoint. This process is known as initiator process. It asks

598 B. Gupta et al.

periodically all application processes to take checkpoints in a coordinated way. The
coordination is done in a way so that the checkpoints taken by the application
processes always form a consistent global checkpoint of the system. This coordination
is actually achieved through the exchange of additional (control) messages. It causes
some delay (known as synchronization delay) during normal operation. This is the
main drawback of this method. However, the main advantage is that the set of the
checkpoints taken periodically by the different processes always represents a
consistent global checkpoint. So, after the system recovers from a failure, each
process knows where to rollback for restarting its computation again. In fact, the
restarting state will always be the most recent consistent global checkpoint. Therefore,
recovery is very simple. On the other hand, if failures rarely occur between successive
checkpoints, then the synchronous approach places unnecessary burden on the system
in the form of additional messages and delay. Hence, compared to the asynchronous
approach, taking checkpoints is more complex while recovery is much simpler.
Observe that synchronous approach is free from any domino effect.

In this work, we have presented a non-blocking synchronous checkpointing
algorithm to determine the GCCs. In this approach, application processes are not
suspended during checkpointing. There exist some efficient non blocking algorithms
[7]-[9]; however they require significant number of control (system) messages to
determine a consistent global checkpoint of the system. In the present work, the
proposed non-blocking algorithm does not require that all processes take their
checkpoints; rather only those processes that have sent some message(s) after their
last checkpoints will take checkpoints during checkpointing. In [7], the authors have
proposed a very efficient non-blocking coordinated checkpointing scheme that offers
minimum number of checkpoints. We have shown in this paper that our algorithm
outperforms the one in [7] mainly from the viewpoint of using much less number of
system (control) messages. It may be noted that the ideas of non-blocking
checkpointing, reduction in the number of checkpoints to be taken, and using less
number of system messages may offer significant advantage particularly in case of
mobile computing, because it helps in the efficient use of the limited resources of
mobile computing environment, viz. limited wireless bandwidth, and mobile hosts’
limited battery power and memory.
 This paper is organized as follows: in Sections 2 and 3 we have stated the system
model and the necessary data structures respectively. In Section 4, using an example
we have explained the main idea about when a process needs to take a checkpoint by
using some very simple data structures. We have stated some simple observations
necessary to design the algorithm. In Section 5 we have presented the non blocking
checkpointing algorithm along with its performance and discussed its suitability for
mobile computing systems. Section 6 draws the conclusion.

2 System Model

The distributed system has the following characteristics [3], [4], [10]:

1. Processes do not share memory and communicate via messages sent through
channels.

 A Low-Overhead Non-block Checkpointing Algorithm 599

2. Channels can lose messages. However, they are made virtually lossless and order
of the messages is preserved by some end-to-end transmission protocol. Message
sequence numbers may be used to preserve the order.

3. When a process fails, all other processes are notified of the failure in finite time.
We also assume that no further processor (process) failures occur during the
execution of the algorithm. In fact, the algorithm may be restarted if there are
further failures.

4. Processes are piecewise deterministic in the sense that from the same state, if
given the same inputs, a process executes the same sequence of instructions.

3 Data Structures

Let us consider a set of n processes, {P0, P1,…, Pn-1} involved in the execution of a
distributed algorithm. Each process Pi maintains a Boolean flag ci. The flag is initially
set at zero. It is set at 1 only when process Pi sends its first application message after
its latest checkpoint. It is reset to 0 again when process Pi takes a checkpoint. Flag ci
is stored in local RAM of the processor running process Pi. A message sent by Pi will
be denoted as mi.

As in the classical synchronous approach [2], we assume that an initiator process
initiates the checkpointing algorithm. It helps the n processes to take their individual
checkpoints synchronously, i.e. the checkpoints taken will be globally consistent
checkpoints. We further assume that any process in the system can initiate the
checkpointing algorithm. This can be done in a round-robin way among the processes.
To implement it, each process Pi maintains a variable CLKi initialized at 0. It also
maintains a variable, counteri which is initially set to 0 and is incremented by 1 each
time process Pi initiates the algorithm. In addition, process Pi maintains an integer
variable Ni which is initially set at 0 and is incremented by 1 each time the algorithm
is invoked. Note the difference between the variables counteri and Ni. A control
(request) message Mc is broadcasted by a process initiating the checkpointing
algorithm to the other (n-1) processes asking them to take checkpoints if necessary.

In the next section, we explain with an illustration the idea we have applied to
reduce the number of checkpoints to be created in the non blocking synchronous
checkpointing scheme proposed in the paper.

4 An Illustration

In synchronous checkpointing scheme, all involved processes take checkpoints
periodically which are mutually consistent. However, in reality, not all the processes
may need to take checkpoints to determine a set of the GCCs.

The main objective of this work is to design a simple scheme that helps the n
processes to decide easily and independently whether to take a checkpoint when the
checkpointing algorithm is invoked. If a process decides that it does not need to take a
checkpoint, it can resume its computation immediately. This results in faster

600 B. Gupta et al.

execution of the distributed algorithm. Below we illustrate with an example how a
process decides whether to take a checkpoint or not.

Consider the following scenario of a distributed system of two processes Pi and Pj
only. It is shown in Fig. 1. Assume that their initial checkpoints are Ci

0 and Cj
0

respectively. According to the synchronous approach, Pi and Pj have to take
checkpoints periodically. Suppose that the time period is T. Before time T, Pi has sent
an application message m1 to Pj. Now at time T, an initiator process sends the
message Mc asking both Pi and Pj to take their checkpoints, which must have to be
consistent.

Process Pi checks its flag and finds that ci = 1. Therefore Pi decides to take its
checkpoint Ci

1. Thus because of the presence of Ci
1, message m1 can never be an

orphan. Also, at the same time Pj checks if its flag cj = 1. Since it is not, therefore
process Pj decides that it does not need to take any checkpoint. The reason is obvious.
This illustrates the basic idea about how to reduce the number of checkpoints to be
taken. Now we observe that checkpoints Cj

0 and Ci
1 are mutually consistent.

Fig. 1. Ci
1 and Cj

0 are mutually consistent

The above discussion shows the simplicity involved in taking a decision about
whether to take a checkpoint or not. Note that the decision taken by a process Pj
whether it needs to take a checkpoint is independent of the similar decision taken by
the other process. It may be noted that keeping a copy of each of the flags ci and cj in
the respective local RAMs of the processors running Pi and Pj can save some time as
it is more time consuming to fetch them if they are stored in stable storage than to
fetch them from the respective local RAMs.

Below, we state some simple but important observations used in the proposed
algorithm.

Theorem 1: Consider a system of n processes. If cj = 1 , where Cj
k is the latest

checkpoint of process Pj , then some message(s) sent by Pj to other processes may
become orphan.

Proof: The flag cj is reset to 0 at every checkpoint. It can have the value 1 only
between two successive checkpoints of any process Pj if and only if process Pj sends
at least one message m between the checkpoints. Therefore, cj = 1 means that Pj is yet

CC

T

Pi

Pj

m1

time

Cj
0

 A Low-Overhead Non-block Checkpointing Algorithm 601

to take its next checkpoint following Cj
k. Therefore, the message (s) sent by Pj after its

latest checkpoint Cj
k are not yet recorded. Now if some process Pm receives one or

more of these messages sent by Pj and then takes its latest checkpoint before process
Pj takes its next checkpoint Cj

k+1, then these received messages will become orphan.
Hence the proof follows.

Theorem 2: If at any given time t, cj = 0 for process Pj with Cj
k+1 being its latest

checkpoint, then none of the messages sent by Pj remains an orphan at time t.

Proof: Flag cj can have the value 1 between two successive checkpoints, say Cj
k and

Cj
k+1, of a process Pj if and only if process Pj has sent at least one message m between

these two checkpoints. It can also be 1 if Pj has sent at least a message after taking its
latest checkpoint. It is reset to 0 at each checkpoint. On the other hand, it will have the
value 0 either between two successive checkpoints, say Cj

k and Cj
k+1, if process Pj has

not sent any message between these checkpoints, or Pj has not sent any message after
its latest checkpoint. Therefore, cj = 0 at time t means either of the following two: (i)
cj = 0 at Cj

k+1 and this checkpoint has been taken at time t. It means that any message
m sent by Pj (if any) to any other process Pm between Cj

k and Cj
k+1 must have been

recorded by the sending process Pj at the checkpoint Cj
k+1. So the message m can not

be an orphan. (ii) cj = 0 at time t and Pj has taken its latest checkpoint Cj
k+1 before

time t. It means that process Pj has not sent any message after its latest checkpoint
Cj

k+1 till time t. Hence at time t there does not exist any orphan message sent by Pj
after its latest checkpoint.

5 Problems Associated with Non-blocking Approach

We explain first the problems associated with non-blocking approach. After that we
will state a solution. The following discussion although considers only two processes,
still the arguments given are valid for any number of processes. Consider a system of
two processes Pi and Pj as shown in Fig. 2. Assume that the checkpointing algorithm
has been initiated by process Pi and it has sent the request message Mc to Pj asking it
to take a checkpoint if necessary. As pointed earlier that both processes will act
independently, therefore Pi takes its checkpoint Ci

1 because its flag ci = 1. Let us
assume that Pi now immediately sends an application message mi to Pj. Suppose at
time (T + €), where € is very small with respect to T, Pj receives mi. Still Pj has not
received Mc from the initiator process. So, Pj processes the message. Now the request
message Mc from Pi arrives at Pj. Process Pj finds that its cj = 1. So it decides to take a
checkpoint Cj

1. We find that message mi has become an orphan due to the checkpoint
Cj

1. Hence, Ci
1and Cj

1 cannot be consistent.

5.1 Solution

To solve this problem, we propose that a process be allowed to send both
piggybacked and non –piggybacked application messages. We explain the idea below.

Each process Pi maintains an integer variable Ni, initially set at 0 and is
incremented by 1 each time process Pi receives the request message Mc from the
initiator process. In the event that process Pi itself is the initiator, then also it

602 B. Gupta et al.

increments Ni by 1 immediately after the initiation of the algorithm. That is, the
variable Ni represents how many times the checkpointing algorithm has been executed
including the current one (according to the knowledge of the process Pi). Note that at
any given time t, for any two processes Pi and Pj, their corresponding variables Ni and
Nj may not have the same values. It depends on which process has received the
request message Mc first. However it is obvious that | Ni - Nj | is either 0 or 1.

Fig. 2. Ci

1 and Cj
1 are not mutually consistent

Below we state the solution for a two process system. The idea used in this solution
is similarly applicable for an n process system as well.

Consider a distributed system of two processes Pi and Pj only. Without any loss of
generality assume that Pi initiates the algorithm by sending the message Mc to process
Pj and it is the the kth execution of the algorithm, that is, Ni = k. We also assume that
process Pi now has taken its decision whether to take a checkpoint or not, and then has
taken appropriate action to implement its decision. Suppose Pi now wants to send an
application message mi for the first time to Pj after it has finished participating in the
kth execution of the checkpointing algorithm. Observe that Pi has no idea whether Pj
has received the message Mc corresponding to this kth execution of the algorithm and
has already implemented its checkpointing decision or not. To make sure that the
message mi can never be an orphan, Pi piggybacks mi with the variable Ni. Process Pj
receives the piggybacked message <mi , Ni > from Pi. We now explain below why the
message mi can never been an orphan. Note that Ni = k ; i.e. it is the kth execution of
the algorithm that process Pi has last been involved with. It means the following to the
receiver Pj of this message:

(1) Process Pi has already received Mc from the initiator process for the kth
execution of the algorithm,

(2) Pi has taken a decision whether to take a checkpoint or not and has taken
appropriate action to implement its decision,

(3) Pi has resumed its normal operation and then has sent this piggybacked
application message mi.

(4) The sending event of message mi has not yet been recorded by Pi.

Since the message contains the variable Ni, process Pj compares Ni and Nj to
determine if it has to wait to receive the request message Mc. Based on the results of
the comparison process Pj takes one of the following three actions (so that no message

mi

m

C

Cj
0

Ci
0

C

Pi

Pj

T

€

 A Low-Overhead Non-block Checkpointing Algorithm 603

received by it is an orphan), as stated below in the form of the following three
observations:

Observation 1: If Ni (= k) > Nj (= k-1), process Pj now knows that the kth execution
of the checkpointing algorithm has already begun and so very soon it will also receive
the message Mc from the initiator process associated with this execution. So instead of
waiting for Mc to arrive, it decides if it needs to take a checkpoint and implements its
decision, and then processes the message mi. After a little while when it receives the
message Mc it just ignores it. Therefore, message mi can never be an orphan.

Observation 2: If Ni = Nj = k, like process Pi, process Pj also has received already the
message Mc associated with the latest execution (kth) of the checkpointing algorithm
and has taken its checkpointing decision and has already implemented that decision.
Therefore, process Pj now processes the message mi. It ensures that message mi can
never be an orphan, because both the sending and the receiving events of message mi
have not been recorded by the sender Pi and the receiver Pj respectively.

Observation 3: Process Pi does no more need to piggyback any application message to
Pj till the (k+1)th invocation (next) of the algorithm. The reason is that after receiving
the piggybacked message <mi, Ni>, Pj has already implemented its decision whether
to take a checkpoint or not before processing the message mi. If it has taken a
checkpoint, then all messages it receives from Pi starting with the message mi can not
be orphan. So it processes the received messages. Also if Pj did not need to take a
checkpoint during the kth execution of the algorithm, then obviously the messages sent
by Pi to Pj staring with the message mi till the next invocation of the algorithm can not
be orphan. So it processes the messages.

Therefore, for an n process distributed system, a process Pi piggybacks only its
first application message sent (after it has implemented its checkpointing decision for
the current execution of the algorithm and before its next participation in the
algorithm) to a process Pj, where j i, and 0 j n-1.

5.2 Algorithm Non-blocking

Below we describe the algorithm. It is a single phase algorithm since an initiator
process interacts with the other processes only once via the control message Mc.

At each process Pi (1 i n)
if CLKi = (i+ (counteri * n)) * T //when its turn to initiate the

 checkpointing procedure
 counteri = counteri + 1;
 Ni = Ni + 1;
 broadcasts Mc to (n-1) other processes;

if ci = 1 // at least one message it has sent after its last checkpoint
 takes checkpoint Ci;
 ci = 0;

 continues its normal operation;

 else // if it decides not to take a checkpoint
 continues its normal operation;

604 B. Gupta et al.

else if Pi receives Mc
 Ni = Ni + 1;

 if ci = 1 // at least one message it has sent after its last checkpoint
 takes checkpoint Ci;
 ci = 0;
 continues its normal operation;
 else
 continues its normal operation;

else if Pi receives a piggybacked message <mj, Nj> && Pi has not yet
 received Mc for the current execution of the checkpointing
 procedure

 Ni = Ni + 1;

if ci = 1 // at least one message it has sent after its last checkpoint
ci = 0;
takes checkpoint Ci without waiting for Mc;
processes the received message mj;
continues its normal operation and ignores Mc, when
received for the current execution of the checkpointing
procedure;

else

 processes any received message mj;
 continues its normal operation and ignores Mc, when

 received for the current execution of the checkpointing
 procedure;

else
 continues its normal operation;

Proof of Correctness: In the first ‘if else’ and ‘else if’ blocks of the pseudo code, each
process Pi decides based on the value of its flag ci whether it needs to take a
checkpoint. If it has to take a checkpoint, it resets ci to 0. Therefore, in other words,
each process Pi makes sure using the logic of Theorem 2 that none of the messages, if
any, it has sent since its last checkpoint can be an orphan. On the other hand, if Pi
does not take a checkpoint, it means that it has not sent any message since its previous
checkpoint.

In the second ‘else if’ block each process Pi follows the logic of Observations 1, 2,
and 3, which ever is appropriate for a particular situation so that any application
message (piggybacked or not) received by Pi before it receives the request message
Mc can not be an orphan. Besides none of its sent messages, if any, since its last
checkpoint can be an orphan as well (following the logic of Theorems 1 and 2).

Since Theorem 2, and Observations 1, 2, and 3 guarantee that no sent or received
message by any process Pi since its previous checkpoint can be an orphan and since it

 A Low-Overhead Non-block Checkpointing Algorithm 605

is true for all participating processes, therefore, the algorithm guarantees that the latest
checkpoints taken during the current execution of the algorithm and the previous
checkpoints (if any) of those processes that did not need to take checkpoints during
the current execution of the algorithm are globally consistent checkpoints.

5.3 Performance

We use the following notations (and some of the analysis from [7]) to compare our
algorithm with some of the most notable algorithms in this area of research, namely
[3], [7], and [8]. The analytical comparison is given in Table 1. In this Table:

Cair is cost of sending a message from one process to another process;
Cbroad is cost of broadcasting a message to all processes;
nmin is the number of processes that need to take checkpoints.
n is the total number of processes in the system;
ndep is the average number of processes on which a process depends;
Tch is the checkpointing time.

Table 1. System performance

Algorithm Blocking time Messages Distributed
Koo-Toueg [3] nmin * Tch 3 * nmin * ndep * Cair Yes
Elnozahy [8] 0 2 * Cbroad + n * Cair No
Cao-Singhal [7] 0 ≈ 2 * nmin * Cair +

min(nmin * Cair, Cbroad)
Yes

Our Algorithm 0 Cbroad Yes

Figs. 3 and 4 illustrate how the number of control messages (system messages) sent
and received by processes is affected by the increase in the number of the processes in
the system. In Fig. 3, ndep factor is considered being 5% of the total number of
processes in the system and Cbroad is equal to Cair (assuming that special hardware is
used to facilitate broadcasting – which is not the case most of the times). As Fig. 3
shows, the number of messages does not increase with the increase of the number of
the processes in our approach unlike other approaches. In Fig. 4, we have considered
absence of any special hardware for broadcasting and therefore assumed Cbroad to be
equal to n * Cair. In this case, although the number of messages does increase in our
approach, but it stays smaller compared to other approaches when the number of the
processes is higher than 7 (which is the case most of the time).

5.4 Suitability for Mobile Computing Environment

Consider a distributed mobile computing environment. In such an environment, only
limited wireless bandwidth is available for communication among the computing
processes. Besides, the mobile hosts (MH) have limited battery power and limited
memory. Therefore, it is required that, any distributed application P running in such
an environment must make efficient use of the limited wireless bandwidth, and

606 B. Gupta et al.

mobile hosts’ limited battery power and memory. Below we show that the proposed
algorithm satisfies all the above three requirements.

 The first requirement about the efficient use of the bandwidth is satisfied by
our checkpointing algorithm, because the presented algorithm is a single
phase algorithm unlike any other existing algorithms [3], [6]-[9]. That is, the
initiator process requests any other process to take a checkpoint by
broadcasting only the control message (Mc) during any invocation of the
algorithm. There is no other control message used. So our algorithm ensures
effective utilization of the limited wireless bandwidth. In this context, it may
be noted that our algorithm needs much less number of the system messages
than in [3], [7], [8], [11].

 The second requirement about the efficient use of the mobile host’s battery
power is satisfied, because (1) each MH is interrupted only once by the control
message Mc, as our algorithm is a single phase one. It saves time since
interrupt handling time can not be ignored. Note that in other approaches [7],
[11] it is more than one; and (2) each process Pi only checks if its ci = 1 in
order to decide if it needs to take a checkpoint. This is the only computation
that an MH is involved with while participating in the algorithm.

 The third requirement about the efficient use of the mobile host’s memory is
satisfied, because the data structure used in our algorithm is very simple.
Only four variables are needed by each process Pi. These are: three integer
variables, viz. Ni, counteri, CLKi, and one Boolean variable ci. The amount of
data structures stated above is much less than the same in the related works
[7], [11].

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28

Number of Processes

N
u

m
b

er
 o

f
M

es
sa

g
es

Number of Messages
(Koo-Toueg)

Number of Messages
(Elnozahy)

Number of Messages
(Singhal)

Number of Messages
(ours)

Fig. 3. Number of messages vs. number of processes for four different approaches when
Cbroad = Cair

 A Low-Overhead Non-block Checkpointing Algorithm 607

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28

Number of Processes

N
u

m
b

er
 o

f
M

es
sa

g
es

Number of Messages
(Koo-Toueg)

Number of Messages
(Elnozahy)

Number of Messages
(Singhal)

Number of Messages
(ours)

Fig. 4. Number of messages vs. number of processes for four different approaches when
Cbroad = n * Cair

6 Conclusions

In this work, we have presented a non-blocking synchronous checkpointing approach
to determine globally consistent checkpoints. In the present work only those processes
that have sent some message(s) after their last checkpoints, take checkpoints during
checkpointing; thereby reducing the number of checkpoints to be taken. This approach
offers advantage particularly in case of mobile computing where both non-block
checkpointing and reduction in the number of checkpoints help in the efficient use of
the limited resources of mobile computing environment. Besides, the presented non-
blocking approach uses minimum interaction (only once) between the initiator process
and the system of n processes and there is no synchronization delay. This is
particularly useful for mobile computing environment because of less number of
interrupts caused by the initiator process to mobile processes, which results in better
utilization of the limited resources (limited battery power of mobile machines and
wireless bandwidth) of mobile environment. To achieve this we have used very
simple data structures, viz., three integer variables and one Boolean variable per
process. Another advantage of the proposed algorithm is that each process takes its
checkpointing decision independently which may become helpful for mobile
computing. The advantages mentioned above make the proposed algorithms simple,
efficient, and suitable for mobile computing environment.

References

1. Wang, Y.-M.: Consistent Global Checkpoints that Contain a Given Set of Local
Checkpoints. IEEE Transactions on Computers, Vol. 46, No.4, (1997) 456-468

2. Singhal, M. , Shivaratri, N.-G.: Advanced Concepts in Operating Systems. McGraw-
Hill, (1994)

608 B. Gupta et al.

3. Koo, R., Toueg, S.: Checkpointing and Rollback-Recovery for Distributed Systems.
IEEE Transactions on Software Engineering, SE-13, Vol. 1, (1987) 23-31

4. Venkatesan, S., Juang, T. T-Y., Alagar, S.: Optimistic Crash Recovery without
Changing Application Messages. IEEE Transactions on Parallel and Distributed Systems,
Vol. 8, No. 3, (1997) 263-271

5. Cao, G., Singhal, M.: On Coordinated Checkpointing in Distributed Systems, IEEE
ransactions on Parallel and Distributed Systems, Vol. 9, No.12, (1998) 1213-1225

6. Manivannan, D., Singhal, M.: Quasi-Synchronous Checkpointing: Models,
Characterization, and Classification. IEEE Transactions on Parallel and Distributed
Systems, Vol.10, No.7, (1999) 703-713

7. Cao, G., Singhal, M.: Mutable Checkpoints: A New Checkpointing Approach for
Mobile Computing Systems. IEEE Transactions on Parallel and Distributed systems,
Vol.12, No. 2, (2001) 157 – 172

8. Elnozahy, E. N., Johnson, D. B., Zwaenepoel, W.: The Performance of Consistent
Checkpointing. Proc. 11th Symp. on Reliable Distributed Systems, (1992) 86-95

9. Silva, L. M., Silva, J. G.: Global Checkpointing for Distributed Programs. Proc. 11th Symp.
on Reliable Distributed Systems, (1992) 155 – 162

10. Jalote, P.: Fault Tolerance in Distributed Systems. PTR Prentice Hall, Addison-
Wesley, (1998)

11. Ahmed, R., Khaliq, A.: A Low-Overhead Checkpointing Protocol for Mobile Networks.
IEEE CCECE 2003, Vol. 3, (2003) 4 – 7

Applying Dynamic Hando to Increase System
Performance on Wireless Cellular Networks

Chow-Sing Lin and Cheng-Chi Lu

Department of Information Management
Southern Taiwan University of Technology

Tainan Shien, Taiwan, R.O.C.

Abstract. With the rapid advance in wireless network communication, multi-
media presentation has become more applicable. However, since Mobile Hosts
(MHs) are free to move around a wireless network, workloads among cells tend to
be imbalanced, leading to higher call dropping probability (CDP) and call block-
ing probability (CBP). How to balance the workloads among cells to provide
better quality of service (QoS) has become an important issue to be addressed. In
this paper, we propose a novel dynamic hando adjustment (DHA) scheme to bal-
ance workloads among cells. The DHA scheme dynamically hands over MHs to
neighbor cells based on the workloads of cells. With well-balanced workloads of
cells, a cell can have more available bandwidth to serve more MHs. Our simula-
tion experiments show that the DHA scheme has lower CDP and better bandwidth
utilization (BU) than other existing schemes.

1 Introduction

In recent years, the demand for data access on mobile networks has been greatly in-
creased. In addition to delivering plain text, the evolution of computing and wireless
networking technologies has made ubiquitous multimedia communication such as au-
dio, video, and data [1][2][3][4] become feasible. These multimedia services normally
require guarantee of Quality-of-Service (QoS), and cannot be disrupted during the ser-
vice time. How to continuously provide a mobile host (MH) moving around a wireless
network with services without hiccups is an important issue to be addressed.

In this paper, we assume services are provided on wireless cellular networks. A wire-
less cellular network consists of a group of hexagonal cells, which constructs large
coverage [5] for communication services. Each cell has a base station (BS) to commu-
nicate with MHs in the cell, and a MH is free to move across cells. In order to avoid
disrupting connections during the migration of MHs among cells, a seamless wireless
cellular network [6] must be constructed . In the seamless wireless network, there is
an overlapping area between two cells. A MH receives multiple signals from neighbor
cells in the overlapping area [6][7][8][9], as shown in Fig. 1. In general, when a MH
is handed over to a neighbor cell is based on received signal strength (RSS). When the
RSS of a neighboring cell reaches a certain threshold, the MH is handed over to the tar-
get cell. The process of handing over a MH from a cell to another cell is called hando
which normally happens in the overlapping area, or so called hando zone. There are

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 609–619, 2006.
c Springer-Verlag Berlin Heidelberg 2006

610 C.-S. Lin and C.-C. Lu

two types of hando s, hard hando and soft hando . Hard hando is a break-before-
make method, where a new channel is set up after the release of the old channel. On
the other hand, soft hando is a make-before-break method, where a new channel is
set up before the release of the old channel. Therefore, the transient dropping time of
soft hando is much shorter than that of hard hando which is almost imperceivable by
users[5][6][10].

Nowadays, MHs request various types of services. Each service may require di er-
ent quality-of-service (QoS). How to maintain QoS guarantee of a MH without being
a ected by its movement becomes a di cult challenge [1][2][11]. Moreover, the cov-
erage area of a cell now tends to be shrunk [12] in order to increase service throughput,
such as the number of servable MHs, but this inevitably increases the frequency of
hando s on the cellular network. As a result, the utilization of cell bandwidth may be
greatly varied from time to time, and some of cells become hot spots so that MHs short
of desired bandwidth are dropped. From above observations, we conclude that in or-
der to approach the maximum system performance in terms of bandwidth utilization
and dropping blocking rate of MHs, it is extremely important that the workload of cells
should be balanced.

With soft hando , we may divide the overlapping area into two areas based on the
signal strengths received from the original cell and the target cell. One is called early-
Hando area, in which the RSS from original cell is greater than that from the target
cell, and MHs in this area use the resource of original cell. The other is called lateHand-
o area, in which the RSS from original cell is less than that from the target cell, and
MHs in this area use the resource of target cell. But, the fact is that a MH can receive
signals from both original cell and the target cell in the overlapping area, as shown in
Fig. 1. Therefore, as long as the received signals from both cells is strong enough to
provide acceptable bandwidth, we may dynamically adjust the number of MHs in these
two areas to balance the workloads of original and target cells.

In this paper, we propose the dynamic hando adjustment (DHA) scheme, which
dynamically hands over MHs based on the workload of original cell and target cell to
balance their workloads. With soft hando , a MH receives signals from both original
cell and target cell in the overlapping area. In this hando zone, a MH can be selected
to stay in the current cell or to be directly handed over to the target cell to continue
services. In general, a normal hando happens when the RSS of resided cell begins to
be less than that of target cell. In the paper, the proposed DHA defines that a hando
is called early hando if the RSS of target cell is less than that of original cell when
hando ng, and a hando is called late hando if the RSS of original cell is less than
that of target cell when hando ng. When the workload of original cell is heavy, the
original cell can attempt to early hand over (early hando) MHs to other lightly loaded
target cells. On the other hand, if the workload of target cell is heavier than that of
original cell, the hando can be delayed (late hando). We can apply these two hando
strategies to dynamically change servicing base stations of MHs in a hando zone to
balance the workloads of cells.

On the wireless cellular network, there are two important QoS parameters: call
blocking probability (CBP) of new call and call dropping probability (CDP) of hand-
o call. Due to the limited resource of a cell, decreasing CDP inevitably leads to the

Applying Dynamic Hando to Increase System Performance 611

Fig. 1. Signal receiving in the overlapping area Fig. 2. The model of signal overlapping of an
original cell and a target cell

increase of CBP, and vice versa. From a user’s perspective, a connection terminated in
the middle of a call is far more annoying than having a new call attempt blocked [3].
Therefore, in the paper, like most of other research works, we focus on lowering the
CDP while still keeping the CBP within an acceptable range.

The rest of this paper is organized as follows. In Section 2 we describe the analysis of
the related research works. In Section 3 the wireless communication signal and coverage
is introduced. The proposed DHA scheme is presented in Section 4. In Section 5, we
present the experiment results of extensive simulations. Finally, we conclude the paper
in Section 6.

2 Related Works

Recently, there are many research interests in increasing system performance which use
the characteristic of overlapping area on wireless cellular networks. In [13], Eklundh
proposed directed retry (DR) method. In DR method, new call can use the available
channels of neighbor cells in the overlapping area when the initial cell has no available
channel. Because the DR only applies to new calls in the overlapping area, the perfor-
mance improvement is not e ective when either the overlapping area is small or a lot
of new calls are not in the overlapping area. In [14], Kim and Kang proposed adap-
tive soft handover algorithm (ASHA) scheme. In ASHA scheme, a set of parameters is
broadcasted to alter the regular soft hando process, and then the notified MHs are early
handed over to neighbor cells regardless of the workload of neighbor cell. In this way,
MHs handed over to neighbor cells may be dropped when the neighbor cell is heavily
loaded. As a result, the ASHA cannot guarantee the QoS of MHs. In [15], Paik et al.
proposed integrated call control (ICC) strategy. In ICC strategy, each cell reserves a cer-
tain number of channels for hando calls and sets the upper threshold for the number
of service connections. The MH performs the quick soft hando process to hand over
to neighbor cell when the number of service connections in the residing cell exceeds
the threshold. The ICC strategy has two drawbacks. First, reserved fixed channels as
guard channels results in ine cient bandwidth utilization. Second, the MH, which has

612 C.-S. Lin and C.-C. Lu

been handed over to neighbor cell, may be dropped when neighbor cell has no adequate
bandwidth.

To conclude the aforementioned analysis, we propose the DHA scheme, which uti-
lizes the characteristic of received signal strength in overlapping area to overcome the
issue of dropping MHs due to inadequate bandwidth. Not only does the DHA take the
same advantages of relocating new connections in overlapping area to neighbor cells
for dynamically adjusting the workload as DR does, compared to ASHA, it also applies
the earlyHando algorithm which periodically hands o the MHs which have been
successfully reserved bandwidths in the target cells to balance the workloads of cells
whenever is necessary. When the available bandwidth in the target cell is inadequate,
ICC directly drops the hando calls. However, in the DHA we also propose lateHand-
o to delay handing o MHs to target cells as long as possible to further reduce the
dropping probability.

3 Wireless Communication Signal and Coverage

In the paper, we assume the system has several service types. Each requires di erent
bandwidth and di erent signal strengths to maintain the quality of service, and conse-
quently, the e ective coverage (EC) of each service type is also di erent. Within the
EC, each MH can obtain desired bandwidth and guarantee its QoS. Let and denote
the signal power and the noise of a channel, respectively. The signal-to-noise rate, ,
can be expressed as (1). According to Hartley-Shannon Law, the maximum transmis-
sion rate of a channel, C, can be expressed as (2) when bit error rate is zero, where B
represents the available frequency of a channel. The required RS S EC on the boundary
of EC can be represented as (3).

(1)

C B log2(1) (2)

RS S EC 2
C
B 1 (3)

The Received Signal Strength, RS S , is influenced by three factors [14]: path loss,
shadow fading, and multipath fading, and it can be expressed as (4), where denotes
the transmission power of a base station, is the path-loss exponent, Z(d) denotes the
signal attenuation function, and d denotes the distance of MH from the base station.

RS S log10(d) Z(d) (4)

In this paper, the RSS of a MH is based on the following assumptions. First, by passing a
low-pass filter, the multipath fading of the RSS is averaged out. Second, shadow fading
is nearly constant over any short period of time [14][15]. As a result, the path-loss is
the main factor that a ects the RSS. Therefore, (4) can be reduced to (5).

RS S log10(d) (5)

Applying Dynamic Hando to Increase System Performance 613

When a MH is not resided in any overlapping area, it must be serviced by the original
cell. In the paper, we define such an area as Master Service Area (MSA). Assume that
R denotes the signal radius of a cell and denotes the signal overlapping area of two
cells, then we can derive the RSS on the boundary of MSA, RS S MS A, from (3) and (5)
as (6).

RS S MS A log10(2R(1) 10
(2

C
B 1)

) (6)

4 Dynamic Hando Adjustment

The DHA scheme consists of two components, earlyHando and lateHando . The ob-
jective of earlyHando is to reduce the CBP by distributing connections with inadequate
bandwidth to neighbor cells. The earlyHando early hands over MHs whose bandwidth
in the target cell is already reserved to the target cell. On the other hand, the goal of late-
Hando is to delay the hand o of a MH who has failed to reserve bandwidth in the
target cell until either it leaves the EC or there is su cient bandwidth in the target cell.
In a sense, we dynamically adjust the number of MHs in the overlapping area served by
original cell and target cell to balance the workloads. As a result, there are no hot-spot
cell and the workload of each is well balanced. Consequently, the CDP and CBP can be
further reduced, and bandwidth utilization is therefore increased.

4.1 Description of DHA Scheme

In the seamlessly wireless cellular network, there is a given ratio of the overlapping
area between two cells [16]. In this overlapping area a MH can continue its service by
switching the servicing station from original cell to target cell without being dropped.
Figure 2 shows the model of signal overlapping of an original cell and target cell. The
outer most dotted line represents the boundary of signal coverage of a cell. The inner
most solid line represents the boundary of MSA. MHs inside the MSA are served by the
resided cell. The middle solid line represents the boundary of EC. The resided cell can
provide adequate signal strength for MHs inside the EC. MHs outside the EC cannot
be served by the resided cell and must be served by the target cell even though it is
still within the signal coverage of the resided cell. The shaded area in the middle is the
overlapping area, or so-called hando zone. The normal hando happens in the middle
of the area where the received signal strengths from the original cell and target cell are
the same. Hando s happening in the left part and the right part of the shaded area are
called earlyHando and lateHando , respectively.

When a MH leaves the MSA area of the original cell, it issues a bandwidth reser-
vation request to the target cell. In the paper, we assume that the target cell can be
precisely predicted by applying the approaches proposed by [17][18] where the Global-
Positioning-System (GPS) is applied to predict the movement of a MH on a highway. If
the target cell has su cient bandwidth, it reserves the requested bandwidth for the MH
and adds it to the set of reservation success , S r success, of the target cell. On the other
hand, if the target cell does not have adequate bandwidth, we insert the request into the

614 C.-S. Lin and C.-C. Lu

queue of reservation failure, Qr f ailure based on its priority. Assume that 1 denotes the
relative weight of speed priority, VP, 2 denotes the relative weight of RS S from the
target cell, and 3 denotes the relative weight of the priority of service type, CP. We
use (7) to calculate the priority of a request.

RequestPriorit [1 (VP) 2 (RS S) 3 (CP)] (7)

4.2 earlyHando Algorithm

In DHA scheme the earlyHando algorithm is performed periodically. At each interval,
we compare the workload of original cell and target cell. If the workload of original
cell is greater than that of target cell, we hando those MHs who are in earlyHando
area and already successfully reserved bandwidth in the target cell to the target cell.
In this way, the reserved bandwidth in the target cell is utilized immediately and the
bandwidth allocated to hando ed MHs is released to reduce the workload of original
cell. This approach not only favors the reduction of CDP and CBP in the original cell
but also the increase of bandwidth utilization in the target cell.

Assume that in cell i, B A aili denotes the available bandwidth, B R i denotes the
total reserved bandwidth, and B Totali denotes the total bandwidth. Then, we can com-
pute the workload of cell i by (8). Figure 3 shows the pseudo code of earlyHando
process.

WorkLoadi
B Totali B A aili B R i

B Totali
(8)

earlyHando ()

Celli: original Cell;
Cell j: Target Cell;
B Reqx: the required Bandwidth of MHx ;

1. FOR EACH MHx in Celli

2. IF MHx in S r success
j THEN

3. IF WorkLoadi WorkLoadj THEN
4. Issue MHx’s hando request to Cell j;
6. Release B Reqx in Celli;
7. Update B A aili;
8. Update WorkLoadi;
9. Bandwidth Adjustment();

Fig. 3. earlyHando algorithm

lateHando ()

Celli: original Cell;
Cell j: Target Cell;

1. IF RS S x
i RS S x

j and RS S x
j RS S MS A

j and
MHx not in MHr success

j THEN
2. Send MHx’s lateHando request to Cell j;
3. ELSE IF MHx in S r success

j THEN
4. Send MHx’s hando request to Cell j;
5. Release B Reqx in Cell j;
6. Update B A aili;
7. ELSE IF RS S x

j RS S MS A
j THEN

8. Issue MHx’s hando request to Cell j;
9. Release B Reqx in Celli;
10. Update B Aa aili;
11. Bandwidth Adjustment();

Fig. 4. lateHando algorithm

Applying Dynamic Hando to Increase System Performance 615

4.3 lateHando Algorithm

When the workload of a cell is lighter than its neighboring cells, the MHs in the ear-
lyHando area are not early handed o to target cells. As a MH moves to the center
of overlapping area, a normal hando is triggered. At this time, if previously the target
cell fails to reserve the requested bandwidth for the MH and also it still cannot provide
adequate bandwidth for the MH, rather than directly dropping the MH, we apply the
lateHando to delay the hando process and expect some bandwidth will be released
to satisfy the request during the extra time. MHs who failed to reserve bandwidth in the
target cell then are moved from Qr f ailure queue to the Qlate hando f f queue. MHs in the
Qlate hando f f queue are all in the lateHando area and thus are more close to target cells.
They are more urgent to obtain adequate bandwidths from target cells to avoid being
dropped. Therefore, MHs in the Qlate hando f f queue should have higher priorities to get
the released bandwidth than those in the Qr f ailure queue. The lateHando algorithm is
described in Fig. 4.

4.4 Bandwidth Adjustment

The bandwidth adjustment scheme suitably allocates released bandwidth to MHs in
Qlate hando f f

i and Qr f ailure
i according to both CBP and CDP of the cell. The pseudo-

code of bandwidth adjustment scheme is presented in Fig. 5. In order to avoid dropping
MHs, our bandwidth adjustment scheme first allocates the released bandwidth to MHs
in Qlate hando f f

i and then MHs in Qr f ailure
i , based on the thresholds of CBPth and CDPth.

If CDP is greater than CDPth and CBP is smaller than CBPth, the remaining released
bandwidth is allocated to MHs in Qr f ailure

i ; otherwise, it returns to base station for
serving new calls.

Bandwidth Adjustment()

Celli: original Cell;
Cell j: Target Cell;

1. WHILE Qlate hando f f
i is not empty

2. MH DeQueue(Qlate hando f f
i);

3. Allocate bandwidth to MH;
4. Update B A aili;
5. IF CDP CDPth or CBP CBPth THEN
6. WHILE Qr f ailure

i is not empty
7. MH DeQueue(Qr f ailure

i);
8. Allocate bandwidth to MH;
9. Update B R i;
10. Update B Aa aili;

Fig. 5. Bandwidth adjustment algorithm

Table 1. The priority of speed

Average
Velocity

Practical Example Velocity Pri-
ority (VP)

20cm s Almost static 0
1m s Walking 0.2
10m s Normal driving 0.4
20m s Fast car 0.7

30m s Super fast 1

Table 2. Multimedia service types

Class
No.

Bandwidth
Requirement

Average
Holding
Time

Class
Priority
(CP)

1 5Mbps 10min. 0.3
2 3Mbps 5min. 0.6
3 1Mbps 3min. 1.0

616 C.-S. Lin and C.-C. Lu

5 Simulation Results

In this section, we present the performance results for our proposed scheme. The sim-
ulation model is a wireless cellular network, which comprises 100 cells. Each cell,
represented by a hexagon, has six neighboring cells. The arrival of MHs is modeled by
Poisson distribution and the generated MHs are evenly distributed to cells. Each MH
randomly selects a moving speed of 1 m s, 10 m s, and 20 m s whose priorities are
listed on Table 1. The service types of requests are listed on Table 2. The holding time
of a MH complies with Exponential distribution. The detailed simulation parameters
are shown in Table 3.

Table 3. Simulation parameters

Parameter Description Value
Celli Wireless Cell 100
B all

i The total bandwidth of Celli 60Mbps
B req

x The required bandwidth of MHx 5Mbps, 3Mbps, 1Mbps
B The available frequency of channel 4MHz
Cell ms The diameter of each Cell 1000m
Tinter al The interval time of earlyHando algorithm 10sec

The ratio of overlapping area 0.4
Noise power 1Watts
Transmit power 81
Path-loss exponent 30
The speed of MH 1m s, 10m s, 20m s

CDPth CDP threshold 0.3
CBPth CBP threshold 0.3

In this simulation, we investigate the performance of DHA in terms of the call block-
ing probability, the call dropping probability, and the bandwidth utilization by compar-
ing it with NR (No Reservation), RR (Reservation Resource) , and ASHA schemes. In
NR and ASHA scheme, no bandwidth is reserved for hando connections. Therefore,
a hando connection is equivalent to a new connection, which is accepted only if the
cell has su cient available bandwidth. In RR scheme, we assume that a MH move in
a fixed direction which is randomly selected when generated throughout its life span.
The target cell reserves bandwidth for a MH if it has su cient available bandwidth.
A request is issued to the target cell for bandwidth reservation once a MH moves into
a new cell. Both DHA and RR need to reserve bandwidth in the target cell. However,
the two schemes specify di erent moments when bandwidth reservation requests are
issued. In DHA scheme, a MH issues a request for bandwidth reservation to target cell
when it leaves the MSA area. On the other hand, in RR scheme, a MH issues the request
for bandwidth reservation to the target cell when it moves into a cell. A MH is dropped
when the request of bandwidth reservation to the target cell fails.

Figure 6 shows the CBP of DHA, NR, RR and ASHA with respect to the increase
of call arrival rate. The CBPs of DHA, NR, RR ,and ASHA increase as the call arrival
increases. The CBP of our proposed DHA scheme is similar to the RR scheme with

Applying Dynamic Hando to Increase System Performance 617

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

C
al

l B
lo

ck
in

g
P

ro
ba

bi
lit

y

Call Arrival Rate (conn/sec)

DHA
RR
NR

ASHA

Fig. 6. Call Blocking Probability

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50 60 70 80 90 100

C
al

l D
ro

pp
in

g
P

ro
ba

bi
lit

y

Call Arrival Rate (conn/sec)

DHA
RR
NR

ASHA

Fig. 7. Call Dropping Probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 U

til
iz

at
io

n

Call Arrival Rate (conn/sec)

DHA
RR
NR

ASHA

Fig. 8. Bandwidth Utilization

the increase of call arrival rate. This is because the ratio of overlapping area is set to
be 0.4 and thus the MSA is relatively small. Most MHs are not initially in the MSA
so that when they are generated, they issue requests of bandwidth reservation to their
target cells immediately. This kind of situation is similar to the RR. When the wireless
cellular network is saturated, if both CBP and CDP are smaller than their thresholds, the
released bandwidths are preferentially allocated to MHs in Qr f ailure. As a result, the
CBP of DHA is increased. As shown in the Fig. 6, the NR and ASHA perform almost
equally well, and they always have the lowest CBP. This is because NR and ASHA have
no reserved bandwidth in target cells. Without the idle bandwidth for reservation, the
available bandwidth for new connections are increased so that the CBP is reduced.

Figure 7 shows the CDP of DHA, NR, RR and ASHA with respect to the increase
of call arrival rate. The CDPs of DHA, RR, NR and ASHA increase as the call arrival
increases. The DHA has the lowest CDP at all di erent arrival rates. The CDP of our
proposed DHA obviously o ers more improvement on RR , NR and ASHA. When the
call arrival rate is 100 connections second, the CDP of our proposed DHA o ers as
much as 38%, 52%, and 50% improvement with respect to that of RR, NR, and ASHA.
This is because the released bandwidth by the earlyhando algorithm is designed to
be first allocated to MHs in the Qlate hando f f and then MHs in the Qr f ailure rather
than serving new calls. This kind of early handing o MHs, who successfully reserve

618 C.-S. Lin and C.-C. Lu

bandwidths in the target cell, to target cell does not incurs extra demands for bandwidth
since they are already reserved, but it can release more bandwidth in advance to serve
more hando calls. Moreover, the lateHando algorithm, which delays the hando pro-
cess of MHs failing to reserve bandwidth in the target cell, also o ers more chances to
avoid dropping hando MHs. The NR treats calls equally and does not reserve band-
width for any call. Although it has the lowest CBP as shown in Fig. 6, it also has the
highest CDP. Compared to the DHA scheme, the inflexible bandwidth reservation ap-
proach also makes CDP inevitably higher.

Figure 8 shows bandwidth utilizations (BU) of DHA, NR, RR and ASHA with re-
spect to call arrival rate. Both the BUs of DHA, NR, and ASHA are close to 100%, and
that of RR is merely about 72%. For example, when the call arrival rate is 100 con-
nections second, the BU of the DHA o ers as much as 32% improvement with respect
to RR. Due to the idle reserved bandwidth, the RR cannot fully utilize bandwidth to
serve more MHs, which leads to ine cient bandwidth utilization. On the contrast, NR
and ASHA do not reserve any bandwidth and take whatever bandwidth left to serve
as more MHs as possible. There is no idle reserved bandwidth, and thus they can ef-
ficiently utilize bandwidth. However, due to the lack of load balancing scheme, some
cells may become hot spots and thus unnecessarily drop MHs. This phenomenon leads
to the conclusion that the BUs of NR and ASHA are slightly less than that of DHA.
Although the DHA also reserves bandwidth in the target cell, it early hands o MHs
who has successfully reserved bandwidths to the target cell when the workload of the
resided cell is heavier than that of target cell. Again, it not only favors the reducing
workload of resided cell to reduce CDP and CDP but also the BU of target cell.

6 Conclusion

With increasing demands for mobile multimedia services, the QoS guarantee is more
di cult and the load is non-balance between cells in virtue of both mobility of MH and
limited bandwidth of cell. The imbalanced loads increases the probabilities of drop-
ping hando calls and blocking new calls. In this paper, we propose the DHA scheme,
which utilizes earlyHando and lateHando algorithms to balance the loads among
cells to improve service performance. Our simulation results show that the DHA scheme
achieves better system performance than NR, RR, and ASHA in terms of CDP and BU.
In the future, we plan to relax the limitations stated in the paper to provide a more
general mechanism in the system model such as dynamic bandwidth reservation, mo-
bility prediction, multiple classes of services. The performance of DHA under this more
general system model will be reported in our future publications.

References

1. El-Kadi, M., Olariu, S., Abdel-Wahab, H.: A rate-based borrowing scheme for qos provi-
sioning in multimedia wireless networks. In: IEEE Transactions, Parallel and Distributed
Systems. Volume 13. (2002) 156–166

2. Epstein, B.M., Schwartz, M.: Predictive qos based admission control for multiclass tra c in
cellular wireless networks. IEEE Journal, Selected Areas in Communications 18(3) (2000)
523–534

Applying Dynamic Hando to Increase System Performance 619

3. Mlla, A., El-Kadi, M., Olariu, S., Todorova, P.: A fair resource allocation protocol for multi-
media wireless networks. IEEE Transactions, Parallel and Distributed Systems 14(1) (2003)
63–71

4. Oliverira, C., Kim, J.B., Suda, T.: An adaptive bandwidth reservation scheme for high-
speed multimedia wireless networks. IEEE Journal, Selected Areas in Communications 16(6)
(1998) 858–874

5. Harte, L., Kikta, R., Levine, R.: 3G wireless Demystified. 1st edn. McGraw-Hill (2002)
6. Kim, D.K., Sung, D.K.: Characterization of soft hando in cdma systems. IEEE Transac-

tions, Vehicular Technology 48(4) (1999) 1195–1202
7. Gilhousen, K.S., Jacobs, I.M., Padovani, R., Viterbi, A.J., Weaver, L.A., Jr., C. E. Wheatley,

I.: On the capacity of a cellular cdma system. IEEE Transactions, Vehicular Technology
40(2) (1991) 303–312

8. Lee, W.C.Y.: Overview of cellular cdma. IEEE Transactions, Vehicular Technology 40(2)
(1991) 291–302

9. Viterbi, A.J.: CDMA-Principles of Spread Spectrum Communication. Addison-Wesley
(1995)

10. Das, S., Sen, S., Jayaram, R.: A dynamic load balancing strategy for channel assignment
using selective borrowing in cellular mobile environment. Wireless Networks 3(5) (1997)
333–347

11. Chiu, M., Bassiouni, M.: Predictive scheme for hando prioritization in cellular networks
based on mobile positioning. IEEE Journal, Selected Areas in Communications 18(3) (2000)
510–522

12. Hanzo, L.: Bandwidth-e cient wireless communications. IEEE, Proceeding 86(7) (1998)
1342–1380

13. Eklundh, B.: Channel utilization and blocking probability in a cellular mobile telephone
system with directed retry. IEEE Transactions, Communications 34(4) (1986) 329–337

14. Kim, W., Kang, C.: An adaptive soft handover algorithm for tra c-load shedding in the
wcdma mobile communication system. In: IEEE Wireless Communications and Networking.
Volume 2. (2003) 1213–1217

15. Paik, C., Jin, G., Ahn, H., Teha, D.: Integrated call control in a cdma cellular system. IEEE
Transactions, Vehicular Technology 55(1) (2001) 97–108

16. Lee, D., Cho, D.: Channel-borrowing hando scheme based on user mobility in cdma cellular
systems. In: IEEE International Conference, Communications. Volume 2. (2000) 685–689

17. Lee, W.C.Y., Yeh, Y.S.: On the estimation of the second-order statistics of log normal fading
in mobile radio environment. IEEE Transactions, Communications 22(6) (1974) 869–873

18. Lee, D., Hsueh, Y.: Bandwidth-reservation scheme based on road information for next-
generation cellular networks. IEEE Transactions on Vechicular Technology 53(1) (2004)
243–252

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 620 – 633, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Paradigm of a Pervasive Multimodal Multimedia
Computing System for the Visually-Impaired Users*

Ali Awde1, Manolo Dulva Hina1,2, Chakib Tadj1,
Amar Ramdane-Cherif2, and Yacine Bellik3

1 LATIS Laboratory, Université du Québec, École de technologie superieure,
1100, rue Notre-Dame Ouest, Montréal, Québec H3C 1K3, Canada

{ali.awde.1, manolo-dulva.hina.1}@ens.etsmtl.ca,
ctadj@ele.etsmtl.ca

2 PRISM Laboratory CRNS, Université de Versailles-Saint-Quentin-en-Yvelines,
45, avenue des Etats-Unis, 78035 Versailles Cedex, France

rca@prism.uvsq.fr
3 LIMSI-CRNS, Université de Paris-Sud,

B.P. 133, 91043 Orsay, France
yacine.bellik@limsi.fr

Abstract. Incorporating multimodality in a computing system makes comput-
ing more accessible to a wide range of users, including those with impairments.
This work presents a paradigm of a multimodal multimedia computing system
to make informatics accessible to visually-impaired users. The system’s infra-
structure determines the suitable applications to be used. The user’s context and
user data type are considered in determining the types of applications, media
and modalities that are appropriate to use. The system design is pervasive, fault-
tolerant and capable of self-adaptation under varying conditions (e.g. missing or
defective components). It uses machine learning so that the system would be-
have in a pre-defined manner given a pre-conceived scenario. Incremental
learning is adapted for added machine knowledge acquisition. A simulation of
system’s behaviour, using a test case scenario, is presented in this paper. This
work is our original contribution to an ongoing research to make informatics
more accessible to handicapped users.

1 Introduction

A MULTIMODAL interface allows user to do computing with more than one mode of
interaction. Incorporating multimodality into a computing system makes it more ac-
cessible to a wider range of users, including those with disabilities. A multimodal
multimedia (MM) computing system [1] allows combining two different types of data
– one from a multimodal source, usually demonstrated by human action (e.g. speech)
and another from the usual media (e.g. keyboard) – and their fusion produces a new
data which has a new meaning to the system. The fused data could be treated, among
others, the same or complementary, depending on the time the two data are generated.
We in this paper, however, are not into the fusion of data; rather, we treat multimodal

* This work has been made possible the funding awarded by the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada.

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 621

and multimedia processing separately. A computing system is pervasive [2] if the user
could access data and process his task anytime and anywhere. The system must be
self-adapting and self-evolving. A pervasive MM computing system intended for the
blind makes such computing possible by associating applications, modalities and
media to the user context and the types of data to be used.

In this system, there is an association that maps data types (e.g. .doc, .txt) to certain
applications (e.g. text editor, web browser). Once an application, chosen in order of
priority, is selected, the supplier of the application is also selected based on the user’s
preferences as indicated in his user profile. Finally, the media and modality to be used
to input or receive data are selected based on the user’s context.

In a pervasive computing environment (CE), the user context is used as a parame-
ter to deduce the applications and tools to be accorded to the user. Given a context, a
scenario is a situation that is to be taken into account. In this system, machine learn-
ing (ML) [3] is adapted, and knowledge acquisition is based on scenarios. A pre-
condition scenario is a condition that requires a reaction, preferably intelligent, from
the system. The reaction itself is called the post-condition scenario. In general, the
ML component detects the pre-condition scenario, and then applies the corresponding
post-condition scenario. An incremental ML [4] allows continuous knowledge acqui-
sition for as long as there is something new (i.e. new scenario) to learn. The concept
of ML suits well on the assumption of a correct post-condition scenario, that is, the
devices are both present and functional. If it is not (e.g. a component is missing),
instead of allowing exception error, one that could potentially cause the system to
stall or crash, the system would instead find replacement to the missing component.
This process of finding replacement to a failed component so that the system remains
fault-tolerant does constitute the incremental ML of the system. The concepts of per-
vasive computing, multimodal multimedia computing, and machine learning are put
together to produce a computing system that suits the needs of the visually impaired
users. The system, although not physically constructed, is designed so that it resem-
bles real-life scenarios; its components are designed in a way that they behave as if
they really do exist in a real, functioning environment.

2 Related Work

Lately, there have been techniques developed to make computing more accessible to
visually-impaired users. Speech synthesis and the Braille terminal are just a few ex-
amples. Using the method in [5], the blind could work independently on a few appli-
cations. For accessing data, software like GUIB [6] and vOICe [7] translate visual
information into speech. For web browsing, BrailleSurf [8] and WebbIE [9] could
convert text into either speech or Braille. Mathematical software like VICKIE [10]
and AudioMath [11] could transfer data in LaTex or MathML format into another
form (i.e. Braille or speech). This collection of software is important to the visually
handicapped, hence we intend to use them as applications suppliers in our work.

An agent is some software that senses its environment and is capable of reaction,
proactivity, and social interaction, a group of which forms a Multi-Agent System
(MAS) [12]. Significant works in agency for the blind include Tyflos [13] which
could help a user to be partially independent, able to walk, and work in a 3-D

622 A. Awde et al.

dynamic environment. Our work, in contrast, uses agents to detect user context, and
other data in order to assist the system to determine the appropriate media and modali-
ties. Other important works on multimodality for the blind include [14] and [15]. In
concept, multimodality encourages system adaptation to various computing situations
and user profiles. Having multimedia and multimodality in the system makes it possi-
ble to include devices that could replace those that cannot be used by handicapped
users. For example, instead of regular screen that is inappropriate for blind users, a
system could be designed with speech recognition system or with Braille terminal.

A user profile is important in determining the most appropriate method for the user
to send/receive data to/from the system. For pervasive computing, the transfer of data,
usually incompatible in size, from one environment to another, usually incompatible
in resources, the technique proposed in [16] collects user profile from execution traces
on geographically distributed computing resources. In [17], user data is created for
virtual home environment management, representing information describing the net-
work and personalized environments related to a roaming user; after analysis, a user
profile is built. In [16], there exist many user profiles everywhere in the system which
is costly, while in [17], the user profile is so big that it is inappropriate to use when
computing device (e.g. PDA) has limited resources. Our work, in contrast, uses a
single user profile that follows the user wherever he goes and adapts accordingly to
the user’s computing device.

Learning is the acquisition of knowledge. Knowledge could be given a priori or
gained by experience. A machine has learned positively if it has acquired data or
behavior that improves its future performance. In [18], a ML method is used in col-
lecting data for conversational agent model. In [19], the ML is used in the dynamic
reconfiguration of the system architecture. Compared with [18], the scope of ML
applied to our work is limited; hence, the a priori training set already covers a large
portion of possible scenarios. In [19], the ML is dependent on user context alone
whereas in our work, it is dependent on user context, data types, computing device,
and modalities; the design itself is suited for visually-impaired users. Indeed, our
work is unique and different in many ways yet similar in objective of finding means
to make computing more accessible to the visually-impaired users.

3 Paradigm of a Pervasive MM Computing System

3.1 Architectural Framework

Figure 1 shows the architectural framework of our pervasive MM computing system.
A typical user could be a blind person who has some tasks to do. A task is a name
used to describe a computing work (e.g. homework). The accomplishment of such
task requires the user to utilize one or more applications, each of which has its own
quality of service (QoS) parameters. For the system to be pervasive, it is essential that
the user could continue working on his task anytime, anywhere. It follows that the
user profile and information would have to “follow” the user wherever he goes. The
intended user needs a set of media and modality that are different from those used by
regular users. The components of the system and their functionalities are as follows:

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 623

Fig. 1. The architectural framework of a pervasive MM computing system for visually-
impaired users

(1) The Control Agent (CA) – is tasked to get user application’s data, files and user
profile; (2) The Application Agent (AA) – it manages user’s task by instantiating the
applications with appropriate suppliers and QoS service parameters; (3) The Envi-
ronment Agent (EA) – it determines user’s context by getting the noise level in the
environment and the input from the user on user location and the noise constraints
imposed in the user’s location; (4) The Modality Agent (MA) – it manages and de-
cides the modalities that are appropriate to use given the application data type and the
context of the user; (5) The Converter Agent (ConvA) – it is responsible for conver-
sion, if necessary, of data from one form to another (e.g. text to speech); (6) The Device
Manager Agent (DMA) – it selects media suited for user’s needs and context; and (7)
The Machine Learning Agent (MLA) – responsible for machine’s acquisition of
knowledge which is based on user scenarios.

3.2 The User Task and User Profile

Figure 1 also illustrates the different possibilities for the user to connect to the distrib-
uted data. These data contains the user’s profile, and up-to-date data and task registry.
For a visually-impaired user, the applications’ data types, for the time being, are
fewer than those for the regular users, namely: text, audio and video files. The appli-
cations are also limited, namely: web browser, text editor, and video player. There is a
mapping between a data type and different applications, and each application to dif-
ferent suppliers. There are pre-defined applications to use with respect to the data
type. The applications themselves are ranked by priority. We have done the ranking
based on our knowledge and experience concerning the applications that are most
often associated with data type. By default, the highest ranked application is instanti-
ated for the given data type. If the application itself is missing, the second-ranked

624 A. Awde et al.

application is chosen. The application’s supplier and QoS parameters are based on
user preferences.

The user profile is a record of the user, his identification and his preferences. The
user profile (see Table 1 (Top)) consists of the following information: (1) User iden-
tity – this part contains the username, password, and the list of all computers and their
identity (i.e. IP address) that the user could use anytime; and (2) User application data
preferences – this contains information concerning the applications the user would
usually invoke, along with his preferred suppliers, ranked in order of priority, and the
QoS parameters he prefer. The ranking of preferred application suppliers is based on
user’s choice when his user profile is created; and (3) User modality data preferences
– this contains the user’s preferred type of voice for TTS (text-to-speech) modality
and the conversion table for Braille keyboard.

Table 1. (Top) A sample of a user profile, and (Bottom) a sample of a task registry

A new user profile is created by network administration when a new user is added
to the system. The user profile is private, but the user could modify it anytime he
wants. The data profile is presented in generic form in Table 1 to accommodate all
possible values of a certain item. The task registry (see Table 1 (Bottom)) is a table of
all the applications the user had used recently. In our work, when a user logs onto a
computing system with no resource restriction (e.g. no RAM restriction, etc.) such as
with PC or laptop, then the last file for each application will be instantiated automati-
cally, with user’s desired QoS parameter values. For one with limited resources, such
as PDA, then only the most recent applications will be instantiated (i.e. based on as-
sumption that the user will continue working on his latest task) depending if there are
sufficient available resources; without such resources, there will be no instantiation of
application. When the user logs out, the task registry is updated to include the

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 625

applications used by the user in such session. The diagram in Table 1 is, again, in a
generic format in order to accommodate all possible values of certain parameters.

3.3 The User Context

The user context is dependent upon three variables, namely (1) the user’s location (i.e.
whether the user is at home, at work or on the go), (2) the noise level of environment,
and (3) the noise restriction imposed by environment (e.g. silence required in a li-
brary, silence is optional in a park). Figure 1 (Right-side) also shows how user context
is obtained. The user supplies the information about his present location. This is im-
plemented by creating a voice-activated pop-up menu where the user would select his
current location from a given list of his previous whereabouts. The list keeps growing
each time he includes new places into the list. By default, the last whereabouts of the
user is chosen. If his current location is different from the default location, he simply
has to state his current location when the pop-up menu is activated. The noise level
imposed by the environment is also manually entered by the user. The user chooses
one from the two choices: either that the user is obliged to maintain silence (as in the
library) or not (as is the case in a cafeteria, for example).

The noise level of the environment is detected by a sensor. The noise level is im-
portant in whether to invoke speech recognition or not. In this work, we opt for
PASPORT PS 2100 noise detector [20] which can be connected to a computer’s USB
port. In concept, the EA takes n noise samples per unit of time. Taking 1 sample per
minute, and 5 total samples are adequate to detect the environment noise level.

The unit of noise intensity is decibel (dB). At this stage, we consider that 40 dB or
less makes the environment “quiet”, 41 to 50 dB is considered as “acceptable” and 51
dB or more is “noisy”. This range could be modified by the user based on his percep-
tion of noise. In general, in a quiet or acceptable noise-leveled environment, a speech
recognition modality is effective; it is less effective in a noisy environment; hence, the
system opts for alternative modality that is effective in a noisy setting.

3.4 The Data Types, Applications and Application Suppliers

Table 2 provides the data types that can be created or retrieved by the user. The appli-
cations associated with each data type are determined a priori. The priority is based
upon the usual application used to open up the data type, as observed from the choices
of the majority in such a situation. Also shown is the list of the suppliers that support
the application. For example, a .txt data is usually browsed by a user using a text
editor. However, if a text editor is missing (a remote possibility) from the current
system, then a web browser would be invoked as alternative application. The supplier
which instantiates an application totally depends on the user’s supplier preference.
The same concept applies to all other data types listed in Table 2. The list is not ex-
haustive yet; we intend to update it from time to time. The table’s data forms part of
the AA’s knowledge. It means that only the AA has jurisdiction over this file. Recall
that the AA determines data type and instantiates application using user’s preferred
supplier and QoS parameters, all of which are available in user’s profile (see Table 1).

626 A. Awde et al.

Table 2. List of software applications ranked in priority, for selected data types, and selected
suppliers for different applications

Data type Software Application appropriate for the data

.txt .doc 1. Text Editor 2. Web Browser

.pdf .html .xml 1. Web Browser 2. Text Editor

.wav .mp3 .wma 1. Audio Player

.wmv .avi .mpg 1. Video Player 2. Audio Player

…

Application Supplier

Text editor Ms Word, Word Pad, Note Pad, Latex, Acrobat Reader, Meditor.

Web Browser Explorer, Netscape, Opera, FireFox, BrailleSurf, Simply Web 2000.

Audio Player Media Player, Real One Player, Winamp, JetAudio, BsPlayer.

Video Player Media Player, Real One Player, JetAudio, PowerDVD.

3.5 Machine Learning

Machine Learning (ML) concerns about development of techniques allowing com-
puter to acquire knowledge. In supervised learning, the system generates a function
that maps inputs to some desired outputs. There exists a function f, the function to be
learned and h, the hypothesis about the function. There is a set of vector-valued input
X = {x1, x2, ..., xn} with n components. Hypothesis h is implemented with X as an
input and h(X) as the output. A hypothesis denoted as h(x1) = 100% means that such
possible action merits implementation. A hypothesis denoted as h(x1) = 0% means
the action being considered lacks merit and will not be implemented. In this system,
X is a set of the parameters being considered in a pre-condition scenario, namely: (i)
computing device used to login (e.g. laptop, PDA), (ii) application used (e.g. text,
video), (iii) modality (e.g. Braille, speech), (iv) noise level (e.g. quiet, noisy), and (v)
environment noise restraint (e.g. silence required). Hence, Xi = a set of pre-condition
scenarios, for i = 1 to n. There is a mapping from set X to set Y = a set of post-
condition scenarios, denoted by f: X Y. The post-condition set Yj = a set of post-
condition scenarios, for j = 1 to m.

The a priori training set is the machine’s initial knowledge. The machine’s capac-
ity to react to a computing situation is initially based on this training set. However, the
possibility of the system stall or crash is real if a situation that is not available in the
training set arises. Indeed, for the system to adapt to its changing environment, the
system must continue to learn. This is the rational for adapting incremental ML.

In the a priori training set, we can have one image (i.e. a post-condition scenario)
for one or more ranges (i.e. pre-condition scenarios). For example, the pre-conditions
1 and 2 have a common post-condition scenario in Table 3 which illustrates the a
priori training of the ML system. Here, to avoid repetitive long names, we use the
following abbreviations: KB=Keyboard, OKB=Overlay Keyboard, SRQ=Silence re-
quired, SOP=Silence Optional, SP=Speech, BR=Braille, BRT=Braille Terminal,
HST=Headsets, SPK=Speakers, Mic=Microphone, WMP=Windows Media Player.

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 627

Table 3. A priori training set

As stated in [4], a learning task is incremental if the training examples used to
solve it become available overtime, usually one at a time. The main characteristics of
an incremental learning task are: (i) examples are not available a priori but become
available over time, usually one at a time, and (ii) learning may need to go on indefi-
nitely. A learning algorithm is incremental if for any given training sample e1, e2,…
en, it produces a sequence of hypothesis h1, h2, …, hn such that hi+1 depends only on hi

and the current example ei.
In this paper, the incremental ML process (see its algorithm in Figure 2) happens

when the system is set to implement the post-condition scenario but is unable of
doing so because of missing components. In such a situation, an exception error is
produced that could cause the system to stall or to crash. To deal with it, system
stall or crash can be prevented by invoking incremental ML. When a component is
missing or defective, a replacement is automatically selected. When the replacement
selection is empty (i.e. incremental ML is still null), the system delivers the choice
selection to the user who then interacts with the system; the user choice is then
considered as alternative1 (Figure 2). This is the first training for the machine. This
new knowledge is added into the knowledge database (KD) for actual and future
use. When this scenario occurs again in the future, the system then knows how to
react correctly. Now, imagine that such scenario happens again and alternative1 is
also found missing or defective. The system will be trained for the second time on
this scenario, this time the system asks the user to intervene in selecting alterna-
tive2. As before, this new knowledge is then appended into the KD. If necessary,
the ML system could be trained as many times as possible. When trainings have
been done, the system becomes fault-tolerant and could react accordingly with no or
very little intervention.

628 A. Awde et al.

Fig. 2. The incremental machine learning process

3.6 Device and Modality Selection

While the MLA gets involved in determining the post-condition scenario of the user
and the AA instantiates the application with the supplier and QoS preferred by the
user, the CA itself finds the way to convert the user data from one form to another
(e.g. text to speech) depending on the calculated/pre-determined post-condition sce-
nario. Sometimes, there may not even be a need for data conversion (e.g. speech to
speech). The CA yields an output data file that has to be delivered to the user via one
or more output devices. The output of CA is sent to DMA which would activate se-
lected output media and deactivate some others. This is demonstrated in the example
scenario (Figure 4) later on. In general, the DMA has a complete knowledge of the
media devices that are currently available in the CE. Its decision what media and
modality to activate or deactivate depends entirely on the pre-determined post-
condition scenario. The techniques used by the CA in its task of data conversion are
patterned from various techniques already mentioned.

4 Formal Specification and Sample Simulation

A formal specification is a mathematical description of software, hardware or system
that may be used to develop an implementation. It describes what the system should
do, but not how the system should do it. Even without actual implementation, one

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 629

could determine the overall system behaviour via formal specification. Petri Net is an
appropriate formal specification for us since it could demonstrate the system’s dyna-
mism, and the demonstration of variations in the user’s CE. We use HPSim [21] for
Petri Net specification shown in Figure 3.

4.1 Formal Specification Using Petri Net

The Petri Net was defined by Carl Adam Petri in 1962. It extends the concept of state
machine to include concurrency. Petri Net is a formal, graphical, executable technique
for the specification and analysis of a concurrent, discrete-event dynamic system. It is
represented by an ellipse called place (basically a state), a rectangle called transition
(basically a process) and an arc representing input for a transition to take place (either
from a place to a transition, or from a transition to a place). Places can contain to-
kens; the current state of the modeled system (the marking) is given by the number of
tokens (and type, if they are distinguishable) in each place. When the transition fires,
it removes tokens from its input places and adds some to all its output places. The
number of tokens removed/added depends on the cardinality of each arc.

A marking of a Petri Net is reachable if, starting in the initial marking, a sequence
of transition firings exist that produces it. A Petri Net is bounded if there is a maxi-
mum to the number of tokens in its reachable markings. Petri Net specification can be
defined as a quadruple (P, T, F, B), where P = a non-empty set of places, T = a non-
empty set of transitions, F: P x T N is the forward incidence function, B: P x T
N is the backward incidence function and N = the set of integers 0. “Firing” of any
transition changes the marking of the Petri Net. The system’s Petri Net specification
is shown in Figure 3.

Fig. 3. Formal specification depicting different pre-condition scenarios and their resulting post-
condition scenarios using Petri Net

630 A. Awde et al.

As depicted in Figure 3, there are 4 places that are all activated simultaneously,
namely the user which logs in a particular computing device, and the modality
activated by the system, the level of noise in the environment and the noise restraint
imposed by the environment. The topmost place yields the activation of three
applications (i.e. audio/video player, text editor, and web browser). The supplier and
QoS parameters used to instantiate the application are based on user’s preferences found
in the user profile. The modality place yields a final output that combines keyboard
and speech, and a trio combination of keyboard, speech and Braille. The environment
noise level produces a final output which is either quiet/acceptable, or noisy. The
noise restraint imposed by the environment could only be silence required or silence
optional. As per Petri Net specification, a final output is produced only after all the
values of the 4 parameters are taken into account. Briefly, the output of the Petri Net
is the activation of software applications and the selection of a set of media and
modalities for activation as the appropriate input-output devices or modalities for such
a context combination. Petri Net specification illustrates all possible variations of the
4 input parameters and depending on these inputs, the simulation produces every
possible output in the media and devices that are activated by the system.

4.2 Sample Scenario Simulation

We present a scenario that demonstrates how each component of the system interacts
with other components. Scenarios are based on some real-life situations in which the
visually impaired user would usually do computing.

The Scenario
Assumptions: The user is a visually-impaired student. He is in a university library,
hence the environment is quiet and silence is required. He uses a laptop computer. In
addition to its regular media, this computer includes a Braille terminal, a headset, and
a microphone. The user is assumed to be capable of reading and writing information
using the Braille terminal. In reading text data, the user normally uses Braille or
speech synthesis modality. The numbers and circles in Figure 4 are given below:

(1) The user logs via a laptop. After identity verification, the system loads his pro-
file.

(2) The user connects to university server to read his .txt formatted text document.
(3) The .txt file as well as his previous applications (via user’s task registry) are

retrieved and loaded onto his computer.
(4) (4-a) The application database is used to instantiate the text editor application.

Normally, this step and (4-b) are skipped if the user’s computer has the appli-
cation software. The user’s application database itself is constantly updated
with information coming from the user’s profile and user’s task registry. (4-b)
Application database provides the control agent with a list of applications and
suppliers for each application available in the system.

(5) (5-a) The control agent passes .txt file onto the application agent which will in-
stantiate the application. With reference to Table 3, the selected application is
the text editor and its supplier is based on the user’s preference stipulated in
the user profile. (5-b) Default quality of service parameter of the selected ap-
plication is supplied to the application agent. QoS parameter is derived from
the user profile.

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 631

Fig. 4. A sample scenario simulation

(6) (6-a) The user’s computing device is made known to the MLA through CA. (6-
b) The application used by the AA is also conveyed to the MLA. (6-c) The EA
passes the user context to the MLA. The environment noise level is decided by
sample readings from the sensor (i.e. PASPORT PS 2100) while the other con-
text data are supplied by the user. (6-d) The MA informs the MLA which mo-
dalities are currently available in the system. In this example, the Braille,
speech recognition system and keyboard are all available.

(7) The MLA retrieves the previous scenarios (i.e. previous knowledge) from the
KD. In this example, we assume that there is a similar scenario found in the
KD. Hence, a new calculation has been evaded, and the system would simply
implement the post-condition scenario stated in the record read from the KD.

(8) The post-condition scenario is to be implemented. With reference to the user
profile and context, the CA would convert text into Braille and speech.

(9) Converted data is received by DMA. DMA would then decide which available

media have to be activated /deactivated.
(10) (10-a) Braille terminal is activated. (10-b) Keyboard is also activated. (10-c)

The headset is activated. (10-d) The speaker is completely inappropriate to use
for the setting so it is deactivated. (10-e) The microphone is obviously a no
choice in a library so it is also deactivated.

5 Conclusion

This paper demonstrates the paradigm of a pervasive MM computing system that
supports the needs of visually-impaired users. The infrastructure makes user’s profile,
data files and the machine’s knowledge omnipresent, making them accessible to the
user whenever and wherever he may be. A selected set of data types is part of the
AA’s knowledge base. Application software is mapped with data type; the supplier of

632 A. Awde et al.

the application is selected based on user’s preferences. The user profile contains the
usual user identity component + user preferred application suppliers + user preferred
QoS parameter values. The user context is decided based on user’s location, the
workplace’s noise level, and noise level restriction imposed by the environment. The
MA detects the modalities available in the CE while the EA takes charge of the user
context. The ML component is aimed at providing the appropriate reaction of the
system (i.e. post-condition scenario) based on the user context and other variables (i.e.
pre-condition scenario). There is an a priori training set whose data (pre- and post-
condition scenarios) becomes the machine’s initial knowledge.

The ML is incremental if it keeps learning over time. The system’s incremental
learning component is activated when the system realizes that a post-condition sce-
nario cannot be implemented because components in the scenario are missing or
defective. Instead of letting the system stall or crash, the system looks for the appro-
priate replacements. If the list of replacements is empty (i.e. incremental ML is null)
the system requires user intervention; he chooses the replacement to the missing or
defective component. The user response is taken as training number 1. If similar sce-
nario happens again and replacement 1 is also found missing or defective, then the
ML component is subjected to training number 2; the replacement is called replace-
ment2. This process is repeated for knowledge acquisition for the replacements of
other components. The more training the machine is subjected to, the more it becomes
smarter, making it more fault-tolerant. Incremental ML is also important because new
media and modality could be introduced to the system with very little user
intervention.

Future works include the dynamic reconfiguration of the system architecture when
there are cascaded failures of components. Also, we intend to mention the exceptions
and errors that are manifested by different media and modality under different condi-
tions. The resource management in the PDA is a concern as we try to transfer data and
files from a laptop, for example, to a PDA. The dynamic software architecture [23]
and the system’s ability to be autonomic [24] are also part of our future works.

References

1. Djenidi, H., et al “Generic Multimedia Multimodal Agents Paradigms and their Dynamic
Reconfiguration at the Architectural Level”, EURASIP Journal on Applied Signal
Processing, Vol. 2004, No. 11, Sept. 2004.

2. McCullough, M. “Digital Ground: Architecture, Pervasive Computing, and Environ-
mental Knowing”, Cambridge, Mass., USA, MIT Press, © 2004. ISBN 0262134357.

3. Mitchell, T. M., “Machine Learning”, McGraw-Hill, USA, 1997, ISBN. 0-07-042807-7.
4. Giraud-Carrier, C. “A Note on the Utility of Incremental Learning”, AI Communications,

v 13, n 4, 2000, pp. 215-223.
5. Ross, D.A. “Cyber Crumbs for Successful Aging with Vision Loss”, IEEE Pervasive

Computing, Vol. 3, Issue 2, April-June 2004, pp. 30 – 35.
6. Royal Natl Institute of the Blind, “Final Report of the TIDE”, UK, 1995, (website:

http://www.rnib.org.uk)
7. Meijer,P., “The vOICe: Vision Technology for the Totally Blind”, 2005, (website:

www.seeingwithsound.com/voice.htm)

 A Paradigm of a Pervasive Multimodal Multimedia Computing System 633

8. Archambault, D., “BrailleSurf: An HTML Browser for Visually Handicapped People”,
CSUN Conf., Los Angeles, USA, 1999.

9. King, A., et al “WebbIE, A Web Browser for Visually Impaired People”, 2nd CWUAAT
Workshop, Cambridge, UK, 2004.

10. Moço, V. and Archambault, D. “Automatic Conversions of Mathematical Braille: A Sur-
vey of Main Difficulties in Different Languages”, ICCHP Conference, Paris, France, 2004.

11. Ferreira, H. and Freitas, D., “Enhancing the Accessibility of Mathematics for Blind People:
the AudioMath Project”, ICCHP Conference, Paris, France, 2004.

12. Wooldridge, M., “An Introduction to Multi-agent Systems”, Wiley, Chichester, UK,
2001.

13. Bourbakis, N.G., et al “An Intelligent Assistant for Navigation of Visually Impaired Peo-
ple”, 2nd IEEE Intl Symposium on Bioinformatics and Bioengineering Conference, 2001.

14. Edwards, A., “MATHS, Mathematical Access for TecHnology and Science”, UK, 1997.
(www.cs.york.ac.uk/maths)

15. Bellik Y., «Interfaces multimodales : concepts, modèles et architectures », Ph.D. Thesis,
Université d'Orsay, Paris, 1995.

16. Antoniol, G., et al “A Distributed Architecture for Dynamic Analyses on User-profile
Data”, 8th European Conference on Software Maintenance and Reengineering, 2004.

17. Bougant, F., Delmond, F., Pageot-Millet, C., “The User Profile for the Virtual Home En-
vironment”, IEEE Communications Magazine, Vol. 41, Issue 1, Jan. 2003, pp. 93 – 98.

18. Okamoto, M., “Design and Application of Learning Conversational Agents”, Ph.D. The-
sis, Department of Social Informatics, Kyoto University, 2003.

19. Hina, M.D., et al “A Ubiquitous Context-sensitive Multimodal Multimedia Computing
and Its Machine-Learning Assisted Reconfiguration at the Architectural Level”, Work-
shop on Multimedia Information Proc. and Retrieval, 7th IEEE Intl Symp. on Multimedia,
2005.

20. http://www.pasco.com/products/
21. http://www.winpesim.de/petrinet/
22. Herbordt, W., et al “Noise-Robust Hands-Free Speech Recognition on PDA’s Using Mi-

crophone Array Technology”, Autumn Meeting of the Acous. Society of Japan, 2005.
23. Han, T., et al “Structure Analysis for Dynamic Software Architecture”, 6th Intl. Conf. on

Software Eng., Artificial Int., Net. and Parallel/Dist. Comp., May, 2005.
24. Horn, P., “Autonomic Computing: IBM’s Perspective on the State of Information Tech-

nology”, IBM Research, 2001.

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 634 – 643, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Context-Aware Adaptation for Media Delivery
in Pervasive Computing Environment*

Wenzhe Zhang, Haibing Guan, Minglu Li, Min-You Wu,
Chongqing Zhang, and Feilong Tang

Department of CSE, Shanghai Jiaotong University,
1954# Huashan Road, Shanghai, China

wzzhang@sjtu.edu.cn

Abstract. A robust solution for context-aware multimedia delivery in the
pervasive computing environment remains a challenging problem. Its
heterogeneous and dynamic nature demands a more flexible and intelligent
framework than Internet does. We propose an adaptive middleware solution to
address this issue. The system responds to the condition of the network to offer
extensibility and efficiency. Furthermore, we propose an active controlling
scheme, in which the multimedia delivery is able to adapt to the environment
variation in a timely fashion. In addition, we describe an application scenario of
our framework, which opens out a wide prospect.

1 Introduction

Over the last decade, there has been a dramatic increase in the use of computer
embedded devices, such as PDA, to perform control tasks and access the Internet or
other information sources. Furthermore, emerging standards in wireless communi-
cations enable embedded devices to inter-communicate and pervasively access
information. These trends have led to a change from the traditional computer- centered
to a future human-centered information access mode. The resulting change in our view
of computers and their use by humans is the subject of the field known as Pervasive
Computing [1]. As users are beginning to rely more heavily on pervasive devices, there
is a growing need for applications to bring information to the devices. However, as for
the Internet and other applications that make use of various types of multimedia data,
such as Video-On-Demand, most multimedia content was designed and organized with
desktop computers and high-speed networks in mind. They usually contain rich media
data such as images, audio, and video, which are not suitable for those pervasive
devices with limited display capability, process power and network bandwidth.
Therefore, the quality of media information often needs to be adjusted according to the
network bandwidth and the capabilities of pervasive devices [2]. As a result, some
challenging research issues were proposed to eliminate the mismatch between the rich
multimedia content and the limited network conditions.

* This research was supported partially by Natural Science Foundation of Shanghai Grant

(No.05ZR14081).

 Context-Aware Adaptation for Media Delivery in Pervasive Computing Environment 635

 Context-aware Adaptation for Media Delivery can solve this problem by adapting
media content to the specific capabilities of the network environment. In order to
realize it, many issues from different aspects must be addressed and integrated [2].
These issues include:

 Multimedia content description model that supports the description of resource
requirements of multimedia objects.

 Management and selection of different versions of multimedia objects to adapt to
client capabilities, network bandwidth and user preference.

 General and extensible mechanisms that describe and exchange the information of
the client devices’ capabilities, such as the display size, screen color depth, audio,
video display capabilities, storage space, processing power, network access
bandwidth, and so forth.

 Methods for manipulating, transcoding and summarizing multimedia objects.
 A framework that integrates all of the above technologies together.

 Our main goals while developing the architecture were to investigate how context
information could be integrated with a multimedia delivery system, what types of
context information would be most suitable to support useful functions in
context-aware applications and to provide an architecture for organizing data in a
pervasive environment. The implementation and further experience with the system
will help us to better understand how multimedia delivery system must be changed to
accommodate the unique characteristics of pervasive computing.

1.1 Previous Work

Context-aware pervasive computing emphasizes on using context of users, devices, etc.
to provide services appropriate to particular person, space, and time. Since it was
proposed about a decade ago, many researchers have studied this topic and built several
context-aware applications to demonstrate the usefulness of this new technology.
However, context is application-dependent. Schilit divides context into three categories
[3]: Computing context, such as network connectivity, communication costs, and
communication bandwidth, and nearby resources such as printers, displays, and
workstations, User context, such as the user’s profile, location, people nearby, even the
current social situation and Physical context, such as lighting, noise levels, traffic
conditions, and temperature. G. Chen[4] generally defines two kinds of context as
active context and passive context, which are critical or relevant but not critical
respectively. G. Xu [6] presents QoSTalk, a unified QoS (Quality-of-Service)
programming environment for pervasive multimedia applications.
 Here we try to formally define context as “any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and applications themselves”. Due to the merits of video programs, real-time video
distribution in the pervasive environment has become one of the most important
applications. But the pervasive infrastructure is vulnerable and dynamic, the
Quality-of-service can’t be guaranteed.

In our previous paper [13], we focused on the traditional uni-cast environment, and
proposed a Layered transmission solution over the dynamic communication

636 W. Zhang et al.

environment. In this paper, we would like to propose a universal architecture for
context-aware media delivery.

1.2 Paper Organization

The paper is organized as follows. In section 2 we present different media content
description models that support the description of resource requirements of multimedia
objects. In section 3 we illustrate the context abstracted for multimedia delivery in
pervasive environment and context modeling. Section 4 presents the framework of
adaptive delivery and its application scenario. After analyzing the effectiveness of
scheme proposed, we conclude the paper with section 5.

2 Different Media Models

Media information exists in various types, such as text, images, video, and audio. In
addition, each type may have different representations. For example, an image can be
saved in JPEG, GIF, or BMP formats. To describe a real object, we can use different
media types, at different levels of quality or detail. For example, to introduce a new
movie, we can use text in different languages to give a brief introduction about the
story, use images to introduce the actors, use video and audio clips from the movie to
attract the audience, etc. Here, we will briefly discuss several existing standards and
data models for media information [7].

The Hyper-Text Markup Language: HTML is based on SGML (Standard Gene-
ralized Markup Language) and is designed to specify the logical organization of a
document. It defines syntax to enrich text pages with structural information using
SGML elements. It is also possible to include various kinds of media elements into a
HTML document. Although HTML is the most common choice for current web pages,
it does not offer any mechanism to specify adaptation of a document to user preferences
and technical infrastructure. Dynamic HTML (DHTML) describes the abstract concept
of breaking up a web page into processable elements, and exposing those elements to a
scripting language. Such scripts first determine the user or system profile, and then
change the structure of the HTML according to the profile. With DHTML, page
modifications appear immediately following a trigger, such as a user selection at the
client side. Since the author must code and know all adaptation alternatives at authoring
time, this kind of adaptation is static. In addition, since DHTML can only modify the
currently loaded page, it does not reduce document size and transmission load.

MHEG-5 and MHEG-6: MHEG is an ISO/IEC international standard that specifies a
coded representation of final-form multimedia/hypermedia information objects, for
their interchange within or across systems. MHEG part 5 was created to allow the
development of a MHEG interpreter which fits in a device with minimal resource.
MHEG-6 extends MHEG-5 by adding data processing and communication functions
with the external environment, such as servers, and local devices. In MHEG-6, the
MHEG engine could call a Java program that retrieves the actual values for a given
profile and then sets the variables of the document. So, with the use of MHEG-6,
adaptation of a presentation to user interests or technical infrastructure is possible.

 Context-Aware Adaptation for Media Delivery in Pervasive Computing Environment 637

Since all adaptation alternatives must be specified within a document at authoring time,
this is static adaptation.

SMIL: The SMIL (Synchronized Multimedia Integration Language) is a W3C stan-
dard that aims at synchronized multimedia presentations on the Web. An interesting
feature of SMIL is the "switch" element, which is a simple means for modeling
alternatives and quality of a presentation. With the help of switch elements, an author
can specify different presentation alternatives among which one is chosen at
presentation time due to external parameters. Thus, the switch element allows for static
adaptation. The selection of the alternatives is guided by simple predicts which include
parameters set outside the SMIL document. These parameters are predefined by the
standard and describe mainly technical features, like the available bandwidth. This
allows adapting a SMIL document to the technical infrastructure.

MPEG-7: MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture
Experts Group). MPEG-7, formally named "Multimedia Content Description
Interface", aims to create a standard for describing the multimedia content. MPEG-7
Multimedia Description Schemes define a set of Data types and Description Schemes,
which can describe the visual as well as the aural content of a single AV document.
Among all Description Schemes, the Variations DS is used to specify variations of
audio-visual data. The variations may be, in general, generated in a number of different
ways, or reflect revisions of the original data. The quality of the variation compared to
the original is given by a fidelity value.

These approaches are mostly concerned with document layout, structure, interaction
and synchronization, and only have a limited ability to support static adaptation.
Besides, several multimedia information models have been also proposed by different
research groups [7].

3 Contexts for Media Delivery

In this section, we introduce the context we abstract. “Primary” contexts, including
location, entity, activity and time, act as indices into other sources of contextual
information [5]. Combining several context values may generate a more powerful
understanding of the current situation. For example, knowing the current location and
current time, together with the user’s calendar, the application will have a pretty good
idea of the user’s current social situation, such as having a meeting, sitting in the class,
waiting in the airport, and so on [10]. In this paper we take advantage of both location
and time context as well as network bandwidth. Context history is generally believed to
be useful, so we’ll discuss it successively.

3.1 Context Acquisition

Location: Since the location is an important context that changes whenever the user
moves, a reliable location-tracking system is critical to many context-aware
applications. It is easy to gather such location information if the user is willing to (and
always remembers to) supply her location context to the system. Typical techniques
include user sliding her badge or pressing a fingerprint reader before entering and

638 W. Zhang et al.

leaving (ideally) a room. The system can also watch which workstation the user logged
in. These methods, however, need user’s explicit cooperation and only provide coarse
granularity and low accuracy (if the user forgets to let system know when she leaves the
room). The obvious choice for automatic location sensing techniques is the Global
Positioning System (GPS). Recently, the US Government turned off degradation of the
civil GPS signal to allow an accuracy of 10 to 20 meters, which is 10 times more
accurate than before. Automobile navigation systems instantly benefit from this new
policy, and we can certainly imagine many other applications will become possible,
such as PDA’s user location [11].

Time: This contextual information is not difficult to obtain, of course, from the built-in
clock of the computer. Many applications correlate the location information with
timestamp. Though there are other forms of time context, such as day of the week, day
of the month, month of the year, season of the year, time zone, and so forth, only
time-of day information has been used as far as we know. Also, time context tends to be
used together with schedule information, while in our scheme it is used to reflect the
user’s activity.

Network bandwidth: As stated before, network bandwidth is also an important
computational context in our scheme. Underlying system support is a usual way for
applications to adapt to the bandwidth changes. Implemented as a user-level module,
system provides API calls by which applications can be notified when the network
bandwidth changes. In our opinion, we indicate the media receiver report network
condition to the sender actively.

High-level contexts: In addition to the raw contextual information such as location,
time and bandwidth, we are also interested in high-level context information such as the
user’s “current activity”. It is, however, a big challenge to sense complex social
contexts. One approach is to consult the user’s calendar directly to find out what the
user is supposed to do at certain time. The user, however, is not always willing or able
to put her activities in the calendar and she may not always follow the calendar.
Another method is to use Artificial Intelligence techniques to recognize complex
context by combining several simple low-level contexts.

3.2 Modeling the Context

Similarly the models developed for context aware applications are often opportunistic
and strongly related to the technologies deployed. In our understanding the following
properties of context are central:

 Each context is anchored in an entity.
 Context-awareness is always related to an entity.

 An entity is a place, a subject, a device, an application, another context, or a group of
these. When creating sensing systems that supply context about an entity the domain
knowledge that is available on the entity can be exploited [11].
 To illustrate the concept consider the contexts described in Table. 1. It can be
observed that these contexts of single entity are greatly independent on the general

 Context-Aware Adaptation for Media Delivery in Pervasive Computing Environment 639

Table 1. Examples of Entries with Typical Contexts assigned

Type of
entity

Entity Examples of typical
context

Contexts relations
in examples

Place location Workroom, Smart kitchen, Driving
simulator, Living room, Conference

room

Non-exclusive

Time time Daytime, Night Exclusive
Subject bandwidth <10Mbps, 10-100Mbps, >100Mbps Exclusive

situation of use, so on this level there is no difference whether the bandwidth is based
on cable, infrared or fiber communication. Relating situations and tasks to objects and
properties is a bottom-up approach to understanding and modeling context [8].

4 Context-Aware Adaptation for Media Delivery

Based on the introduction of context abstraction, in this section we propose a universal
context-aware framework for multimedia delivery in pervasive computing
environment.

4.1 Location-Aware System

Mobility is the most characteristic of devices in pervasive computing environment [1].
The ability to use implicit situational information, or context, is crucial to the
development of “intelligent” mobile applications. Instead of relying on the explicit user
inputs, context-aware applications are capable of providing tailored services and
information by exploiting user context (e.g., location context, social context and
computing context). For applications to perceive context, sensors are used to acquire
various contextual information in the environment [16], and inference procedures are
employed to aggregate contextual knowledge from raw data [14], [15]. Contextual
information is inherently distributed and heterogeneous. Individual context-aware
applications, in particular ones that operate under resource-limited mobile devices,
have limited capability to acquire contextual information and to reason about context.
To overcome these problems, firstly we are prototyping a location-aware system as a
middleware infrastructure to enable context-awareness in mobile applications. This
will provide support for acknowledge integration, knowledge consistency, and spatial
and temporal reasoning.
 The architecture of basic location aware system is shown as fig.1. The hardware
includes a portable PC, a GPS receiver, a CDPD modem. Message Engine embedded in
Client’s PDA packs GPS data and sends to Server via CDPD Modem. Thus we can
acquire the client’s location and figure out its position in the virtual map at Server.

4.2 Context-Aware Framework for Media Delivery

We propose an adaptive framework to solve the sender-receiver adaptation in
multimedia delivery. Adaptation performed at receivers is only fixed layer rates and

640 W. Zhang et al.

Fig. 1. Location aware System

limited num of layers. Adaptation at sender is how to acquire the user’s bandwidth,
location and current time, abstract high-level context and regulate the coding and
transmission according to the context.
 Here we introduce User Profile Server (UPS) to support this adaptive mechanism.
UPS works as the partner of media server, storing personal information for each user,
including individual setting, specialized QoS policy, and their current states during the
service etc. The data can be fetched from it in case of application loading or user login.
Combining them with the application prerequisites, the media server will get the overall
specifications, thus provide the QoS-Enabled service without sacrificing the individual
interests.

The user’s profile in USP is the overall description of user’s demanding. It includes
device setting, user preference, context profile, network condition and Qos
specification. So adaptation at USP including:

Device setting adaptation: Current pervasive devices vary widely in their features
such as screen size, resolution, color depth, computing power, storage and software. To
ensure that a requested content is properly rendered on the user’s device, it is essential
to include the capabilities and characteristics of the device into the content
personalization process. Information about the rendering device may include the
hardware characteristics of the device, such as the device type, processor speed,
processor load, screen resolution, color depth, available memory, number of speakers,
and display size.

User preference adaptation: The user’s profile captures the personal properties and
preferences of the user, such as the preferred audio and video receiving/sending
qualities (frame rate, resolution, audio quality…). Other preferences can also be related

GPS
Satellite

GPS
Receiver

Location
Learning Agent

Message Engine
CDPD
Modem

Internet Client (PDA etc)

Server

Map Server

GPS Location

 Context-Aware Adaptation for Media Delivery in Pervasive Computing Environment 641

User Profile Sever

Bit-stream

Client
C

on
te

xt
-c

om
pu

tin
g

A
da

pt
at

io
n

QoS Policy

Device Setting

Media Server

Rate
Controller

Feedback
Collector

Decoder

Bandwidth
Estimator

Adapter

Context Profile

Query
Engine

User Preference

Network Condition

Coded
Media

User

Fig. 2. The Framework of adaptive Media Delivery

to the quality of each media types for communication with a particular person or group
of persons. The user’s profile may also hold the user’s policies for application
adaptations, such as the preference of the user to drop the audio quality of a sport clip
before degrading the video quality when resources are limited. Some other information
in the user profile might include also the user’s authorization, authentication and
accounting information.

Context profile adaptation: A context profile would include any dynamic information
that is part of the context or current status of the user. Context information may include
physical (e.g. location, weather, temperature), social (e.g. sitting for dinner), or
organizational information (e.g. acting senior manager). Some context information,
such as the role or task of the user, can be manually keyed in by the user, while other
information, such as location, time of the day, weather condition, can be easily gathered
using sensing devices. Some other information, such as the current status of the user,
can be gathered from other sources such as the calendar of the user or from a meeting
attendees list.

Network condition adaptation: Streaming multimedia content over a network poses a
number of technical challenges due to the strict QoS requirements of multimedia
contents, such as low delay, low jitter, and high throughput. Failing to meet these
requirements may lead to a bad experience of the user. With a large variety of wired and
wireless network connectivity, it is necessary to include the network characteristics into
content personalization and to dynamically adapt the multimedia content to the

642 W. Zhang et al.

Fig. 3. Application of Scenario of the Framework

fluctuating network resources [6]. Achieving this requires collecting information about
the available resources in the network, such as the maximum delay, error rate, and
available throughput on every link over the content delivery path.

QOS specification adaptation: For a specific multimedia presentation, individual
users may have different requirements on the level of details or some other parameters.
For example, given a medical tele-learning system, both a professor and a student are
interested in a surgery, but the professor wants to get the in-depth multimedia material
for his lecture, while the student only needs an abstraction of the same material to pass
the upcoming exam.

The proposed framework supports media coding and transmission adaptation
according to the receiver’s temporal, spatial, and communicational conditions. So it can
serve the user with acceptable video quality even in the poor bandwidth. An application
of scenario is shown as follows in Fig. 3. At Location A, the user enjoys the video from
the Media Server. Location of the user has been detected and reported to UPS A. When
the user moves to Location B passing by Barrier, the communication is blocked.
Fortunately, the video can be transmitted successively by Proxy Station. But the
bandwidth of Proxy Station may be lower than that of the user needs. With the media
adaptation of architecture, the user can continue to enjoy his video on the acceptable
level.

5 Conclusion and Future Work

In this paper, we present different media content description models. Successively we
illustrate the context abstracted for multimedia delivery in pervasive environment and
propose an active controlling framework for media delivery. Our main contribution is a

Media
Sever

(2)
Location A Location B

B
ar

ri
er

Proxy station

User Profile
 Server A

(1)

(3)

User Profile
 Server B

 Context-Aware Adaptation for Media Delivery in Pervasive Computing Environment 643

formal study on the context-based media adaptation and its framework, which
preserves user-centric philosophy of pervasive computing. As we present
context-aware application scenario, we will be able to determine what types of different
applications are best supported in pervasive environment. After the usability tests, we
will improve the system based on the evaluation of system performance and user’s
satisfaction. Future work will also involve the development of automatically launched
applications based on context.

References

1. M. Weiser, the Computer for the 21st Century. Scientific American, 1991,265(3): pp.94-104
2. M. Satyanarayanan, Pervasive Computing: Vision and Challenges, IEEE Personal

Communications, vol.8, pp.10-17, Aug 2001.
3. Bill Schilit, Norman Adams, and Roy Want, Context-aware computing applications, IEEE

Workshop on Mobile Computing Systems and Applications, pp. 85-90, December 1994.
4. G. Chen and D. Kotz, A Survey of Context-aware Mobile Computing Research, Technical

Report TR 2000-381, Dartmouth Computer Science, 2000.
5. Anind K. Dey and Gregory D. Abowd, Towards a Better Understanding of context and

context-awareness, Technical Report GIT-GVU-99-22, Georgia Institute of Technology,
College of Computing, June 1999.

6. Xiaohui Gu, Duangdao Wichadakul, Klara Nahrstedt, Visual QoS Programming
Environment for Pervasive Multimedia Services, Proceedings of IEEE International
Conference on Multimedia and Expo 2001(ICME2001), Aug 2001.

7. Z. Lei, ND Georganas, Context-based media adaptation for pervasive computing,
Proceedings of Canadian, Conference on Electrical and Computer Engineering. Toronto,
May 2001.

8. Hopper, A., “Sentient Computing”, The Clifford Paterson Lecture, Phil. Trans. R. Soc. Lond
A (2000) 358, pp. 2349-2358, 1999.

9. Guang-You XU, Uuan-Chun SHI, and Wei-Kai XIE, Pervasive/ Pervasive Computing,
Chinese Journal of Computers, Vol. 26 No. 9, pp.1042-1050, Sept. 2003 (in Chinese).

10. Sumi Helal, Wiliam Mann, Hicham El-Zabadani etc. The Gator Tech Smart House: a
Programmable Pervasive Space, IEEE Computer Society, Computer 0018-9162 pp.50-60
2005.

11. Albrecht Schmidt, Pervasive Computing– Computing in Context, Ph.D. Thesis, Computing
Department, Lancaster University, U.K. November, 2002.

12. J. Liu, B. Li, Y.-Q. Zhang, An End-to-End Adaptation Protocol for Layered Video Multicast
Using Optimal Rate Allocation, IEEE Transactions on Multimedia, (6)7: 87-102, February
2004.

13. Wenzhe zhang, Minglu li, Chongqing Zhang, CSMD: Context-based Scheme for
Multimedia Delivery for Ubiquitous Environment, In the Proceedings of workshop on
Modeling and Security in Ubiquitous System of ICESS’05, pp. 565-569, December 2005.

14. H. Chen and S. Tolia, Steps towards creating a context-aware agent system. Technical
Report HPL-2001-194, Hewlett-Packard Labs, Palo Alto, CA, U.S.A., 2001.

15. J. McCarthy, Notes on formalizing contexts. In Tom Kehler and Stan Rosenschein, editors,
Proceedings of the Fifth National Conference on Artificial Intelligence, pages 555-560, Los
Altos, California, 1986. Morgan Kaufmann.

16. D. Salber, A. Dey, and G. Abowd. The context toolkit: Aiding the development of
context-enabled applications. In CHI, pages 434-441, 1999.

CAMPS: A Middleware for Providing

Context-Aware Services for Smart Space�

Weijun Qin, Yue Suo, and Yuanchun Shi

Key Laboratory of Pervasive Computing, Ministry of Education,
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
{qinweijun99, suoy}@mails.tsinghua.edu.cn, shiyc@tsinghua.edu.cn

Abstract. Context-awareness enhances intelligent behaviors in perva-
sive computing environments, although it is still a great challenge to en-
able context-awareness due to lack of effective infrastructure to support
context-aware applications. In this paper, we present an agent-based mid-
dleware called CAMPS for providing context-aware services for Smart
Space in order to afford effective supports for context acquisition, rep-
resentation, interpretation, and utilization to applications. In CAMPS,
a formal context model, which combines First Order Probabilistic Logic
with OWL ontologies, has been investigated to facilitate context mod-
eling and reasoning about imperfect and ambiguous contextual infor-
mation and to enable context knowledge sharing and reuse. A context
inference mechanism based on an extended Bayesian Network approach
has been studied to enable automated reactive and deductive reasoning.
In addition, we implement a prototype and study on our experience in
smart classroom application.

1 Introduction

It’s widely acknowledged that Smart Space is a typical open, distributed and
heterogeneous pervasive computing system, which aims at creating a ubiqui-
tous, human-centric environment with embedded computers, information appli-
ances, and multimodal sensors that facilitates human to achieve task efficiently
by offering abundant information and assistance from computers. A prominent
characteristic of Smart Space for supporting human-centric computing is that
it senses and reacts to context, information sensed to characterize the situation
of the people, activities, physical environment, and computing entities that is
considered relevant to the interaction between user and application [1].

Researchers have been investigating on many research issues of context-aware
computing, e.g. context modeling, representation, context inference and knowl-
edge sharing, etc. and developing tools and architecture that make efforts to
investigate a number of effective and powerful ways to acquire, represent, and

� This work has been funded by Program for New Century Excellent Talents in Uni-
versity of China (NCET-04-0079).

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 644–653, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

CAMPS: A Middleware for Providing Context-Aware Services 645

make use of sensed and inferred data for providing context-aware services to ap-
plications. However, developing context-aware middleware to enable computer
applications to make use of contextual information and to enhance human’s task
is still a great challenge. To address these issues above, we have built a middle-
ware called CAMPS which provides context-aware services to allow applications
in a smart space environment to be context-sensitive. Some of the key features
of CAMPS are:

– An agent-based, loose-coupling middleware that enables the gathering and
management of contextual information from various sensors and software
entities, and provides appropriate context-aware services for applications.

– A formal context model that describes and represents various kinds of con-
textual entities(e.g. person, location, activity, environment, platform, etc.)
in a smart space environment.

– A context inference mechanism that supports the deduction new and relevant
high-level contextual information to the use of the applications from low-level
sensed context data.

The rest of the paper will be organized as the following: Section 2 gives an ap-
plication scenario and presents the features of contextual information in Smart
Space. The ontology-based context model is investigated in Section 3. Section 4
describes the system architecture of CAMPS middleware and Section 5 describes
context inference mechanism. A case study on making use of context-aware ser-
vices is on discussion in Section 6. Section 7 gives related works which encourage
our approach, and finally Section 8 makes a conclusion.

2 Context-Awareness in Smart Space

Ongoing research on building context-aware application for Smart Space has
been more and more significant and compelling. We discuss the Smart Camera-
man application in our Smart Classroom system [2] in order to illustrate the
nature of context-awareness required by applications in Smart Space, and then
return to this application scenario throughout the paper in order to illustrate
our middleware architecture for supporting context-aware service.

Ross is giving a lesson in Smart Classroom. A remote student Joey is watching
the live-video of overview of the classroom on his laptop computer, while another
remote student Monica is watching it via her PDA. Ross posts a question on the
Blackboard (shared whiteboard). At that moment the live-video on Joey’s laptop
turns to the close-up of the ”Blackboard” while Monica’s PDA displays only the
question written on Blackboard. After that, Ross asks Chandler, a local student in
the classroom, to answer the question. Chandler stands up and gives his answer.
At that moment, the live-video on both Joey and Monica’s display screen turns
to the close-up of Chandler’s posture.

From the description of a context-aware application above, it’s obvious that
there are many different types of contextual information that can be used by
applications in a smart space environment, including physical contexts (e.g. time,

646 W. Qin, Y. Suo, and Y. Shi

location), personal contexts (e.g. identity, preference, mood), device contexts
(e.g. display size, power), activity contexts (e.g. class, meeting schedule). Besides
those, other types of information are still considered as crucial context in a smart
space environment which may be invisible to the participants e.g. systematic
contexts (e.g. CPU power, network bandwidth), and application contexts (e.g.
agents, services), environmental contexts (e.g. light, temperature), etc.

In order to distinguish the specific properties or attributes of different contex-
tual information, we consider that contexts can be classified as three categories:
Sensed Context, Profiled Context, and Derived Context. Sensed Contexts, which
are usually captured from the physical sensors in the real world, e.g. RFID, lo-
cation tracker, are a type of temporal sensitive, imperfect and ambiguous infor-
mation. Profile Contexts, which are usually predefined from user or environment
profile information, e.g. user profile, are more static but incomplete. Derived
Contexts, which are usually deduced from the other basic information, are im-
precise with inaccuracy.

3 The Context Model

It’s acknowledged that a well-designed context model plays an important role to
access the context in any context-aware system [3]. In our approach, the basic
structure of context is represented as first-order probabilistic logic in order to
measure the ambiguity of contexts, which combines the expressive power of first-
order logic with the uncertainty handling of probabilistic theory [4]. Referred as
a sharing understanding of specific domains, ontology is a formal explicit descrip-
tion of concepts and relationships [5]. In our approach, we adopt an ontology
approach to model conceptual contexts in a smart space environment for the
following reasons: i) ontologies with fully expressive power allow context rep-
resentation semantically and explicitly; ii) a common ontology enables entities
in Smart Space, e.g. agents, devices, to share, reuse and interoperate context
knowledge; iii) ontologies provide various complex efficient inference mechanism
to deduce high-level context from low-level, raw context data, and to check in-
consistent contextual information due to imperfect sensing [6].

3.1 The Basic Structure of Context

In our model, First Order Probabilistic Logic (FOPL) is adopted to represent the
basic structure of context which follows the notion of combining first order logic
and probabilistic models in machine learning community [4]. Before representing
the basic structure of context, we first introduce several definitions of terminology
Field, Predicate, ContextAtom and ContextLiteral.

– Field∈F ∗, where a Field is a set of individuals belong to the same class,
e.g., Person = {Ross, Joey, Chandler}, Room = {Room526, Room527}.

– Predict∈V ∗, where a Predict indicates the relationship among the entities
or the properties of an entity, e.g. location, coLocate.

CAMPS: A Middleware for Providing Context-Aware Services 647

– ContextAtom∈A∗, where ContextAtom is represented as the form of
predicate(term, term, . . .) in which a term is a constant symbol, a variable
symbol, or a function followed by a parenthesized list of terms separated by
the commas, and a predicate acts on terms. For example, location(Ross)
indicates Ross′ location.

– ContextLiteral∈L∗, where ContextLiteral is represented as the form of
contextAtom = v in which contextAtom is the instance of ContextAtom and
v indicates the status of contextAtom or the value of the terms. For example,
location(Ross) = Room527 indicates that Ross’ location is Room527.

The structures and properties of this basic model are described in an ontology
language in order to define the conceptual contexts in rich semantic level. In our
approach, we propose to represent basic context structure in Web Ontology Lan-
guage (OWL) [7]. Influenced by Ding’s approach of representing probabilities in
OWL [8], we define two OWL classes: PriorProb, CondProb. A prior probability
Pr(L1) of a context literal L1 is defined as the instance of class PriorProb, which
has two mandatory properties: hasContextLiteral and hasProbValue. A condi-
tional probability Pr(L1|L) of a context literal L1 is defined as the instance
of class CondProb, which has three mandatory properties: hasContextLiteral,
hasProbValue and hasCondition.

3.2 The Context Ontology

In our model, we divide context ontology into two sets: core context ontology for
general conceptual entities in Smart Space and extended context ontology for
domain-specific environment, e.g. classroom domain. The core context ontology
attempts to define very general concepts for context in Smart Space that are
universal and sharable for building context-aware applications. The extended
context ontology attempts to define additional concepts and vocabularies for
supporting various types of domain-specific applications.

The core context ontology investigate seven basic concepts of user, location,
time, activity, service, environment, and platform, which are considered as the
basic and general entities existed in Smart Space as shown in Figure 1. Part of the
core context ontology is adopted from several different widely-accepted consensus
ontologies, e.g. DAML-Time [9], OWL-S [10], etc. The instance of Smart Space
consists of classes of User, Location, Time, Activity, Service, Environment and
Platform.

– User: As user plays an important and centric role in the smart space applica-
tions, this ontology defines the vocabularies to represent profile information,
contact information, user preference and mood which are sensitive to user’s
current activity or task.

– Location, Time and Activity: Note that the relevancy among location, time,
and user’s activity facilitates the validation of inconsistent contextual in-
formation because these contexts might be sensed by various sensors with
different accuracies.

648 W. Qin, Y. Suo, and Y. Shi

– Platform and Service: The platform ontology defines descriptions and vocab-
ularies of hardware devices or sensors, and software infrastructure in a smart
space. The service ontology defines the multi-level service specifications that
platform provides in order to support service discovery and composition.

– Environment: The environment ontology defines the context specification of
physical environment conditions that user interacts with, such noise level,
light condition, humidity and temperature, etc.

The extended context ontology extends the core context ontology, and de-
fines the details and additional vocabularies of which apply to various different
domains. The advantage of extended context ontology is that the separation of
domain reduces the scale of context knowledge and burdens of context process-
ing for pervasive computing applications, and facilitates the effective context
inference with the limited complexity [5].

Activity
[act]

Service
[ser]

Location
[loc]

Platform
[plat]

Environment
[env]

Time
[time]

provide contain

User
[usr]

use

locateAt

engageIn

takePlace

locateAt
locateAt

locateAt

existInpreference

profile

role

mood

Core ontology Extended
ontology

owl:Propertyrdfs:subClassOfLegend

serve

use

Scheduled
Activity

latitude

longtitude

altitude

geoSpatialClass
Activity

Software

Hardware

Multi-Agent
System (MAS)

Sensor

Device

temperature

light

noiseLevel

humidity

Distributed
Component

Model

timeInterval

timeInstant

grounding

model

profile

Composed
Service

Atomic
Service

Fig. 1. Context ontology of Smart Space

4 The CAMPS Architecture

The CAMPS is an agent-based context-aware middleware that provides supports
for applications to make use of contextual information in a smart space envi-
ronment. The CAMPS middleware consist of several individual, collaborating
agents as depicted in Figure 2.

– Context Wrapper(CW) Agent. The CW Agent acquires various types of raw
context data from different sensors, devices, profiles and software agents.

– Context Provider(CP) Agent. The CP Agent abstracts context data from
heterogeneous source via different types of CW Agent, and represents con-
textual information using ontologies for knowledge sharing and reuse.

CAMPS: A Middleware for Providing Context-Aware Services 649

– Inference Engine(IE) Agent. The IE Agent provides inference mechanism
including reactive method, first order probabilistic logic and bayesian net-
works, to infer high-level context from low-level data.

– Knowledge Base(KB) Agent. The KB Agent stores inference rules, observed
facts, and ontologies for context data management and maintenance.

– Query Filter(QF) Agent. The QF Agent provides query interface to upper
applications to query or subscribe the context-aware services with support
of system-level coordination mechanism using formal query language.

Fig. 2. The CAMPS middleware architecture

The most important considerations of our design architecture for providing
context-aware services are mainly relied on some considerations below:

– Loose coupling. Contextual Information in a smart space environment is very
dynamic and heterogeneous. From the benefits of loose coupling feature,
the system can adopt suitable plug-in module to meet different demands of
context-aware applications for modeling and reasoning with different types
of context knowledge with the least cost of system integration.

– Scalability. The middleware architecture with component abstraction and
encapsulation provides an easy way to enable context-aware services scal-
able. By customizing the scenario profile and deploying various types of sen-
sors, CW Agent can capture abundant contextual information from different
sources to be more adaptive to the real smart space environment.

– Invisibility. With notion of the separation of application procedure and un-
derlying services, the middleware provides QF Agent module for enabling
underlying system functionalities(e.g. context data storage, sensor distribu-
tion, inference engine) invisible to the upper applications.

650 W. Qin, Y. Suo, and Y. Shi

5 Context Inference Mechanism

The inference mechanism of supporting context-aware reasoning is ContextLogic
that follows the idea of Knowledge-Based Model Construction (KBMC), which is
considered as a formal inferential system based on first order probabilistic logic.
It consists of formal representation of context knowledge and rules, and the upper
inosculation and inference to the knowledge. In this section, we introduce the
design approach of KB Agent and IE Agent which extends Bayesian Network
(BN) reasoning arithmetic with restriction of syntax and semantic hypotheses
in order to enable the complexity of context reasoning within the acceptable
restricted range.

The KB Agent takes charges of context persistence, maintenance and man-
agement. The construction of KB Agent consists of Field Definition, Predicate
Definition, Observed Facts and Rule Definition. Context rules are the form of
Pr(Lh|Lb1 , Lb2 , . . .) = c : −LC1, LC2 , LC3, . . ., which means that in the con-
straints of LC1 , LC2 , LC3, etc. and under the condition of Lb1 , Lb2 , the probability
of Lh is the value of c. Note that LCi denotes only context fact and others de-
note arbitrary ContextLiteral, e.g. the statement Pr(TeacherStatus(Teacher) =
talking|Speaking(Student) = false) = 0.7 : −IsBlackboardTouched(Room527)
denotes the rules that when the blackboard of Room527 has not been touched,
the probability value of that the teacher is talking equals 0.7 under the condi-
tion of that the student is silent. We propose XML-based database to store and
manage all the definition and information of Knowledge Base.

The IE Agent takes charges of inferring high semantic context knowledge
from low-level context facts with restricted constrains and deductive rules. For
example, from the rule of Pr(Speaking(Joey) = true|Speaking(Ross) = true)
= 0 : −status(Roos527) = onMeeting, we can deduce that while Ross is speak-
ing on the meeting in the Room527, it’s impossible that Joey is also speaking.
In CAMPS, We develop a inference module called ContextLogic for converting
the context description in Knowledge Base into BN’s DAG and to calculating
the probabilistic distribution. In order to reduce the scale of BN’s DAG, we in-
vestigate an approach to build DAG according to the context query’s content.
To achieve the above goal, several constrains are involved, including valid rule
of the syntax, the independence hypothesis of causal set that extends definition
of causal independence in [11], the hypothesis of average distribution of residual
probability, and the conditional independence hypothesis, in order to avoid gen-
erating unnecessary node of the net so as to minimize the scale of BN’s DAG
and ascertain exclusively the distribution of the answer. Therefore, with the help
of the constraints and hypothesis, the complexity of inference on BN’s DAG is
under control within acceptable limited range.

The QF Agent classifies the input query into two categories: i) query for
context facts. In this case, no complex inference mechanism is involved, but
a reactive mapping approach is adopted to provide the answer to the query;
ii) query for context knowledge. In this case, the above inference approach is
adopted to infer the answer. We defined the basic formal of context query lan-
guage (CQL) as ?LC1 , LC2, . . ., where LCi can have either Field Variable (FV)

CAMPS: A Middleware for Providing Context-Aware Services 651

or Field Element (FE). The advantage of defining a well-formalization CQL is
that we can use it to query in Context Base in a uniform way, and the distri-
bution and storage structure of data and the complicated inferential process are
transparent to the upper applications and users.

6 Case Study

As depicted in the application scenario, a Smart Cameraman module is de-
signed to change the live-video scene adapted to situational context initiatively
according to the clue of class activity in local classroom by switching an array
of cameras. Distinct with previous version applied in Smart Classroom project
[2], we adopt Smart Platform [12], a software infrastructure of Smart Space with
multi-agent architecture, as a supporting platform to the middleware CAMPS
for providing reliable data communication and module coordination mechanism.

In this case, context-awareness that CAMPS provides embody two aspects:
i) CAMPS capture the contextual information relevant to user’s activity and
provide the clue of class activity to Smart Cameraman module. ii) CAMPS
deliver various customized video respectively to remote student individuals with
different quality due to different capabilities of computers or devices, e.g. size of
display screen, network bandwidth.

To demonstrate Smart Cameraman scenario, we define several context rules
for this module and develop case generator to simulate a variety of situations as
Figure 3(d) shows:

Fig. 3. Different scenes delivered to remote students according to the class context:
(a)teacher writing on MediaBoard; (b)teacher showing a model; (c)teacher having a
discussion with local students; (d)Case generator module

– Teacher writing on the MediaBoard. When the teacher is writing comments
on the MediaBoard, the module may select a close-up view of the board, as
Figure 3(a) shows.

– Teacher showing a model. When the teacher holds up a model, the model
may zoom in on it, as Figure 3(b) shows.

652 W. Qin, Y. Suo, and Y. Shi

– Remote student speaking. When a remote student is speaking, live video of
the student may be delivered to other remote students.

– Other. In all the other situations, the module may select the overview of the
classroom, as Figure 3(c) shows.

Compared with the previous version of Smart Cameraman in Smart Classroom
project, several great systematic improvements have been done with the supports
of context-awaremiddleware CAMPS as depicted in Table 1. The enhanced Smart
Cameraman module has better scalability and adaptability performance, more
expressivepowerofcontextrepresentation, inferenceanddiscovery,andmucheasier
tomaintain andupgrade for the independence relationship among the components.

Table 1. Comparison on systematic improvements of Smart Cameraman module

Smart Module Context Inference Query

Cameraman Deployment Model Mechanism Interface

Module

Previous Toolkit XML-based IF-THEN-ELSE Ad hoc

Version Event Description Statement Manner

Enhanced Agent-based Ontology FOPL Formal Context

Version Component Bayesian Network Query Language

7 Related Works

Over the past few years, a number of works have been done in the area of context-
aware computing. Significant work has been done by Dey, et al. in defining the
concepts of context and context-awareness, identifying categories of context and
features of context-aware applications and developing a conceptual framework
for supporting rapid prototyping of context-aware applications [1].

Chen et al. introduce the Semantic Web technologies and ontologies in build-
ing an architecture for supporting context-aware systems, investigate the Stan-
dard Ontology for Ubiquitous and Pervasive Applications (SOUPA) that uses
OWL to represent the entities in a smart space environment, and develop the
Context Broker Architecture (CoBrA) that is an agent-based context-aware
framework to support ubiquitous agents, services and devices [13].

Gu et al. investigate a Bayesian approach for dealing with uncertain contexts
that proposes a probabilistic extension to an ontology-based model for represent-
ing uncertain contexts, and use Bayesian Network to reason about uncertainty.
A serviced-oriented context-aware middleware has been investigated in order to
enable building and rapid prototyping of context-aware services [6].

CAMPS: A Middleware for Providing Context-Aware Services 653

8 Conclusion

In a conclusion, we have presented a middleware for providing context-aware
services for Smart Space. The middleware supports the high-level abstraction of
context data with the power of formal context model which combine with first-
order probabilistic logic and ontologies, and allows context inference based on
extended Bayesian Network to provide more precise context information adapted
to changing, heterogeneous smart space environment. Our ongoing research is
investigating description logic approaches with more expressive power to make
middleware robust and extensible.

References

1. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Human Computer In-
teraction (HCI) Journal - Special Issue on Context-aware Computing 4(2-4) (2001)
97–166

2. Shi, Y.C., Xie, W.K., Xu, G.Y., Shi, Y.T., Chen, E.Y., Mao, Y.H., Liu, F.: The
smart classroom: Merging technologies for seamless tele-education. IEEE Pervasive
Computing Magazine 2(2) (2003) 47–55

3. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Proc. UbiComp
workshop on Advanced Context Modeling, Reasoning and Management. (2004)

4. Poole, D.: First-order probabilistic inference. In: Proc. IJCAI. (2003) 985–991
5. Guarino, N.: Formal ontology and information systems. In: Proc. FOIS. (1998)

3–15
6. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building

context-aware services. Journal of Network and Computer Applications 28(1)
(2005) 1–18

7. OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/.
8. Ding, Z.L., Peng, Y., Pan, R.: Bayesowl: Uncertainty modeling in semantic web

ontologies. Soft Computing in Ontologies and Semantic Web (2005) 27
9. DAML-Time, http://www.cs.rochester.edu/ ferguson/daml/

10. OWL-S: Semantic Markup for Web Services, http://www.daml.org/services/
owl-s/1.1/

11. Rish, I., Dechter, R.: On the impact of causal independence. In: Stanford Spring
Symposium on Interactive and Mixed-Initiative Decision Theoretic Systems. (1998)
101–108

12. Xie, W.K., Shi, Y.C., Xu, G.Y., Mao, Y.H.: Smart platform - a software infras-
tructure for smart space (siss). In: Proc. ICMI. (2002) 429–436

13. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments. Knowledge Engineering Review - Special Issue on Ontologies for
Distributed Systems 18(3) (2004) 197–207

Y.-C. Chung and J.E. Moreira (Eds.): GPC 2006, LNCS 3947, pp. 654 – 663, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Novel Power Management Scheme for E-Textiles

Nenggan Zheng, Zhaohui Wu, Zhigang Gao, and Yanfie Liu

College of Computer Science &Technology, Zhejiang Univ., Hangzhou, China
{zng, wzh, gaozhigang, yliu}@cs.zju.edu.cn

Abstract. As battery-driven systems, e-textiles need battery-efficient power
management schemes for increasing the time of the operations. We present a
novel power management scheme for e-textiles, which focuses on a battery se-
lection model based on the dependable infrastructures of the token grid com-
munication networks and the flexible power networks (FPN). In the FPN, a
power consuming node (PCN) can attain power energy from one of the multiple
battery nodes, while the PCNs are interconnected into the e-textile token grid
network able to preserve the full-connectivity in the case of faults. By decom-
posing the battery-efficient model into the Transaction Efficiency for each bat-
tery selection transaction, the selection model proposed in this paper aims to
achieve high Transaction Efficiency to extend the lifetime of the e-textile appli-
cations. Simulation results show that significant lifetime extensions can be ob-
tained with respect to conventional sequential discharge policy.

1 Introduction

With the current new computing paradigm of pervasive computing, microprocessors
are embedded into wearable objects such as glasses, wrist-watches and even fabrics.
Electronic textiles (e-textiles) are emerging new computing substrates, which com-
bine the advantages of electronic modules and textiles into one [1]. Potential applica-
tions for e-textiles include medical monitoring, military uniforms and sensor networks
[2]. Researchers in materials and textiles have presented new fibers, which function as
speakers, durable wires and batteries [3]; new packaging technologies for electronic
circuits give permission to manufacture practical electronic textiles [4]. Several proto-
types are documented in the papers and websites available [5-6].

Applications based on e-textiles may be deployed in inaccessible terrains or be tai-
lored as garments, isolated from permanent power sources. Similar to the portable
computing devices, e-textiles are battery-driven and restricted by the limited capacity
of the batteries. When the fabrics are tailored as a wearable garment or when the ap-
plications are in use, tear and wear are highly frequent, which potentially introduce
some short- or open-circuit faults into the electric networks of e-textiles. While the
open-circuit faults will make some electronic components have to stop their work due
to the disconnection form the power sources, the short-circuit faults can result in the
rapid leakage of the limited charge stored in the corresponding batteries.

From the point of view of the battery-driven and failure-prone systems, e-textiles
need battery-efficient power management schemes for prolonging the lifetime of the
operations. The paper presents a novel power management scheme to meet this de-
mand, which is based on the dependable infrastructures of the electric networks [7]

 A Novel Power Management Scheme for E-Textiles 655

and the communication networks [8] [9]. The fault-tolerant electric networks, the
Flexible Power Networks (FPN), can protect the battery from being discharged by
short-circuit faults and prevent the power consuming components from being disabled
by open-circuit faults. The power consuming nodes in the e-textiles can attain power
energy form one of the multiple choices of batteries in FPN, instead of a “fixed” one
in conventional electric networks. In addition, the power consuming nodes can also
communicate with each other by the e-textile token grid network that can provide full-
connectivity in the case of the faults [8]. The main part of our power management is
the load assignment modules running in every active power consuming node of the
FPN, which can “schedule” the discharge of the battery nodes by implementing the
battery selection model. This module aims to make use of the dependable and flexible
characteristics of the FPN and the data communication networks to maximize the
lifetime of the system. When a battery selection transaction is requested for some
reasons, the battery selection model considers the electrochemical characteristics of
the batteries and selects the right one of the highest Transaction Efficiency in the
choices of the battery nodes available.

The remainder of this paper is organized as follows: Section 2 surveys the related
works on the dependable infrastructure of e-textiles and power management policies
in battery-driven systems. In section 3, the battery selection model designed for every
active power-consuming node is illustrated. Next, section 4 describes the results of
simulation experiments, which gives the evidence to verify the effectiveness of the
new power management scheme. Finally, Section 5 concludes the paper and mentions
the future work.

2 Related Work

The main areas related to this paper range from the dependable infrastructure of the
electric networks and the token grid networks for e-textiles to the power management
policies for battery-driven systems, especially for multiple battery systems.

Electric networks embroidered on the fabrics are the infrastructure of the power
management policies for e-textiles. The research on the electric networks of the e-
textiles is in its infancy phase, without specialized documents reported. In the papers
on power management of e-textiles published before, the majority of these works
have the assumption that the elements get power energy from a fixed battery [5] [6]
[11] [12]. When implementing, previous prototypes base their power management
policies on the “fixed-relation” electric networks in which the inter-connecting rela-
tions between the power consuming nodes and the batteries are “one to one”. That is,
a power consuming node is connected to one battery or one group of battery cells.
This relation is determined in the phase of manufacturing and can not be changed
dynamically in use. Due to wear and tear or the depletion of energy resources in this
“fixed-interconnection” electric networks, power consuming nodes in the loops will
be disabled in a high frequency. And the power energy stored in the batteries is poten-
tially wasted for the open- or short-circuit faults introduced by some factors. Tanwir
Sheikh et al conducts simulations and experiments on such an electric network to
search the dependable power management schemes with some performance versus
system lifetime tradeoff when some faults are introduced [6]. Another research group

656 N. Zheng et al.

also proposes a novel concept of dynamic fault-tolerance management (DFTM) for e-
textiles with the “fixed” electric networks [11]. To enhance reliability of the e-textiles
systems, we introduce the “dynamic-changeable links” between the power consuming
nodes and the batteries into our electric network, the Flexible Power Network (FPN)
for e-textiles [7]. Consequently, we realize the idea of routing the power energy in
the dynamic changeable electric networks, which is listed as an open issue in the
paper [6].

Since each PCN owns several battery channels to obtain power energy in the new
electric network, the battery selection algorithm for scheduling the discharging of the
batteries in the power consuming node may like those in the multi-battery portable
systems [13] [14]. Sequential discharge is the basic discharging schemes in existing
products, which means that the discharging order of batteries are fixing and deter-
mined during system design [10]. Q. Wu models the battery efficiency as the ratio of
actual capacity to theoretical capacity and designs an interleaved battery power supply
to minimize the discharge delay product. Benini et al also propose an alternative ap-
proach for scheduling multiple batteries, referred as virtual parallel with proportional
current steering.

Although from the point of the power consuming node, a power consuming node
and its several battery choices are formed to a multiple battery system, the electric
system of e-textiles have two explicit differences from the portable multi-battery
systems. One difference is that in portable multiple battery systems, there is only one
power consuming devices, while e-textiles are distributed systems and large numbers
of power consuming nodes may drain energy simultaneously from the different power
supply. It may bring forth some synchronous problems. On the other hand, as the
result of the faults introduce into the FPN, a power-consuming node may be unable to
obtain energy from part of its battery choices. For the virtual parallel policy has an
assumption that the connection between the batteries and the power supply in the
system are stable, the virtual parallel does not allow for the cases in the e-textiles.

3 The Battery-Efficient Power Management Scheme

The implementation of requires some support of the electric networks and the com-
munication networks for e-textiles. Our FPN proposed in [7] has the ability to realize
the dynamic routing of the power energy in runtime and provide multiple battery
channels for every power consuming node. In the FPN, the nodes (the power consum-
ing nodes or the battery nodes) can change the topology of the interconnection ac-
cording to the runtime situations that may introduce some faults (open-circuit or
short-circuit faults) into the e-textiles. A power consuming node (PCN) can attain
power energy from one of the choices of the batteries nodes. The PCN has been con-
nected to several battery nodes. And its battery selector can fulfill the battery channel
switch when some faults occur or the current battery channel is exhausted. With the
FPN for e-textiles, it is more flexible to implement the power-aware and dependable
power supply policies for e-textiles.

On the other hand, the Token Grid Network for e-textiles in [5] [8] provides the
fault-tolerant infrastructure of data communication network. While the power con-
suming nodes and the battery nodes are interconnected into the dependable FPN, all

 A Novel Power Management Scheme for E-Textiles 657

the PCNs communicating with each other by the e-textile token grid network. By
parsing the information encapsulated in the token, a PCN can get the information it
required, such as the number of PCNs in the ring, the ID of the current master of the
token, the states of each PCNs in the ring and the path of the data transmitted. In this
paper, we utilize these protocols to perform potential concurrent battery selection
transactions.

The kernel of our battery-efficient power management scheme is the load assign-
ment module running in every active PCN. The module provides two transactions
(Update and Selection) to implement the power management scheme, which we will
discuss in section 3.2. Considering the electrochemical characteristics of the batteries,
we develop a battery selection model to select the right battery node that can achieve
the highest battery efficiency. With the battery selection model, the load assignment
module has the ability to determine which BN is the battery-efficient choice. Then the
module can require the FPN to perform the battery switch, while necessary parame-
ters of the battery selection transaction are sent to other PCNs in the token grid to
update relevant parameters.

In the rest of this section, we will relate the battery selection model allowing for
extending the lifetime by increasing the battery efficiency. The load schedule model
of each active power consuming node implements the battery selection model to as-
sign the load to the selected battery and thus schedule the discharge of the battery
nodes.

3.1 The Battery Selection Model

The chemical energy stored in a battery may not be extracted as power energy to full
extent (i.e., the ideal capacity) for some electrochemical reasons. Like other battery-
driven systems, it is necessary to implement battery-efficient schemes to extend the
system service time for e-textiles. Here, we based our work on the model of battery
efficiency proposed by Massoud Pedram and Qing Wu [14]. Let μ denote the effi-

ciency factor of a battery, I represent the output current required by the discharge
circuit. If 0C is the actual capacity that can be used by the discharge circuit and C is
the ideal battery capacity, there is an equation as follows:

0C C μ= ⋅ (1)

The efficiency factor of a battery is a monotonic-decreasing function of I :

(,)() | 1I Iα
β αμ β= − ⋅ (2)

where both β and α are positive factor constant numbers and can be obtained from

the datasheet of the battery. Higher rate discharge can result in more dramatic waste
of the chemical energy stored in the battery, which is equivalent to the μ of a smaller

magnitude. In the following paragraphs, we derive the battery selection model for the
e-textiles. There are two kinds of parameters as the input of the model.

Static parameters: The input to our battery selection model is the battery profile of
the BN set in the FPN, described by the following several sets: the set of the rated

658 N. Zheng et al.

currents { | 0,1, ..., 1}ir r
k

S I k m= = − , the set of the factor constants

{(,) | 0,1, ..., 1}
k

S k mβ β α= = − and the set of ideal capacity at a new bat-

tery { | 0,1, ..., 1}c
k

S C k m= = − . For 0 k m≤ < , the pair ,r
k k

I C< > corresponds to

the rated discharge current and the ideal capacity of the BN k . Each PCN in the elec-
tric network stores the pairs of every BN that is connected to it. Let

{ , | 0 }r
k k

I C k mΓ ⊆ < > ≤ < denote this ideal parameters pair subset for a PCN with

m battery channels.

Runtime parameters: When the system is powered on, the active PCNs in the FPN
are consuming the energy stored in the BNs. Despite the ideal parameters pair subset,
each active PCN (the subscript i denotes the index of the PCN) also keeps the runtime
battery profiles which is a linear list of the parameters pair ,run runI C< > for every BN
interconnected to the PCN, where runI is the discharge current and runC is the remain-
ing capacity of the BN. In the FPN, many PCNs may drain the power energy from the
same BN and the discharge current of the BN k is the sum of current in all these
PCNs. A linear list of nodes of the parameters , ,cn stP ID I T< Δ > follows the corre-

spondent list head of battery runtime parameters pair ,
k k

run runI C< > for BN k , where

cnP ID is the global ID for one of these PCN, IΔ is the discharge current of the PCN
cnP ID and stT is the start time stamp of the PCN drained the energy from the BN k .

Consequently, a PCN keep the same number of such linear lists as the number of its
choices of BNs.

To utilize the energy stored in the multiple batteries in the FPN effectively, our ob-
jective is to maximize the combined amount of actual energy extracted from all bat-
teries in the electric network. Given an e-textile system with n BNs, let

1
()total

n

k k kk
C C Iμ

=
= ⋅∑ (3)

Intuitively, totalC is the actual charge that can be used in the discharge circuit with n

batteries in the system. We use totalC as our cost function to be maximized in every
switch task performed by the PCN.

We model all the BNs in the FPN as a virtual battery of the total capacity, formu-
lated in equation (3), and define the Transaction Efficiency of a battery selection
transaction requested by a PCN as equation (4), which is a ratio of the necessary

actual capacity
actual

TC to the ideal capacity
ideal

TC consumed by the selection

transaction.

actual ideal
TE TC TC= (4)

Each battery switch transaction is regarded as an increment of the load attached to the
virtual battery. For a PCN of the current load IΔ , the actual necessary capacity

actual
TC is determined by the product of the switch interval and the current of the PCN

(if we do not consider the dynamic voltage scaling approaches). Consequently, we

 A Novel Power Management Scheme for E-Textiles 659

can decompose the goal of maximizing the cost function in equation (3) to achieve the
highest Transaction Efficiency of every battery switch transaction.

If the selection model attaches the PCN of index i to the BN of index k, the affect
resulted from the selection transaction is twofold: (a) the incremental load IΔ will

increase the load of BN from runkI to runkI I+ Δ , thus decrease the efficiency factor of

the corresponding battery; (b) the lower efficiency factor will also affect the behavior

of previous load runkI on the battery node k. As a result, the evaluation of

idealTC should considers both sides. To achieve the highest efficiency as the PCN i can

get, the computing model should search the runtime battery profile of PCN i with the
static set of the factor constants S β . Considering the twofold affect of the incremental
load IΔ , we derive equation (5) from equation (3) and (4), evaluating the Transaction
Efficiency of the battery selection transaction for PCN i.

1

() ()
max{ }

() () ()
k k k k

k n
k k k k k k

run run

i
run run run run

I I I I

I I I I I I
TE

μ μ
μ μ≤ ≤

+ Δ ⋅ ⋅ Δ

⋅ + Δ − + Δ
= (5)

Especially, when μ is a linear function of I , i.e., 1α = , we can get the following

equation:

0

max{ }() ()
i

k n

run runk k k kTE I I Iμ μ
≤ ≤

= + Δ ⋅ (6)

Based on equation (5), the battery selection model searches the runtime battery

profile of PCN i and get the BN k with Transaction Efficiency iTE . Then, the load

assignment module implementing the battery selection model performs the battery
switch transaction and attaches the PCN i to an appropriate BN.

3.2 Transactions Load Assignment Module

There are two kinds of transactions in the load assignment module to update the pa-
rameters and perform the battery selection. One is the battery selection; the other is
the update of the battery runtime profiles. Of the two, the latter has a high priority.

Update: The update transaction is conducted locally in parameter tables of every
active PCN, which is to update the runtime battery profiles. Since the runtime
parameters are the input of the selection model, these parameters should reflect the
dynamic changes of the capacity and the current load during the discharging of the
batteries. It is necessary to update these runtime parameters in an appropriate interval
of a few seconds. The tokens traversing the grid check the state of every PCN and the
interconnection topology of the PCNs. While some PCNs are isolated for tear and
wear, the token traversing the grid will advertise the information to every intercon-
nected PCN in the grid that will update its own runtime battery profiles in the next
update transaction. And for a PCN isolated, what it has to do is to halt its own running
and disconnect itself from the corresponding BN.

The update transaction also predicts the remaining discharge time of the
battery which is the current power source. If it is coming to be exhausted (that is, the

660 N. Zheng et al.

Waiting for the
switch token

Select the BN k
by Evaluating the Transaction

Efficiency

Perform the battery channel switching
and Send parameters to update

runtime parameters in other PCNs
EndStart

Fig. 1. Basic flow chart for battery selection transaction

remaining discharge time is lower than a threshold), a request of the battery selection
transaction is called.

Battery selection: There are some occasions on which a request of the battery selec-
tion transaction will be called. When the battery schedule slice is due, or some faults
are introduced into the circuits or the load of the PCN is changed to a new state, the
PCN has to request a battery selection transaction to select an appropriate power sup-
ply in accordance to the battery selection model. It works as follows: Firstly, the PCN
running the battery selection transaction has to wait for the switch token which is
traversing in the grid or is captured by some PCN requesting the battery selection
transaction earlier. Then, after the PCN gets the switch token, the Transaction Effi-
ciency is evaluated to search the BN k of the highest value in the runtime battery
profile of the PCN. Finally, the PCN performs the channel switching from previous
battery to the BN k. and then sends the select packet (i.e., the update token) encapsu-
lating the PCN ID, the incremental load IΔ , the current index of the BN, the index k
of the Selected BN and the Start time. Each active node updates its runtime battery
tables from the update token traversing in the grid. When the update token with the
flags of all row and column set return to the PCN that is performing the battery selec-
tion, the transaction is fulfilled. Fig.1 is the basic flow chart of the battery selection
transaction.

4 Experiments

Firstly, we use PSPICE simulation tools and experimental electronic nodes to get the
load profiles as the input data for the experiments, which are designed to verify our
scheme described in the previous sections.

The experiment consists of evaluating a real-life workload extracted from an
acoustic beam-forming system [5]. The system simulated in the Ptolemy II is de-
signed for detecting the direction of the moving vehicles, which runs a beam forming
algorithm and is based on the e-textiles with many sensitive microphones. In the
simulation environment, an accurate battery model is implemented to simulate the
behavior of the batteries [15]. Two kinds of power management schemes are simu-
lated to explore the advantages offered by the new battery selection introduced in this
paper. One is the existing sequential discharging policy which discharges the BNs in
the ascending order of the battery index in the case of same batteries or in the de-
scending order of the battery voltage, and the other is our battery selection model. The
power consuming nodes in the system have an alternate sequence of actions (sam-
pling acoustic signals, running the beam-forming algorithm, sending token package
and receiving token package) and sleep intervals. We have taken some usage traces of
the real beam-forming e-textile applications to get the typical current load of one node
in these states, listed in Table 1. The load profile is used as a lookup table in the

 A Novel Power Management Scheme for E-Textiles 661

Table 1. A Power Consuming Node Load Profile Summary (the unit of current is A).
SMP:sampling, BMFM: beam-forming, S/R: Sending/Receiving, SLP: Sleep.

Node SMP BMFM S/R SLP
I 17520 21250 13350 1.5
II 8100 9215 7541 2.7
III 1139 1574 1293 8.6
IV 19618 21584 17982 10.4

Table 2. Efiicient factor Functions and Ideal Capacity of the Batteries in the System

Battery Ideal Capacity(mAh) Efficient Factor Functions
I 1400 1 .31 0 .0 0 0 7 I− ⋅
II 2500 1.41 0.000018 I− ⋅
III 1200 1.21 0.00004 I− ⋅
IV 16000 1.91 0.0000085 I− ⋅

evaluation of the Task Efficiency in the battery selection model. The battery efficient
factor functions μ in Table 2 are obtained from the discharge curves from datasheets

of various batteries in Sony Lithium-Ion Rechargeable Battery Catalog. We con-
ducted three groups of experiments:

Experiment 1. Four instances of Node I and four instances of Battery I
Experiment 2. one instance of every PCN type and four instances of Battery I
Experiment 3. one instance of every PCN type and one instances of every Battery

 type.

Each group of the experiments has five task modes: SMP (Sampling), BMFM
(beamforming), S/R (Sending/Receiving), SLP (Sleeping) and the real working mode
of an acyclic sequence of these four states. Fig.2 plots the percentage of lifetime in-
crease for three groups of experiments over the counterpart of the sequence policy.

exp1 exp2 exp3
0

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
s

of
 L

ife
tim

e
in

cr
ea

se

SMP
BMFM
R/S
SLP
Real Working Mode

Fig. 2. Lifetime increase over the sequential discharge policy grouped by the Experiments

662 N. Zheng et al.

It can see from the plot that the proposed battery selection model has significant
improvements on the lifetime of the multiple battery systems. Note that all the results
are the lifetime increase percentages, not the absolute values of the lifetime. There are
also some distinguishing features shown in the plot. Firstly, we notice how the life-
time extensions increase with the average value of the current load. In the results of
single experiments such as Exp1, the increase tends to be larger for workloads with
higher current load (i.e., higher load and larger increase). While the battery efficiency
is lower in the case of higher current load, in Experiment 1, the PCN nodes of type 1
in the real-working mode achieves a lifetime increase five times larger than that of the
same node in the sleeping state. This matches the feature that the proposed battery
selection model splits the load to different batteries while the sequential policy at-
taches the entire load on a single BN. For lower load, the batteries tend to behave as
ideal battery models and thus the lifetime increase is inferior. It is apparent that, as the
current load goes to zero, the battery selection model and the sequential discharge
policy will have the same battery service lifetime.

When comparing the results of Exp1 with those of Exp2, the battery selection
model in the latter case achieves a higher lifetime incensement percentages with def-
erent types of power consuming nodes. Due to the higher Task Efficient factor in the
case of Exp2, the variance of the discharge current has lower influence on the battery
selection model which tends to assign the incremental load to the BNs with lighter
load. Similarly, we can get the same results comparing the results of Exp1 with those
of Exp3, which can be attributed to the same reasons.

In Exp3, there are four kinds of BNs and each BN has different pairs of the factor
constants (,)β α , while in Exp2, four BNs have the same type of Battery I. However,

when we compare the lifetime increases obtained in Exp2 with those obtained in
Exp3, it is not remarkable and has no definite tendency, which is also consistent with
cost function.

5 Conclusion and Future Work

In this paper, we present a novel power management scheme for efficiently utilizing the
ideal capacity of the batteries embroidered into e-textiles. Based on the dependable
infrastructures of the Flexible Power Network and the e-textile Token Grid Network, the
battery selection model aims to achieve high Task Efficiency to extend the lifetime of
the applications. We have decomposed the battery efficiency model into the Task
Efficiency for each battery selection transaction, which is verified by the simulation
experiments conducted in several situations. The experimental results show that the
battery selection model is much more effective than the existing sequential discharge
policy and can schedule the load to different Battery Nodes symmetrically.

Our program of further work includes developing the fast search algorithm for the
battery selection model and considering the recovery effect of the batteries. The ob-
jective of the future work is to implement battery-efficient management modules,
which can prolong the application lifetime in the presence of both energy and reliabil-
ity constraints, with a possible tradeoff for performance.

 A Novel Power Management Scheme for E-Textiles 663

References

1. Diana Marculescu, et al, “Electronic Textiles: A Platform for Pervasive Computing”, Pro-
ceedings of the IEEE, VOL. 91, NO. 12, 1995-2018, December 2003.

2. Mark Jones, et al, “Analyzing the Use of E-textiles to Improve Application Performance”,
IEEE Vehicular Technology Conference 2003, Symposium on Wireless Ad hoc, Sensor,
and Wearable Networks (VTC 2003)(extended abstract), October 2003.

3. Power Paper ®, “Power Paper website” (2004), [Online].Available: www. owerpaper.com.
4. Jung, S. Lauterbach, C., and Weber, W. "IntegratedMicroelectronics for Smart Textiles,"

Workshop on Modeling, Analysis, and Middleware Support for Electronic Textiles, Octo-
ber, 2002.

5. Zahi Nakad, Architecture for e-Textiles. PhD thesis, Bradley Department of Electrical and
Computing Engineering, Virginia Tech, 2003.

6. Tanwir Sheikh, Modeling of Power Consumption and Fault Tolerance for Electronic Tex-
tiles, Bradley Department of Electrical and Computing Engineering, Virginia Tech,
Sep.2003.

7. N. Zheng, Z. Wu, M. Lin, M. Zhao, “A Dependable Infrastructure of the Electric Network
for E-textiles”, to appear in the Proc. of the 20th International Parallel and Distributed
Processing Symposium.

8. Zahi Nakad, Mark Jones, and Thomas Martin, “Fault-Tolerant Networks for Electronic
Textiles”, in the Proc. Of the 2004 International Conference on Communications in Com-
puting, Las Vegas,pp. 51-56 June 2004.

9. T.D. Todd and E.L. Hahne, "Multiaccess Mesh (Multimesh) Networks," IEEE/ACM
Transactions on Networking vol. 5, pp. 181-189, 1997.

10. HP OmniBook 500 (2000). [Online]. Available:
www.hp.com/notebooks/us/eng/products/professional/ultra_portable/index.htm.

11. P.Stanley-Marbell, D.Marculescu, “Dynamic fault-tolerance and metrics for battery pow-
ered, failure-prone systems”, in the Proc. Of International Conference on the Computer
Aided Design, page(s):633 – 640, 2003.

12. Thomas Martin, et al, “Modeling and Simulating Electronic Textile Applications”, In Pro-
ceedings of the Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools, pages 10-19,LCTES2004,June 2004.

13. L. Benini et al., “Discharge Current Steering for Battery Lifetime Optimization,”
Proc.2002 Int’l Symp.Low-Power Electronics and Design, pp. 118-123, 2002.

14. Q. Wu, Q. Qiu, and M. Pedram, “An Interleaved Dual-Battery Power Supply for Battery-
Operated Electronics,” Proc. 2000 Conf. Asia and South Pacific Design Automation, IEEE
Press, pp. 387-390, 2000.

15. L. Benini, et al, "Discrete-time battery models for system-level low-power design", IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Volume 9, Issue 5, Oct.
2001 Page(s):630 – 640.

Author Index

Ahmad, Gufran 447
Aida, Yoshiaki 324
Akbar, Ali Hammad 250, 269, 527
Alhajj, Reda 336
Awde, Ali 620

Baker, Mark 415
Bang, Seung-Jin 269
Bangalore, Guru. 597
Barba, Jesús 567
Barker, Ken 336
Bellik, Yacine 620
Boku, Taisuke 324

Cai, Hailong 115
Cao, Chongying 427
Cao, Jiannong 498
Cérin, Christophe 175
Chan, Alvin T.S. 498
Chan, Keith C.C. 498
Chan, Sung-Ming 32
Chang, Hsi-Ya 299
Chang, Jyh-Biau 547
Chaudhry, Shafique Ahmad 517
Chen, Hsi-Min 1
Chen, Tingwei 456
Chen, Uei-Ren 63
Chen, Yu 385
Cheng, Hsien-Ting 405
Cheng, Wenqing 279
Choi, Jonghyoun 577
Choi, KwangHee 587
Choi, YongJin 395
Chou, Chau-Yi 299
Chu, Kai-Dee 289
Chuinst, Hao-hua 405

Dai, Yu 456
Decker, Stefan 415
Di, Liping 289
Dong, Xiaoshe 557
Du, Xu 279
Du, Zhihui 137
Dubacq, Jean-Christophe 175

Feng, Guofu 557

Gao, Jianliang 509
Gao, Zhigang 654
Gerard, Jeffrey 115
Gomes Junior, Augusto Mendes 314
Gu, Hongliang 385
Guan, Haibing 259, 634
Guo, ChangGuo 103
Guo, Hua 557
Gupta, Bidyut 597

Han, Ki-Joon 373
Han, Kun Hee 197
Hao, Xianwen 456
Helmy, Tarek 488
Hina, Manolo Dulva 620
Ho, Kevin 147
Hong, Dong-Suk 373
Hou, Ting-Wei 346
Hsiao, Hung-Chang 83
Hsu, Chun-Chen 1
Hu, Meizhi 478
Huang, Chia-Chi 227

Iqbal, Ahmad Ali 250
Iqbal, Kashif 415

Jeong, Sam Jin 197
Jiang, Jehn-Ruey 93
Jiang, Wenfeng 385
Jin, Hai 437
Jun, Yong-Kee 187
Jung, Kwang Sik 587
Jung, Won-Do 517

Kang, Zhe-Hao 165
Kim, Donggook 395
Kim, Dong-Oh 373
Kim, Ki-Hyung 250, 269, 517, 527
King, Chung-Ta 93, 207
Ko, Il Seok 157
Kuo, Chin-Lin 126

Lane, Terran 22
Law, Chun-Fai 32

666 Author Index

Lee, Dae Won 587
Lee, DongWoo 53
Lee, HyoYoung 53
Lee, HyunBin 395
Lee, Seung-Won 373
Leong, H.V. 498
Li, Jiadao 42
Li, Layuan 217
Li, Minglu 259, 634
Liang, Tyng-Yeu 547
Liao, Chi-Hsiang 93
Liao, Hao 83
Lin, Chin-Yang 346
Lin, Ching-Lun 405
Lin, Chow-Sing 609
Lin, Min-Ping 207
Lin, Shih-Hsiang 126
Lin, Woei 63
Lin, Xuan-Zuo 447
Lin, Yi-Fang 165
Lin, Zhiwei 509
Liu, Da-Xin 447
Liu, Pangfeng 1, 165
Liu, Yanfie 654
Liu, Yanfie 654
López, JuanCarlos 567
Lu, Kai 466
Luna, Jesus 12

Ma, Jie 308
Manso, Oscar 12
Mansoor, Waleed 269
Massetto, Franciso Isidro 314
Medina, Manel 12
Meng, Dan 308
Moya, Francisco 567
Mun, Youngsong 577

Na, Yun Ji 157
Nakajima, Yoshihiro 324
Noh, Donggeon 237

Ou, Liang 279

Park, Daeyeon 395
Park, Mi-Young 187
Park, Young Chul 197

Qin, Weijun 644
Qin, Zhongsheng 557
Qiu, Shibin 22

Rahimi, Shahram 597
Rahman, Rashedur M. 336
Ramakrishna, R.S. 53
Ramdane-Cherif, Amar 620
Rias, Rishad A. 597
Rincón, Fernando 567
Roch, Jean-Louis 175
Roh, Sung-Ju 587

Sakurai, Tetsuya 324
Sato, Liria Matsumoto 314
Sato, Mitsuhisa 324
Shahab, S.A. 488
Shang, Erfan 137
Shi, Yuanchun 385, 644
Shieh, Ce-Kuen 547
Shih, Wen-Chung 73
Shin, Heonshik 237
Sohn, Young-Ho 517
Song, YongJoo 395
Subrata, Riky 466
Sum, John 147
Sun, Baolin 217
Sun, Ming-Tsung 207
Sun, Wei 447
Suo, Yue 644

Tadj, Chakib 620
Takahashi, Daisuke 324
Tang, Feilong 259, 634
Tcheng, Shou-Cheng 299
Thornton, Peter 289
Tseng, Shian-Shyong 73

Varela, Carlos A. 360
Villa, David 567
Villanueva, Felix Jesús 567

Wang, Bibo 385
Wang, Chien-Hsun 63
Wang, Chien-Min 1
Wang, Cho-Li 32
Wang, Dajin 509
Wang, Huan 137
Wang, Jun 115
Wang, Shih-Hsien 547
Wang, Shuen-Tai 299
Wang, Tong 447
Wang, Wei-Jen 360
Wang, Xiaodong 498

Author Index 667

Wang, Yinfeng 557
Wang, Yuexuan 537
Wu, Cheng 537
Wu, Hao 437
Wu, Jan-Jan 1, 165
Wu, Lei 137
Wu, Min-You 259, 634
Wu, Zhaohui 654

Xiang, Yang 217
Xu, Ke 537
Xu, Li 509
Xue, Gang 308

Yahyapour, Ramin 42
Yang, Chao-Tung 73
Yang, Cundong 22
Yang, Guangwen 478
Yang, Jing 427
Yang, Lei 456
Yang, Ming-Jeng 126
Yang, Qiu 217
Yang, Zongkai 279

Yeh, Yao-Ming 126
Yoon, Won-Sik 269
You, Yuanxia 308
Young, Gilbert S. 147
Yu, Chih-Min 227
Yu, Heon Chang 587
Yu, Wanrong 498
Yuan, HongLiang 103
Yuan, Linfeng 279
Yun, Jae-Kwan 373

Zhang, Bin 456
Zhang, Chongqing 259, 634
Zhang, Guoqing 427
Zhang, Wenzhe 259, 634
Zhang, Xiaolei 32
Zheng, Fang 557
Zheng, Nenggan 654
Zheng, Weimin 478
Zhou, Xingming 498
Zhu, Suihui 137
Zomaya, Albert Y. 466
Zou, Peng 103

	Frontmatter
	Session 1: Best Paper Awards
	Optimizing Server Placement in Hierarchical Grid Environments
	Using OGRO and CertiVeR to Improve OCSP Validation for Grids
	Efficient Target Detection for RNA Interference
	Smart Instant Messenger in Pervasive Computing Environments

	Session 2: Grid Scheduling
	Negotiation Strategies for Grid Scheduling
	An Enhanced Grid Scheduling with Job Priority and Equitable Interval Job Distribution
	Average Schedule Length and Resource Selection Policies on Computational Grids
	A Performance-Based Approach to Dynamic Workload Distribution for Master-Slave Applications on Grid Environments

	Session 3: Peer-to-Peer Computing
	The Peering Problem in Tree-Based Master/Worker Overlays
	MUREX: A Mutable Replica Control Scheme for Structured Peer-to-Peer Storage Systems
	The Subscription-Cover Based Routing Algorithm in Content-Based Publish/Subscribe
	Alliatrust: A Trustable Reputation Management Scheme for Unstructured P2P Systems

	Session 4: Web/Grid Services
	A Fault-Tolerant Distributed Scheme for Grid Information Services
	A Market-Oriented Model for Grid Service Management
	Pricing Web Services
	A Performance Improvement of Web Service System Based on the Probability Distribution Characteristics

	Session 5: High Performance Computing
	An Optimal Scheduling Algorithm for an Agent-Based Multicast Strategy on Irregular Networks
	Methods for Partitioning Data to Improve Parallel Execution Time for Sorting on Heterogeneous Clusters
	Detecting Unaffected Message Races in Parallel Programs
	A Combined Technique of Non-uniform Loops

	Session 6: Ad Hoc Networks
	Neighbor-Aided Multicast Protocol for Streaming Transmission on MANETs
	An Entropy-Based Stability QoS Multicast Routing Protocol in Ad Hoc Network
	On the Performance of a Hybrid Routing Protocol for Blueweb: A Bluetooth-Based Multihop Ad Hoc Network
	An Adaptive and Scalable Resource Advertisement and Discovery Strategy for Mobile Ad Hoc Networks

	Session 7: Wireless Sensor Networks
	Binding Multiple Applications on Wireless Sensor Networks
	Model-Aided Metadata Management for Wireless Sensor Networks
	Availability Considerations for Wireless Sensor Grids
	An Energy-Aware Position-Based Routing Strategy

	Session 8: Grid Applications 1
	Introduction of Grid Computing Application Projects at the NASA Earth Science Technology Office
	Modeling Message-Passing Overhead on NCHC Formosa PC Cluster
	Evaluation of the Device Driver Availability in Dawning4000A
	HyMPI -- A MPI Implementation for Heterogeneous High Performance Systems

	Session 9: Data Grid
	Performance Improvement by Data Management Layer in a Grid RPC System
	Effective Dynamic Replica Maintenance Algorithm for the Grid Environment
	A Lightweight Cyclic Reference Counting Algorithm
	Distributed Garbage Collection for Mobile Actor Systems: The Pseudo Root Approach

	Session 10: Pervasive Applications 1
	A Grid-Based Node Split Algorithm for Managing Current Location Data
	Cicada: A Highly-Precise Easy-Embedded and Omni-Directional Indoor Location Sensing System
	Searchable Virtual File System: Toward an Intelligent Ubiquitous Storage
	A Collaborative Privacy-Enhanced Alibi Phone

	Session 11: Semantic Web / Semantic Grid
	The Semantic Grid: Requirements, Infrastructure and Methodology
	MPLS Inter Domain Services Routing Architecture and Model Based on P2P Semantic Grid
	Semantic Metadata Models in References Sharing and Retrieval System SemreX
	Clustering Large Scale of XML Documents

	Session 12: Grid Load Balancing
	QoS-Driven Grid Resource Selection Based on Novel Neural Networks
	Towards Decentralized Load Balancing in a Computational Grid Environment
	A Resource-Autonomy Based Monitoring Architecture for Grids
	Machine Learning-Based Adaptive Load Balancing Framework for Distributed Object Computing

	Session 13: Wireless Ad Hoc/Sensor Networks
	VWMAC: An Efficient MAC Protocol for Resolving Intra-flow Contention in Wireless Ad Hoc Networks
	A Coloring Based Backbone Construction Algorithm in Wireless Ad Hoc Network
	Route Error Reporting Schemes for On-Demand Routing in 6LoWPAN
	Are Low PANs a PAN or an Internet of PANs?

	Session 14: Grid Applications 2
	Ensuring Secure and Robust Grid Applications -- From a Formal Method Point of View
	Supporting the OpenMP Programming Interface on Teamster-G
	Key Techniques of Software Sharing for on Demand Service-Oriented Computing
	Embedding a Middleware for Networked Hardware and Software Objects

	Session 15: Mobile Computing
	Mechanism of Authenticating a MAP in Hierarchical MIPv6
	Reducing Binding Updates in High Speed Movement Environment Based on HMIPv6
	A Low-Overhead Non-block Checkpointing Algorithm for Mobile Computing Environment
	Applying Dynamic Handoff to Increase System Performance on Wireless Cellular Networks

	Session 16: Pervasive Applications 2
	A Paradigm of a Pervasive Multimodal Multimedia Computing System for the Visually-Impaired Users
	Context-Aware Adaptation for Media Delivery in Pervasive Computing Environment
	CAMPS: A Middleware for Providing Context-Aware Services for Smart Space
	A Novel Power Management Scheme for E-Textiles

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

